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Abstract

This paper is devoted to a study of the integral of the workload process of the
single server queue, in particular during one busy period. Firstly, we find asymptotics
of the area 4 swept under the workload process W (t) during the busy period when the
service time distribution has a regularly varying tail. We also investigate the case of a
light-tailed service time distribution. Secondly, we consider the problem of obtaining
an explicit expression for the distribution of A. In the general GI|G|1 case, we use a
sequential approximation to find the Laplace-Stieltjes transform of A. In the M|M|1
case, this transform is obtained explicitly in terms of Whittaker functions. Thirdly, we
consider moments of A in the GI|G|1 queue. Finally, we show asymptotic normality

of fot W (s) ds.
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1 Introduction

This paper is devoted to a study of the integral of the workload process of the single
server queue, in particular during one busy period. Besides its intrinsic interest, the
tail behaviour of the area A has applications to various problems, like to the analysis of
the load in TCP networks (TCP is the Transmission Control Protocol in the Internet).
To analyse the performance of TCP networks one may create a simple model with the
following features (to simplify considerations we assume infinite window size). If one has
succeeded in sending L(t) bytes at time ¢ (one obtains acknowledgements for £(¢) bytes),
then at time ¢ + d¢ one tries to send aL(t) bytes for some constant a. Suppose that after
some random time a transmission fails; then the demand randomly decreases. The amount
of data sent in a busy period now equals the area under the line £(¢). This area is equal
to A in an appropriate GI|G|1 queue. Other applications are found in inventory theory
and in risk theory. In risk theory Gerber [16], Embrechts and Schmidli [14] considered an
insurance risk model, where the company is allowed to invest money. We assume that the
force of interest for invested money and the premium income are constant. The company
will obtain money earned from investment at the ruin epoch if this happens. Then the
surplus process is proportional to the amount of money that the insurance company will
obtain at the ruin time, and it is equal to A in an appropriate GI|G|1 queue.

In this paper, we make the following contributions to the analysis of the integral A4
in the GI|G|1 queue and related topics. Firstly, we find asymptotics of .4 when the
service time distribution has a regularly varying tail. We also investigate the case of a
light-tailed service time distribution. Secondly, we consider the problem of obtaining an
explicit expression for the distribution of A. Thirdly, we consider moments of A in the
GI|G|1 queue. Finally, we show asymptotic normality of Ay, := fg W(s) ds. We now
discuss these topics in some more detail, also discussing the relevant literature.

Our first goal is to obtain tail asymptotics of A. The GI|G|1 queue with regular
varying tail distribution has been subject of many studies. Most of them focus on the tail
of the waiting time distribution. We show in this paper that the occurrence of a large area
is related to the occurrence of a large cycle maximum and we exploit asymptotic results
for this random variable. These are known for the GI|G|1 queue with subexponential
service times (see Asmussen [5]) or with light-tailed service time distribution (see Iglehart
[23]). In Theorem 3.1 we give the following asymptotics:

P(A>z) ~EH V( 2(1 —p):v) as T — 00, (1.1)

where H is the number of customers served during the busy period, p is the offered traffic
load, and V' (-) denotes the tail of the service time distribution; V'(+) is regularly varying
at infinity and f(z) ~ g(z) means that lim, . f(z)/g(z) = 1. We generalize (1.1) for the
case in which the busy period starts with some service time and interarrival time that are
not typical service and interarrival times. We also consider the case of light-tailed service
times, proving that

27(1_’3)_(5_1) z

o pee as r — 00, (1.2)

P(A>z)~Ce
for given constant C' and 7, where p is the traffic intensity in some related queueing system.
The light-tailed case thus gives rise to Weibull-like asymptotics for the tail of the area.

Our second goal is to obtain an explicit expression for the Laplace-Stieltjes transform
(LST) of the distribution of A in the GI|G|1 queue. We use a sequential approximation



method for obtaining this transform, and we find the rate of convergence. For the M |M|1
queue we derive an explicit formula for the LST of A:
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where 4 and A are the intensities of the service and interarrival times, respectively, and
D, (z) is a parabolic cylinder function.
Our third goal is to study the moments of A. The first moment of A is well-known
(see Cohen [13]); it equals
EA = EIEW |, (1.4)

where W is the stationary workload and [ denotes a busy cycle. The proof of (1.4) in
Cohen [13] is based on regenerative arguments. Using level crossing arguments, Cohen
[12] finds an explicit expression for IEA? in the M|G|1 queue. Necessary condition for
the first (respectively second) moment of the area A to be finite in the M|G|1 case is
that the second (respectively fourth) moment of the service time is finite. In the present
paper we generalize this result to the GI|G|1 case with general initial service and inter-
arrival times. Under these conditions we prove a functional central limit theorem for the
process {[f W(s) ds,t > 0}. We also prove that in the stationary regime of W (t) we
have ]E(fg(W(s) — EW (s)) ds)? ~ 2tR for t — co where R = [;° p(t) dt and p(t) is the
covariance between W (t) and W (0). The necessary condition for the asymptotic variance
R to be finite is that the fourth moment of the service time is finite; compare with an
explicit expression for the M|G|1 queue in Abate and Whitt [1], Benes [8], Ott [27].

The paper is organized as follows. In Section 2 we describe the model and give some
preliminary results needed for proving Theorems 3.1 and 4.1. In Sections 3 and 4 we find
asymptotics of IP(A > z) when the service time distribution is regularly varying and when
it is light-tailed, respectively. In Section 5 we use a sequential approximation method to
find the LST of A in the GI|G|1 queue. The LST of A in the M|M|1 queue is obtained
in explicit form in Section 6. In Section 7 we determine the conditions for the first two
moments of A in the GI|G|1 queue to be finite and we prove a functional central limit
theorem for the process {[; W (s) ds,t > 0}.

