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Abstract

For a K-stage cyclic queueing model with N customers and general service times we give an
explicit expression for the n'" departure time from each stage. Starting from this expression we
analyze the asymptotic tail behaviour of cycle times and waiting times given that at least one
service time distribution is subexponential. Furthermore, we show that the tail of the residual
of a subexponential service time seen by an arriving customer is of the same order as the service

time itself where the asymptotic constant depends on the queue length on arrival.
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1 Introduction

We consider a cyclic K-stage (K > 2) queueing system as shown in Figure 1. There is a single

server at station 7 (i = 1,...,K) and the service discipline at all stations is First Come First
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Figure 1: Cyclic queueing network K queues

Served (FCFS). The capacity of the buffer between two consecutive stations is infinite. There are
N customers in the system, who cyclically visit station 1 to station K. We assume that at time
zero there are IN; customers in front of station 4, 4 = 1,..., K. Hence, Zfil N,; = N. Service times
at station i are independent and identically distributed random variables { B!} with distribution
function B;(-). and the sequences {B]},...,{BK} are assumed to be mutually independent. Fur-
thermore, we assume that there exists a subexponential distribution F'(-) (F' € S) and there exist

constants ¢; € [0,00) with Y5, ¢; > 0 such that for alli =1,..., K

The tail behaviour of the cycle time (the time between successive departures of the same cus-
tomer from a given station 4, ¢ = 1,..., K), waiting time at station ¢ (+ = 1,..., K) and residual
service time at station i (1 = 1,..., K) seen by an arriving customer are main objects of our in-
terest. Relatively few mathematical methods are available for treating these quantities in closed
queueing networks. The reason for this is that a customer passing through the system experiences
the whole space-time structure of the network state process. One can use general methods for
closed Gordon-Newell networks [18], Laplace transform techniques [8, 11, 24], reversibility argu-
ments [12], standard embedded Markov chain techniques [15], or the theory of point processes [16].
All of these results are valid under the assumption that service times are exponential random vari-
ables. Boxma [8] derives an expression for the Laplace-Stieltjes transform of the distribution of the
stationary cycle time in a two-stage cyclic queueing network with one exponential and one general

station. This result reveals a surprising phenomenon: in general, the distribution of the cycle time



depends on the order in which two stations are visited. As Boxma [8] noted, this is because of the
dependence between successive response times at two queues. As far as the open networks with
subexponential service times are concerned, Baccelli, Schlegel and Schmidt [4] consider the tail
behaviour of stationary response times in open (max,+) linear systems. In a similar paper, Huang
and Sigman [19] focus on the asymptotics of sojourn times and queue lengths in tandem queues and
split-match queues. More recently Baccelli and Foss [5] compute upper and lower bounds for the
tail asymptotics of the stationary maximal dater in more general monotone-separable stochastic
networks. Moreover, they obtain exact asymptotics for various special cases of these networks.

In this paper we provide an explicit representation for the n'® departure epoch from any given
station (for similar results in open networks see e.g. [4]). This in turn allows us to obtain the
subexponential asymptotics of the n'™ cycle time at station ¢ which is denoted by C%. In particular,
we have

K —

]P(C£L>x)~NZCgF(m) as r — oo, Vn > N (1)
(=1

where f(z) ~ g(z) as x — oo means that lim, . f(z)/g(x) = 1 for two functions f(z) and g(z).
Note that the cycle time asymptotics is the same for each station. This is different for the cycle
time distribution, which indeed depends on the station where the cycle starts; see [8]. Next we
study the tail behaviour of the distribution of the n'"' waiting time at station i for i = 1,..., K.
In order to give an intuitive explanation for the behaviour of the network, we also analyze the tail
behaviour of the distribution of a residual service seen by an arriving customer given that he sees k
customers in front of him. We show that this tail is of the same order as the tail of the service time
distribution at the corresponding station. This is in contrast to open systems where the residual
service time distribution is ”"heavier” than the service time distribution itself (see for example [20]).
Using Harris recurrence methods we prove that if the service times at each station have infinite

support, then there exists a random variable C? such that
ci B ¢ (2)

holds as n — oo where 2 denotes convergence in distribution. The sequence C’fl couples with C?

in finite time for all initial conditions Ny, N, ..., Ng such that 3%, N; = N. Using (1) and (2)



we obtain the subexponential asymptotics for C*:
K
P(C' > ) ~ NZQF(:E) as r — oo. (3)
=1
Results similar to the one in (3) are also obtained for stationary waiting times and stationary
residual service times. To the best of our knowledge, our results are the first of this kind for cyclic
queues with more than two stations and non-exponential service times.

The paper is organized as follows. In Section 2, in order to provide the reader with a better
understanding of our results we consider the two stage cyclic queueing network. In Section 3,
we derive an explicit expression for the n'" departure time from station 7. We use this result in
Section 4 to get subexponential asymptotics for the n'" cycle time C%. In Section 5, we obtain
asymptotics for the n'" waiting time at station i. Asymptotic tail behaviour of the n'' residual
service time at station 7 is considered in Section 6. In Section 7, we prove (3) and also obtain the
results on tail behaviour of stationary waiting times and stationary residual service times. Finally,

in the appendix we first present the proof of a technical lemma and then recall some properties of

subexponential distributions used in this paper.

2 Two-stage Cyclic Queue

In this section, we analyze the case of two stations and two customers (i.e. K =2 and N =2). In
particular we consider the n'' cycle time at station i which is the time between the (n + N)" and
n'" departures from station i. Recall that C? denotes the n'® cycle time for station i and let X7
denote the n'" departure time from station i (i = 1,2).