2 Preliminaries

Suppose that the first customer (with the number zero) enters an empty system at time
0 and that his service time is o9 with the tail distribution Vj(-). We denote the first
interarrival time by 7. The service time of customer i (i > 1) is denoted by o; and the
time between the arrivals of customers ¢ and 7 + 1 is denoted by 7;. It is assumed that o;
and 7; (1 > 1) are i.i.d. sequences and that both sequences are independent of each other
and independent of (g, 79). We assume that all service times and interarrival times have
non-lattice distributions, finite mean and that the stability condition for the traffic load
holds:

=—<1,
P Er

where o and 7 are r.v.’s with generic distribution of o; and 7; (i > 1), respectively. Denote
by V(-) and A(-) the tails of the distribution of o and 7, respectively. Let W (t), W (0—) =0
be the workload process, that is the amount of work at time ¢. Unless specified otherwise,
we assume that og and 79 have the same distribution as ¢ and 7, respectively. If og



and 7y have different distributions than ¢ and 7 respectively, then we add the superscript
(00, T0) to each relevant quantity. Finally, IP, denotes the conditional probability under the
condition that W(0) = z and IE, denotes the expectation with respect to IP,. Similarly,
P*(-) = P(:|]og = z) and IE* denotes the expectation with respect to IP*. Denote by V{(+)
the tail of the distribution of (69 — 79)™. The busy period is defined by

l:=1inf{t > 0: W (t) =0}.
Let
k
S =0, Sh1:=Y_ &, (2.1)
i=0

where & = 0; — 7. Then the number of customers served during the busy period can be
defined in the following way:

H :=min{k >1: 5, <0} .

Note that -
EH = exp{>_P(S, > 0)}, (2.2)

n=1

and when interarrival times are exponential then IEH = ﬁ; see Asmussen [4]. A random
variable which plays a crucial role in the next sections is the cycle maximum (height) given
by

h:=sup{W(t),0 <t <I}.

By F(-) we denote the distribution of h. Define
li :==1inf{t > 0: W (t) = h}, lo:=1-1;.

First we prove a preliminary result which will be often used in the next sections, viz.:
After passing a high level, the workload behaves according to the law of large numbers,
decreasing almost linearly with the slope 1 — p.

Lemma 2.1 For any § > 0 and € > 0 there exists a sufficiently large M and L > M such
that for any x > L we have

P (By|h > ) > 14, (2.3)

and
P70 (Bylh > 2) > 1 -6, (2.4)

where
Bi={h—W(i+u) <M+u(l-p)(l+e€);0<u<l},

By={h—W( +u)>-M+u(l—p)(1—€);0<u<ly}.

Proof. We prove (2.3). Inequality (2.4) can be proved in a very similar way. By B¢ we
denote the complement of set B. To prove (2.3) it is enough to prove that

Pe070) (BE|h > ) — 0, as z, M — oo.

Denote by X (u) the renewal process with the time intervals distributed according to 7
and the jump size distributed according to 0. Without loss of generality we assume that
Iy > 0. If [y = 0, that is the cycle maximum is attained at the first service time, then we
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consider the delayed renewal process X (u) with the delay 9. Let X (¢) = maxg<y<¢ X (u).
Note that the distribution of h — W (ly + u) coincides with the conditional distribution of
X (u) under the condition

X(l3) =0. (2.5)

We have
P(0:70) (BE|h > ) = P(o0:70) (nEP(M +u(l—p)(14€) —X(u) <0/h>z,X() = 0>
uxit2

P(70-70) (miny <, (M + u(1 — p)(1 4 €) — X (u)) < 0, X (Iy) = 0|k > )
P0:7) (X (1) = 0|h > )
P(7070) (ming o (M + u(1 — p)(1 + €) — X (u)) < 0|k > z)
P(70:70) (X (00) = 0)
PO (mingso(u(l — p)(1+€) — X (u)) < —M)
P(70:7) (X (00) = 0)

<

which goes to zero as M goes to oo by the law of large numbers:

X (u)

u

—-1—-p a.s. as u — 00 .

Denote by Aj, the area swept under the workload process after [;.

Corollary 2.1 For any 0,k > 0 and sufficiently large x the following holds

Ap,
]P(UO’TO) (1—/§§—§1+/§h>x> >1-4.
/@0 = p) |

Proof. From Lemma 2.1 for any § > 0 we can fix M large and find L such that for all
z > L we have

(70:70) M M T _
v (2(1+6)(1_p)SAh§2(1—6)(1—p)|h> >1-4,

from which we obtain the assertion of the corollary.

Corollary 2.2 For any 0,k > 0 and sufficiently large x the following holds

P (e0:70) <‘lﬁ -1 —p)‘ < klh >.7:> >1-94.
2

If random variables X and Y have the same distribution, then we write X 2y we
consider in this paper the following three cases of regularly varying distributions V (-) and

Vo(+):

(R.1) V(-) and Vy(-) are regularly varying and Vy(-) = V(+) and 7y D T,

(R.2) V(-) and Vp(-) are regularly varying and lim,_.. Vo(z)/V (z) = ¢p < o0,
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(R.3) Vi(+) is regularly varying and lim, .o V(z)/Vo(z) = 0.

If one of these conditions holds, then we say that condition (R) holds. Write G () =
1 —G(z) for G(-). Observe that below, F(z) = P(h > z) but V(y) = P((oo —10)" < ).

Proposition 2.1 (i) (Asmussen [5], Heath et al. [20]) If (R.1) holds, then
F(z) ~IEHV (z) .

(ii) If (R.2) holds, then

F)~ (a+ [ BHG) dT30) V).

where H(y) is the number of customers served during a busy period, counting from
the customer who found y work upon arrival.

(iii) If (R.3) holds, then
F(z) ~ Vy(x) .

Remark 2.1 Note that IE(og — 70)" < Eog < co. Moreover, from the renewal theorem

EH(y) < ﬁ(l + €)y for some ¢ > 0 and large y. Hence [{°EH(y) dV(y) < oo.

Remark 2.2 If (R) holds, then the distribution of the cycle maximum F(-) also has a
regularly varying tail.

Before we prove Proposition 2.1 (ii)-(iii), we generalize Lemma 4.2 of Asmussen and Mgller
[6] and Theorem 3.3 of Grainer et al. [17] in Lemma 2.2. Let

B(y) :==min{k > 1: S, >y} .

From Asmussen and Mgller [6], p.162, we have that for large = there exists a constant ¢
such that
Py (B(z) < H(y)) < cV(z) . (2.6)

Lemma 2.2 Assume that V(-) is reqularly varying. Then for any y we have

Jim iy Tal820) <80 < @)

Proof. First we prove that:

P < H(y),u < Sg(s)—
i Tim sup y(B(z) (), u < Sg(a)—1)

=0. (2.7)

Define 31 := inf{n > 0: S, <y} and Sy := inf{n > Bx_1 : S, < Sp,_, }. Now,
Py(8(z) < H(y),u < Spa)-1) < Py(B(z) < Br,u < Spa)-1)
£ Py (B < () < Brsrs Br < H()ou < Spey1)
Zlg;(ﬁ(m) < Pr,u < Sp(z)-1)
+§:11Ey (s, (B(@) < Br.u < Ssey )T (e < B(&) < fosrs b < H()

<(A+EH@Y)Po(B(z —y) <H,u—y < Sgey)-1) -
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Hence (2.7) follows from Lemma 2.3 of Asmussen [5]. To prove the lemma, we argue by

contradiction. Assume that

Py (B(zo) <B(x) < H(y))

lim li .
:z;olinoo 1;18;}) V(ZE) > €

From (2.7), it follows that we can choose u (independent of z() such that

P < < H(y),u < Sg(z—
lim sup y(ﬁ(fﬂo) 5(55)‘/( )(y) u B(x) 1) < %
T—00 T
Thus,
P < < H(y),Sg(x—1 <
i T gup F2L00) < 6@ < HG). Sy 1 <w) e

Conditioning on the value of Sg(;)_1, we obtain

Py (B(wo) < B(x) < H(Y), Sp(z)—1 < u)
< Py(B(zo) < H(y))(1 + EH(y))Po(B(z —u) < H)

and then by (2.6)

li . ]Py(/B(xO) < ,B(ZE) < H(y)a Sﬂ(m)fl < U) .
im limsup =0,
L0—00 g oo Vix)

which yields the contradiction and proves the lemma.

O

Using the method of cutting interarrival times given in the proof of Corollary 2.2 of

Heath et al. [20] one can prove that

Py(h>z) ~ ]Py(kglgé) Sk > x)

for regularly varying distribution tail V(). Now, using Lemma 2.2 as a generalization of
Lemma 2.3 of Asmussen [5] it is easy to prove the following generalization of Lemma 2.2

of Asmussen [5].

Corollary 2.3 Assume that V (-) is reqularly varying. Then for any y we have

Py(h > ) ~Py(6(z) < H(y)) ~ EH(y)V(z) .
Corollary 2.4 Assume that (R) holds. Then

(00,70)
lim limsup L (ﬁ(:v_) <Blz) <H) =0.
TO—00 g o0 F(z)

Proof. The assertion is a simple corollary of Lemma 2.2 if condition (R.1) holds. Note

that for some constant ¢ we have

P07 (B(wg) < Blw) < H) < PO (B(xg) = 1,1 < f(x) < H)

+POT) (1 < B(ao) < B(x) < H) < Vo(o) /0 Py (8(x) < H(y)) dVi(y)

_|_/0x0 Py (B(xo) < Blz) < H(y)) dV(y) -

7



Now, in case of conditions (R.2) and (R.3) the assertion of the corollary follows from

Lemma 2.2, Corollary 2.3 and the dominated convergence theorem.
O

Proof of Proposition 2.1. Note that
PO (> 2) = Vo(x) + / P,(h > o) dV5(y) . (2.8)
0

This completes the proof of (ii) in view of Corollary 2.3. In case (iii) from (2.8) we have

the lower bound:
P (h > z) > Vo(z)

and the upper bound:
PO > 0) < V(o) + [ BHQ) Vo)V (@) = Vola) +o(Vo(@) . (29)

This proves the proposition.
O

Using Corollary 2.4 as a generalization of Lemma 4.2 of Asmussen and Moller [6] in
the proof of Theorem 5.3.1 of Zwart [32], one can get the following lemma.

Lemma 2.3 If (R) holds, then
P00 (] > ) ~ PO (h > (1 — p)) = F(z(1 - p)) .
Corollary 2.5 Assume that (R.1) holds. Then there exists a constant ¢ such that
P >z) <cV(z);
see Prop. 5.2.1 of Zwart [32].

Now, we prove that a large busy period is always related to the occurrence of a large
cycle maximum.

Corollary 2.6 Assume that (R) holds. Then for any b > € >0,
P (1 > z(1+€)|h € [2(1 — p),z(1 — p)(1 +b)]) — 0 as x — oo. (2.10)

Proof. Assume that (2.10) is not true, i.e. there exist b > 0, € > 0 (b > €) and a sequence
x — oo such that

p(70:70) (l > z|h € [m(l _’0),1‘(1 —p)(l-l-b)D >p>0. (2.11)
1+e€ 1+e

Then for any § > 0 and x > 0 we have

P01 > z) > P (1 > 2. h > z(1 — p+9))
+P0) (1 > g a1 — p)(1 — k) < h < z(1—p+9))
> P00 (ly > 2, h > z(1 — p+0))
P (1> 2,21 - p)(1—k) <h<z(l—p+0)=L+1 .



By Corollary 2.2
I > PO (b > (1 — p+6)) +o(F(z) = F(z(1 — p+6)) + o(F(z)) . (2.12)

Let 1 — k = 1/(1 + €. Then for some sequence z — oo and § such that
(1-p)(1—-k)(1+b) =1-p+J we have from (2.11)

I > plP™)(5(1 — p)(1 — k) < h < z(1 — p+6))
=p(Flz(1 = p)(1 = v)) = Fla(1 = p+9))) . (2.13)
Hence from (2.12)-(2.13) we have

P (1 > ) > F(z(1 - p+9)) + o(F(z))
+p (F(z(1 = p)(1 = k) = Flz(1 - p+9)))
=(1-pF (( —p+0) +pF(z(1—p)(1 — ) > (1+p)F(z(1 - p))

for a sequence x — oo and p > 0. This contradicts Lemma, 2.3.
O

Corollary 2.6 implies that the epoch of reaching the cycle maximum [; is small in
comparison to the busy period .

Corollary 2.7 Assume that (R) holds. Then for any b > /2 >0,
P07 (1y > yalh € [z(1 — p),z(1 — p)(1 +b)]) — 0 as T — oo.

Proof. Note that from Corollary 2.2 for any d, x > 0 and sufficiently large x

p(co-m0) <12 < mm € [z(l—p),z(l—p)(1+ b)]> <9

Choosing & such that 1 — & = (1 — p)/(1 — p + k) we have

P (1 > yz|h € [2(1 — p),z(1 — p)(1 + b))
< PO (I > yz,ly > (1= &)z|h € [z(1 = p),z(1 = p)(1 +b)]) + o(1)
<P (1> (1= & +)alh € [2(1 = p),z(1 = p)(1 +b)]) +o(1) =0

as £ — oo for £ < /2 by Corollary 2.6.

O
3 Regular varying asymptotics of ]P(UO’TO)(A > )
The main theorem of this section is the following.
Theorem 3.1 Assume that (R) holds. Then we have the following asymptotics:
P4 > z) ~ F < 2(1 — p)m) as T — 00 . (3.1)



W (t)

19 Io 1 t

Figure 1: The heavy-tailed case

Before giving the proof of Theorem 3.1 we provide some heuristic arguments. Roughly,
in the regularly varying case the most likely way for the area A to be large is that one
early big service time occurs and apart from this, everything in the cycle develops nor-
mally. Using the law of large numbers and ignoring random fluctuations, this leads to the
conclusion that the workload goes to zero with negative rate —(1 —p) (see Figure 1). Thus
the area A exceeds level z iff the area of the triangle with the sides h and I ~ h/(1 — p)
is greater than z, hence when

1 h?

21— p
which gives the assertion of the main theorem. The proof will be divided over the two
Theorems 3.2 and 3.3.

>z,

Theorem 3.2 Assume that (R) holds. Then we have the following asymptotics:

Ploom) (g > L a2
A> 5155) >1. (3.2)
(z)

lim inf
T—00

!

Proof. The following lower bound holds:

1 22
(00,70) -
P <A > 51 p)

2
> ploo) <Ah > b > (1 4 6)) PO (h>a(l+e),  (33)
—p

for some € > 0. From Corollary 2.1 for any «,§ > 0 and sufficiently large x we have

2

21_p(1+6)2(1—,‘-§)‘h>m(1+6)> >1-§.

For small x,

10



and hence

2
P(o0:70) <Ah > 1 7

21_p|h>:v(1+e)>—>1 as  — oo.

The proof of the theorem follows from (3.3) by letting ¢ — 0.

O
Theorem 3.3 Assume that (R) holds. Then we have the following asymptotics:
Ploom)( g~ L a2
lim sup (_ 2 17") <1. (3.4)
T—00 F(ZE)

Proof. Let € > 0. Note that
pleom) (4> L 7
21—-p

2
plosm) <,4>1 :

2

) < P07 (B > (1 — €)z)

21—-p
=R+ Ro+ R3 .

1 2
,ex<h§(1—e)$> + p(o0:m0) <A> 3 L ,h§e$>

Term R; gives the needed asymptotics by letting ¢ — 0. We prove that the other two
terms, when divided by F(x), tend to 0 as x — oo. We start with Rs. Choose v > 0.
Observe now that

2

21—,0’l1 >’y:v,em<h§(1—e):v>

2

1
1P(o0:70) -
+ (A > 31—

< PO (1) > yz ez < b < (1 — €)x)
2

1 <~vzyex < h < (l—e)m>

P (4 4

i <vyryex <h < (1—€)xz| = Ry + Rayp .
21—0p

From Corollary 2.7 we get that for small v > 0 the term Ry, divided by F(z) tends to 0
as T — 00.

Denote by Ajg = fg W (s) ds the area swept under the workload process up to time
t. To deal with Ry, note that

1 42
Pplom) [ 4> = x L <ymer <h<(l—ex
21—-p

{L‘2

1
21—-p

< Pploo0) <A > A <y’ e < h < (1 - e)w)

1
2(1-p)
From Corollary 2.1 for any small x,d > 0 and sufficiently large  we have that

1
T

S ]P(UO7TO) ('Ah Z $2(

<P (4, 2 4% ) < (1= Jalh > e) PO (> ex)

P (0:70) <Ah > 2( yh < (1—¢€)zlh > ex)

1
2(1 - p)

— ), Ap < 22 (1—6)2(1—|—/<a),h§(1—e)$|h>ex>—l—(5.

1
2(1-p)

11



For sufficiently small v > 0 and x > 0 we have

1 1
2—p) 720 =p)

and hence Ry, < §P(707)(h > ez). This makes Ry, divided by F(z) tend to 0 as z — oo
by letting § — 0.
Now, we have

(1—e?*(1+k),

1 z? 1
R3 < p(70:70) <lh > §—lx ,h < e:v) < p(o0;70) (l > — T > )
—p

Hence from Lemma 2.3 for some constant ¢ we have
—/1
R3<cF|—z) .
2¢

The proof of the theorem now follows by letting ¢ — 0.

4 Light-tailed asymptotics of P(°™) (A > 1)

In this section we consider a service time ¢ that is light-tailed. Let g L ;. We assume
that the distributions are such that there exists 7 > 0 fulfilling

Ee" < oo, Ee"" ™ =1 and Elo—7/e"") < 0. (4.1)

Note that if 77 exists, then it is unique (see Asmussen [4], p. 258 and Miller [26] for further
discussion on (4.1)). Introduce

T]SO) =09+ (0'1 — 7'0) + ...+ (Uk—l—l - Tk) = 0y +Tk+1 , (4.2)
where
k
To:=0, Ty:=)» (0i—7i-1) (4.3)
i=1

is a random walk. Define the new probability space (P, {F,}) by the exponential change
of measure with the likehood ratio up to time n:

By Proposition 6.3 of Palmowski and Rolski [28] (see also Asmussen [4], p. 258 and 263)
on the new probability space the service times {;} (¢ > 1) and interarrival times {7;}
(7 > 0) have generic distribution tails

Vi) =1— /0 " e dV(y) [Ee (4.4)
Alz) = 1— / e dA(y) /Ee (4.5)
0

respectively. We show that for large x conditioning on event {h > z} the system up to
the time of reaching the cycle maximum behaves like the new system with the service and

12



the interarrival time distribution tails given in (4.4) and (4.5), respectively (see Asmussen
[3] for the similar result when we are conditioning on the event {7(z) < oo}, where
7(z) :=inf{t > 0: W(¢) > z}). By IE we mean the expectation with respect to IP. Let

p:=Eo/Er (4.6)

be the traffic load in the new system. From Asmussen [4], p. 259, a drift of the workload
process {W (t),t > 0} is positive, that is p > 1. Note that in the M|M|1, creating the new
system corresponds to interchanging the service and the interarrival intensities, leading to
a traffic load equal to p=1/p > 1. We define

Dy = {W(u) < Va+u(p—1)(1+;0 <u<h},

Dy :={W(u)>—vVr+ulp—1)(1—-€;0<u<li}.

Let
a(z) :=min{k > 1:Ty >z}, ap(z):=min{a(z),H —1} .

Introducing the overshoot £(z) := To(x)—, we get using the renewal theorem (see Theorem
2.1 of Asmussen [4]) that &(x) E2A £(00) and (with 1 — Vy(y) = Vo(y) = P(0¢ < v)):

P00 () > ) = /0°° PY(an(z —y) = oz —y) < 00) AV (y)

~ y Y7
=/ E [La(m,y);TaH(m,y) > w] dVo(y)
_ efn:n/ eﬂy]Ey [e*ﬂf(m);a(x — y) < H — 1:| dV()(y) ~Ce s (47)
0
where . .
C = Ee" [e—ﬂf(oo)] P(H = ) , (4.8)

and the last steps follow from the dominated convergence theorem and assumptions (4.1).
This result is a classical one in the light-tailed case and was obtained by Iglehart [23] (see
also Bartfai [7], Cramér’s estimate [15], Kelly [24], Kingman [25] and Ross [30] for the
uniform bounds in z). Note that D; € F, (). Hence,

PeOn(D5ih > 2) = [T PY(Dian(s —y) = alo — y) < 00) dVol(y)
0
= /0 Ey I:La(mfy);Dic N {TaH(:nfy) > .’L‘}:| de(y)
<ew / Y (DS N {alz —y) < H— 1)) ™ dVo(y) . (4.9)
0

From the law of large numbers for the process {W(¢),¢ > 0} in the new system for any
0 > 0 and for sufficiently large = we have

PY(Df N {a(z) < H—1}) <46 . (4.10)

Thus from (4.9), the assumptions (4.1) and the dominated convergence theorem for any
0 > 0 and sufficiently large = we get the following inequality:

IP(UOJO)(DiC;h > g;) < Je "* . (4.11)

Hence from (4.7) and (4.11) we have the following lemma.

13



Lemma 4.1 For any § there exists L such that for all x > L we have
P (D N Dylh >2) >1—6 . (4.12)

Corollary 4.1 For any 0,k > 0 and sufficiently large x the following holds

]P(Uo,To) <1 A[O,ll}

—H§m§1+ﬁ|h>x>21—5.

From (4.7) and Corollaries 2.1 and 4.1 we get the main theorem of this section.

Theorem 4.1 Assume that (4.1) holds. Then we have the following asymptotics:

. [od=p)(5—1)
P00 (A > ) ~ Ce R as r — 400 , (4.13)

where C' is given in (4.8), n solves
B =1 (4.14)

and p is the traffic load in the new system with the service and the interarrival distribution
tails given in (4.4) and (4.5), respectively.

Remark 4.1 Note that only constant C' in the asymptotics (4.13) depends on the distri-
bution of oy.

Thus the tail of the probability survivor function ]P(”O’TO)(.A > r) does not exhibit an
exponential decay, but r.v. A has a Weibull-like tail. Note that the area A is large as a
consequence of the big cycle maximum which is realized, by the large deviation principle,
along ”"the most likely path”, that is the workload develops along the line with a slope
p — 1. After that, everything in the cycle develops normally. Hence by the law of large
numbers and ignoring random fluctuations, the workload goes to zero with negative rate
—(1 — p) (see Figure 2). Thus the area A exceeds the level z iff the area of the triangle
with the height h and the side [ ~ h(1/(1 — p) +1/(p — 1)) is greater than z, hence when

1 B2 p—p
2" U= nG-1)

which gives the assertion of the main theorem in view of (4.7).

>z,

5 Sequential approximation

Let 09 2 o and 70 2 7. At an arrival epoch, let A(z) be the remaining area under the
workload process in the GI|G|1 queue in the busy period under the condition that the
arriving customer sees an amount of work z. That is, we assume that W(0) = z + oy.
Note that A = A(0). Denote by

P(s,z) = Ee 5A®) | s>0.
In this section we will find a sequential approximation for (s, z). Let

wi(s,z) =K [e_SA(m);:E + 09 < 7'0:| =E [e_%(x"'”O)Q; T+ 09 < T

= Az + uo)e*%(””r“o)2 dV (uo) -

uo=0

14



W (t)

—(1—p)

19 lo [

Figure 2: The light-tailed case

Remark 5.1 In the M|M|1 queue with arrival rate A and service rate u we have

Qtw? [0 s A Ot A
wi(s,z) = pet’e 25 / 675($+“0+_Jsrﬁ)2du0 = \V2rpette 5P (U >z + i M) ,
0

S
where U 2 N(0,1//3).

Conditioning on whether the busy period ends after o¢g + x or not, it is readily seen
that (s, z) satisfies the following integral equation:

Z/)(S,.’L‘) - K [e—s.A(:v); T+ o< 7_0] +E [e—s{(x-l-ao)m—%7’3-1-.4(:1:-1-(70—70)}; T+ 09> 7.0]
=wi(s,x) + // dA(ty) dV (ug)wa(s, z,ug, t1)Y(s,z +ug —t1), (5.1)
T+uo>ty

with

wa(s, z, w,t) := e~sl@tw)t=56}

Notice that (x + ug)ty — %t% is the area under the workload process for the interarrival
interval of length ¢; when z + uy > t;. We iterate (5.1), starting with (s, z) = 0 and
writing

b1 (5,7) = wi (s, 2) +//m+u (1) dV (o) (s, 2,0, )b (s, + w0 — 1) - (5:2)
Then

Z/)()(S, ZE) = 0,

(] (Sa ‘/E) = wi (Sa ZE),

ba(s,7) = wl(s,x)—i-// L () AV (o) (s, .0, b s, + 0 1),

ba(s,x) = wl(s,x)+//m+u () AV (uo)en(s, .0, ) (5,2 + 10 — 1)

[ ) Ve (st [ dA(t2) AV (1)
x+ug>t1 r+ug—t1+ur >t2

wa(s, o+ ug — t1,ur, t2) (s, x +ug — t1 + uy — t2),

15



and so on.

Theorem 5.1 We have

lim 9, (s,z) =(s,z) for all s,z >0 . (5.3)

n—00

In particular, if (R.1) holds, then there exists a constant ¢; such that
[(s,z) —n(s,z)| < a1V (IET — Eo)n) for s > 0. (5.4)

If o is light-tailed, that is, there exists a 0 > 0 such that 9(0) = Ee?("~7) < oo, then there
exists a constant co such that

(s, ) — (s, z)| < %e*”ﬁ for s >0, (5.5)

where 9 = —log infy>q9(6).

Proof. Notice that 1, (s, z) is a sum of n terms. A crucial observation is that these terms
can be interpreted in the following way:

PYn(s,z) = ZQj(Sax) ) (5.6)
j=1
where
Qj(s,) =B [ H(m) = 5], j=12....

Under the assumption that for any fixed z, Eo < E7, we have P(H(z) < co) = 1 and
EH (z) < oo; see Asmussen [4], Prob. 2.3, p. 171. Consider

(s, 2) — thu(s,2)| = [B [e A, H(z) > n]| < P(H(z) > n).

Hence (5.3) holds. The convergence rate is bounded by the rate at which P(H (z) > n) — 0
for n — oco. Note that
P(H(z) >n) <P(Y, <z),

where Y, = maxy(—S},) for random walk S defined in (2.1). The inequalities (5.4)-(5.5)
now follow from Theorems 2.5-2.8 of Borovkov [11].
O

In fact, we can sharpen (5.4), proving geometric convergence whenever s > 0 or
Pz +o>71)<1.

EX

Theorem 5.2 Assume that C := ]E[e_zTZ;:v +0 > 7] <1. Then
[%(s,2) = hn(s, )| < C"71. (5.7)
Proof. Define operator f — K f by
(Kf)(s,2) = /+  wals.z,w,t) dA®) AV (w)f(s,2 -+ w0 —1)

Note that
wi(s,z) <1 (5.8)
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and
542

wo(s,z,w,t) <e 2" forz+w >t (5.9)
Hence, if |f(s,z)| < L, then
(K f)(s,z)] < L e 5 dA(t) dV (w) < LC . (5.10)

x+w>t
The iteration (5.2) with ¢y (s, z) = 0 then yields:

Ynt1(s,2) = wi(s, z) + (Kwi)(s, 7)
+(K2wy)(s,2) + ...+ (K"wy)(s,2) ,
where (K'f):= Kf and K"f := K(K" ! f) for some function f(-,-). Note that
Pnt1(8,2) = Pn(s,2) = (K wi)(s,z) .
Now, the assertion follows from (5.8) and (5.10).

6 M|M|1 queue

In this section we restrict ourselves to the special case of the M|M|1 queue. In this case,
we can find an explicit expression for the LST of the joint distribution of A4 and [. Let the
service time o and the interarrival time 7 be exponentially distributed with parameters u
and A, respectively. Denote

o(s,r,x) = Ege A, r,s>0.

Then ¢(s) = Ee 4 = 11 [° ¢(s,0,2)e " dz. Let p = A/p < 1. Considering infinitesimal
changes we can write the equation:

$(s. 72 +dz) = (1 — Adz)EyeAtadeto(dn) —r(+duto(dz))
+Adz /OOO ue_"y]EmH}e_SA dy ,
which is equivalent to
d(s,ryx +dz) = (1 — Adz) (1 — szdz — rdz)@(s, r, xz) + Adx /OOO pe Mo(s,r,x +y) dy .
This gives the following integro-differential equation:

%gﬁ(s,r,m) + A +7r+sz)p(s,rx) = Aue“x/ e " o(s,r,2) dz

or
2
01 a) it 4 sa) (s, ) — (s k- )gle,ra) =0 (6.)

According to Abramowitz and Stegun [2], the general solution of equation (6.1) is:

15422 1 1 (s+ptr+r)?
WW(GE=" 0 )
STHAFp+T
Vs

Bls, ) = ¢ K22 400 {cus)

s 1412 s
STHAFu+T
Vs

+ Cy(s)

WM(% sH2p 11 (sm+u+)\+r)2) }
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where the constants C1(s) and Cy(s) do not depend on z and WM(a, b, z), WW(a, b, z)
are Whittaker’s functions (see Abramowitz and Stegun [2], p. 505). Note that

1
WM(a, b, z) = e*%zz%“’M(E +b—a,1+2b,z), (6.2)

1
WW(a,b,z) = e_%zz%"'bU(ﬁ

where M(a, b, z) and U(a, b, z) are Kummer’s functions. From Abramowitz and Stegun [2],
p- 504 we have the following asymptotics:

+b—a,1+2b,2z), (6.3)

'
M(a, b, z) ~ %ezza_b, U(a,b,z) ~ 27 %, as z — oo. (6.4)

Thus from (6.2)-(6.4) we have

15422 1 1 (so+p+A+r)?
lim e 4(2)\ 2u+2r+sz) WW(4 s 1472 s ) -0
T—00 STHAFu+r ’
NG
and ( .
220 1 1 (sz+pu+A+r)°
WM (22 1L )
lim 1 (2A~2u+2r+s2) ST L 5 = +o00 . (6.5)
T—00 STHAFp+T
Vs

Note that the function x — ¢(s,7,x) is bounded for all . Hence Cy(s) = 0. Also,
@(s,r,0) =1 for all s, thus

Cy(s) = ebO-) VAT ptr

1 154220 1 1 (r+p+X)2y "’
S4WW(Z MaZaQ( ) )

and finally using the representation U(3 — 3v, 3, 12?) = 2%7%”622/4D,,(z) we have

STHUFAFT
s:v—i—u—i—)\—i—r) MDAS&(i\/g )

M+>\+7ﬂ DAM(L+)\+T) ’

d(s,ryz) = e 157 ( (6.6)

where

2 ey 1 Xvw+2) ... (v+2k-2) (22 ’
Dy(z) =12 /2ﬁ{r((u+1)/2) (HZ 3.5 (2k — 1)k! (5))

k=1
22 &2 1/+3) (v+2k—1) (22 g
ey (1T Z 2k + DRI 2
is a parabolic cylinder function; see Abramowitz and Stegun [2]. From (6.6) one can
obtain numerically e.g. the first two moments of the area A4 in the M|M|1 queue and the
covariance p(.A,[) between A and [ . Unfortunately, the expression (6.6) is too complicated
to obtain moments of A in explicit form. This can be found in a more general setting

using other methods. Applying the regenerative method and the Wald identity, Cohen
[13] proved that for the GI|G|1 queue

EA= 12 (6.7)



where pj, = IEo*. Using level crossing arguments, Cohen [12] found the second moment
of A for the M|G|1 queue:

4 4 5 2,4 3
EA2 — My ﬂ e pIL  props3 ) (6.8)

4(1 = p)® (1=p)* 7 AQ=pPpuf
Note that for the first (second) moment of the area A to be finite one needs the second

(fourth) moment of the service time to be finite. In the next section we generalize both
formulas to the GI|G|1 case with general initial service and interarrival time distributions.

7 Central limit theorem

In this section we consider general tail distributions of oy and 0. We prove the following
theorem.

Theorem 7.1 If there exists € > 0 such that Eo?**T¢ < oo, then EA* < 0o. Moreover, if
(R) is satisfied, then the following equivalence holds

E0AF < 50— Eo* <o and ]Eagk <00 . (7.1)

Proof. We prove the first statement. The second one (7.1) can be proved in a similar
way. If Eo?*+€ < oo, then lim,_, o 221V (2) = 0. Hence

V(z) <VW(z) =272k,

for large z. Considering the modified queue with regularly varying tail V() (.) of the
service time, Theorem 3.1 implies that ITE(A™)* < co. Note that E(A™)* > EA*. Thus
EA* < co.

O

Introduce a; := El, 07 := E(l — ;) and a4 := EA, 0% := E(A — a4)?. Note that

2
E(A - “21)2 = (“—Aal> + 0% — QGG—AUIUAP(-AJ) ; (7.2)
l

aj a

where p(A,l) is the correlation between A and [. Denote by 1) our first cycle period
and by {I")}2° the next iid. cycle periods. Let A© := [“” W(s) ds and A®) =

fll((kk)l) W(s) ds, k=1,2,3,.... Define also

Ag:=0,  Ap=> AW,

The main theorem of this section is the following.

Theorem 7.2 Assume that there exists € > 0 such that IE)U?’Jre < oo and Eo*te < .

Then Afgg]’ ) s asymptotically normal with parameters

taA 1 a 2 ap

Remark 7.1 The assertion of Theorem 7.2 is satisfied if V() and Vj(:) are regularly
varying and IEoj < oo and Eo* < oc.
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Remark 7.2 Under assumption that 04 < oo the same assertion is given in Theorem 4.1
of Iglehart [22]. It should be noted that the proof in [22] has a flaw, because it uses the
assumption that the time at which the random walk {4, } is stopped is a stopping time
with respect to the filtration generated by {.Ay}, which is not satisfied in this case.

The proof of Theorem 7.2 is based on Lemmas 7.1-7.3 below. By h(® we mean the
cycle maximum during the first cycle.

Lemma 7.1 Assume that Vo(-) and V() are regularly varying. Then

P (pO) > 2y < 0y (Vo <§) + V(m)) , (7.4)

t
P (10 > ) < ¢, (Vo <§> + V(t)) ’ (7.5)
for some constants Cy and Cy and large x and t.

Proof. The inequality (7.4) follows from (2.8) and Corollary 2.3. To prove (7.5), note
that
PO > 1) <V (3)
t/2 ru
+ P(og € du, 19 € ds)Po (110 >t —s) .

u=0 Js=0

Next, we use the representation IV = oy + ... + O (u)- Theorem 43.3 of Borovkov [10]
guarantees the existence of a constant ¢; such that P(H(u) > n) < ¢;V(n). Theorem 42.2
of Borovkov [10] now gives the existence of constants ¢y, c3 such that P, (19 > ¢ — s) <
oV (t —s) < c3V(t). This completes the proof of (7.5).

O

By l§°) we mean l§°) := min{l(0), ¢}.

Lemma 7.2 Assume that there exists € > 0 such that ]EUSUrf < 00 and Eo3t€ < 0o. Then

10 2
E(70:70) ( W(s) ds) =o(t) .
0

Proof. As in the proof of Theorem 7.1, considering dominating tails, we can assume with-
out loss of generality that V5(-) and V(-) are regularly varying and IEoj < oo and Eo® < co.
Note that in this case u3Vy(u) — 0, w3V (u) — 0 as u — oo and [ u*Vy(u) du — 0 and
[ u?V (u) du — 0 as t — oo. Hence by Proposition 2.1 also u*F(u) — 0 as u — oo and
[°u*F(u) du — 0 as t — oo. Note that

10 2
E(70™) ( W (s) ds) < E(hO1V)?
0
t? o0
< 2/ u]P(h(O)l,§°) > v) dv + 2/ oP(hO > v/t) dv
0 2

12 12 00
< 2/ PO > \/7) dv+2/ PO > o) dv+2/2 PO > v/t) dv
0 0 t

t t o)
< 4/ w?P(h? > u) du + 4/ PO > u) du + 2t2/ ulP (B > u) du
0 0 t
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which completes the proof in view of the assumptions that were made and Lemma 7.1.
O

Define the random walk
Zo=0,  Zy=y_ 1",

Let O (t) := 0 and x(t) := 0 if () > ¢ and otherwise
VO@) :=min{k >1:10 + 2, > ¢}, x(t) =19+ Z,0y — .

Lemma 7.3 Assume that there exists € > 0 such that JEo*t€ < co. Then
2

D ( /t ) ds) —o(t) .

Proof. As in the previous lemma, by considering dominating tails, we can assume without
loss of generality that V() is regularly varying and IEc* < co. In this case u'V (u) — 0
as u — oo and [ u*V(u) du — 0 as t — oo. By Corollary 2.2 for a small constant
¢ << 1/4/T = p, large v and some constant ¢z we have:

P(lh > v) <P(l > c1vVv) + P(h > Vo/cr,l < c1v/v)
<P >eavo) +P(h>Voule,ly < civv) S P> avo) +o(V(vo)) < P> Vo) .

Thus for a suitable constant c3 we have
t+x(t) t >
1p(/ W(s) ds > v) < cz/ S P(Z € du)P(l > max{y/v, t — u})
t (e

t
< C3/ P(l > max{y/v,u})du .
0
Using Corollary 2.5 and Karamata’s Theorem (see Bingham et al. [9], Section 1.5) this is
bounded from above by

VoV (V) + /\/;]P(l > u)du

C4 < ¢y

v+ e u)du] < eV () |

for v < t? and by

etV (V)

for v > t? and some constants c4, c5 and cg. Note that

() 2 o0 tx()
E / Wi(s)ds| < 2/ vIP / W(s)ds >wv | dv
t 0 t

2 t+x(t) o0 t+x(t)
§2/ v]P(/ W(s)ds>v>d’u—|—2 ’UIP(/ W(s)ds>’u>dv.
0 t t

t2

Using the previous considerations and moment assumptions we have

12 t+x(t) 12

/ UIP(/ W(s) ds > v)dv < 05/ 032V (/o)dv
0 t 0

t

= 205/0 utV (u)du = oft) ,
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and

t+x(t 00
/2 vIP / ) ds > v)dv < Cﬁt/ vV (v/v)dv
t

12
< 206t/ uw?V (u)du = o(t) ,
t

which completes the proof.
O

Proof of Theorem 7.2. Note that if IEo*T¢ < oo for some € > 0, then Theorem 7.1
implies that 0?4 < oo and Corollary 2.5 implies that O'l2 < oo. Hence by the Schwartz
inequality we have p(A,l) < 040, < oo. Note that by Lemmas 7.2 and 7.3 it is enough to
prove a functional CLT for A, ,) with parameters given in (7.3), where

v(n) :=min{k > 1: Z; > n}.

Although this can be derived from Theorem 2.2 of Gut [19] (see also Gut [18]) we give
here another shorter proof using the method of sequential levels.
For i — oo the joint distribution of (A;, Z;) is asymptotically normal. We denote it as

(i, Zi) R (aqi+ oaViCt, i+ o1Vila) (7.6)

where ¢, 2 N(0,1) (k = 1,2) and the correlation between ¢; and (s is p((1,¢2) = p(A,1).
Put

ny = n1/2+5

for some small § > 0. We define the first level

n—ni
m = .
ay
Let AV .= = {|¢2| < e1n%}. Then IP(A( )) — 1 as n — oo. Moreover,
D
Al/(n) =Ap + Au(n—Zm) (77)

and for a suitable constant ¢; in Ag) we have

1 _ _

Enlgn—ZmNn—M—a n n1<2 . (7.8)

aj

We now fix (3 and n — Z,, and consider A, ,_z,) to which we again apply decomposition
(7.7). Put

== T, iy =020 = T
a
and 5
Aviy = Am + Aui—z,5) - (7.9)
Similarly, for an independent copy (é of (o we introduce the set AD = {\( ] < cond}

such that ]P(A%Q)) — 1 as n — oo. Then for a suitable constant ¢z on this set we have

1 3.
73 Zm§§n1
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Note that for small 6 > 0 by (7.8) we have
n = n—2Zn=0(Mm)=0 (n1/2+5) ,
= fi— Zpn = O(f) = 0 (n}/***) = 0 (n/29%) = o(/m) .

I

Let A = {|¢1] < e3n%}. Then ]P(Agf)) — 1 as n — oo. For a suitable constant ¢z in the
set An3 , large n and some constants ¢4 and c¢5 on A,(12) N Agf) we have

V(i = Zpn) = v(n) <em, A | <csi=o(vn) . (7.10)
Thus up to a term of order o(y/n) on the set ﬂ?zlA,(f) we have
Ay 2 Am + A+ 0(V/n) | (7.11)
where from (7.6)

n—mni n—ni

+ U.ACI 3
aj

1
D ’ﬁ—’fll 1 ’fl—’ﬁl D aA n
A ~ ay +UAC§)\/ =—<n1—01C2\/—>+0(\/ﬁ),
aj aj [27] aj

and dl) is an independent copy of {;. Thus

D aA n a.A n D ag n
Am + A ~ —n+ 0401/ — — —01oy [— = —n+o,/—(,
aj aj aj aj aj aj

where ¢ 2 N(0,1) and

D
Am ~ aam +oal1vVm = ay

2

a a

o? =04+ <—Aal> — 2—AUA01,0(A, l) .
a) a)

The theorem is proved.
O

Corollary 7.1 Assume that there exists € > 0 such that EO’S+€ < o0 and Eo*te < .

70)

Then the variance of AE((JT?t]’ asymptotically behaves as follows:

(00,70) t ap
DA™ ~ a—l]E(A - a—lzﬁ : (7.12)

Note that the asymptotics (7.12) hold for any o such that ]EUSUrf for some ¢ > 0. In
particular, this holds when we choose (o¢, 7¢) in such a way that we obtain the stationary
workload process {W (t),t > 0}. Note that from Takécs [31] recurrence formula, if Eo*+¢ <
oo for some € > 0, then also Eop T < co. Let ayy = EW(0). Then

t 2
DA™ CE| [ (W(s) —aw) ds| =
[0.1] ;

2/0t /Ot“ E(W (s) — aw)(W(0) — aw) ds du ~ 2R , (7.13)

where
R:= /0 p(t) dt, and  p(t) = BV () — aw)(W(0) — aw) .

Thus we have proven:
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Theorem 7.3
> 1((aa \°, o .aa
R = / pt)dt = - | | =01 ) +0% —2—=004p(A.l) | . (7.14)
0 2 aj a

Furthermore, if Eo*t€ < oo for some € > 0, then R < co.

Remark 7.3 For the M|G|1 queue with IEo = 1, Abate and Whitt [1] obtain the following
expression for R (notice that a factor 2 is missing in (53) of Abate and Whitt [1]):

R= 1 _pp)4 [(1_p)2%+3(1— )P%Jrlp%u—%] ; (7.15)

8 pp 12 pio 4
where p is the kth moment of the distribution of the service time. In the M|M]|1 case,
R =p(3 —p)/(1 — p)*. See also Benes [8], Ott [27] for other results related with R in the
M|M|1 queue.

Remark 7.4 We say that the stationary process {X(t),¢ > 0} possesses a long range
dependent structure if [7° R(t) dt = co where R(t) is the covariance function between
X(0) and X(t) (see Heath et al. [21]) . Thus from Theorem 7.3 and Remark 7.1 the
stationary waiting time in the GI|G|1 queue is long-range dependent iff service time is
regularly varying and the fourth moment of it is infinite.
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