The location of the customers in the network at time 0 is called the initial marking. We will
see that the stationary regime does not depend on this initial marking. In fact, the influence of
the initial marking already vanishes after two iterations when K = 2 and N = 2. Without loss of
generality we assume that no customers are being served at time 0. Throughout the paper we use

the following notation

, K if j mod K =0
[j] =
jmod K if j mod K #0



where K is the number of stations as defined above. Furthermore, we use the symbol ¢ for
maximization, and the symbol ® for addition. Thus, we write a @ b for max{a,b}, and a ® b
(or shortly ab) for a + b where a and b are real numbers. This is the standard (max,+) algebra
notation (see [3] for more details on this formalism). Note that as in conventional algebra ® has
precedence over @. Even though cyclic tandem queue is an example of a (max,+) linear system,
general (max,+) linear systems and (max,+) algebra are beyond the scope of this paper. We use

these symbols simply for notational convenience. Without loss of generality we set

Xi=0.
One can easily see that in any cyclic queue for all1 =1,..., K
X, =BixXi_ eBXIT). (4)

For the tandem queue with two stations and two customers, we focus on Cl. We first consider the

case that initially there is one customer at each station (i.e., Ny = Ny = 1). Then,
X{ =B|, X{=B5B;}
and

Cf = X3 — X{ = B3(B{ © B})(B; ® B3) — B
= (0@ (B} - B}))(By ® B)Bj ,
Cy = X| — X5 = (B3 ® B)(By ® B3)Bj — By

= (0 (B — By))(Bs @ B3)Bj .
In general, for all n > 1

CTll = Xrlz—l—? - X’rlz

= (0@ (Bp — By))(Bhy1 © By 1) By - (5)
Thus from Lemmas 8.4, 8.5, and 8.6 we have

P(C! > ) ~2(ci +¢2)F(z), z— oc. (6)



Next, we initially place both customers at station 1 (i.e., Ny = 2, Ny = 0) and again consider C}.
Then,

X| =B, Xy =B;B), X{=DB{B.

Note that at the completion of the first service time at station 1 (i.e., after B} has elapsed) we are
in the first scenario. Thus, the n'" cycle time for this initial marking is the same as the (n — 1)"
cycle time for the first initial marking with subscripts of B! increased by one. We have from (5)

for all n > 2

C’rlz = XTll-l-Q - X’rlz

= (0 (Bi_, — B,,)) (B2 @ B711+1)B711+2 ;

which again gives (6). Finally, we consider the case that both customers are at station 2 at time 0
(i.e., N1 = 0, Ny = 2). At the completion of the first service time at station 1 (i.e. after B? has
elapsed) we are in the first scenario. Thus, the n'" cycle time for this initial marking is the same
as the n'" cycle time of the first initial marking but now with subscripts of B? increased by one.

We have for all n > 1

C% = X711+2 - X’rlz

= (0 D (3721-1-1 - BTIL))(B’}l—l—l D 3721-1-2)3711-1-2

and therefore again (6). So for the case of two queues and two customers, C? does not depend on
the initial marking for all n > 2. This follows since after at most one initial service (namely in the
case that both customers are at the same station at time 0), services at station 1 and station 2

always start at the same time.

3 Departure Times

In this section we derive an explicit expression for the n'™ departure time from station i, i =
1,..., K. Throughout our developments we set B;“ = 0 for j < 0. Let |u]| denote the largest

integer less than or equal to u and let [u]| denote the smallest integer greater than or equal to u.



Proposition 3.1 The n'" departure time X! from station i, i=1,...,K, is given by

n Jr—1—=Npi—r42)

®Bk > @ SY) ED ED
I=1 =N (K Ny g -1) 72 =N ()=

n Kj Ja—1=Nji—q42 fig1] I —Nii—k41]
i .
(® Bi ® 8 5" ®  Bi) (7)
i1=J1 iq=Jq I=1
where
| E N + [E] S Ny for [r] =1

(£ o N + (] + DS Ny for[r] =2, K,

with the convention that & over an empty set is —oo and ® over an empty set is 0.

More explicitly (7) can be written as
n J1—N;
®Bk > D D D
I=V =N ) Nmig—1) ja=Nj— Z N w1
J2—Npi—q; Ja—Npi_a

. . K . . 2 K
Ga=Nj—@NG_+> g Ny —x1—1) Ga=Nj—Q2 Y p_ Ni—i+Dy Ng  —k—1)

JE+1—Nji— K] Jr+2— N1

D D

) ) K ) ) K
Jr+2=Nj—(23 " Ny-m—1) jx+3=Nj—(Nu_11+2) ) Nyx—1)

Jor+1—NEi— k] Jrj—1—Ni—(x-2)] n j1—N; 1)
: i—1
S%) . b (®B Q5
j2K+2:Nj_(32kK:1N[i—k]_1) Ixi=1 n=n =02
J2—Npi—q; : ]j3_N[i—2] i3] Jr—1—Nji— (K —2)] : :
i—2 1—3 i—K+1
Q@ B, & By 0% By
13=J3 14=j4 IK=JK
Jr—Ni—(k-1)] Jrj—1—NEi—(x—2)] : }J'Kj*N[if(Kfl)]
i i—K+1 i
Q Bl ... Q B ®  B). (8)
IK41=JK+1 LK =JKj I=1

We will use (8) in our developments since this more explicit representation will provide the reader
with more illustrative proofs that are not difficult to follow. Before giving the proof of Proposition

3.1, we present a lemma which provides an equivalent representation for departure times. The

proof is given in the appendix.

Lemma 3.1 The expression for departure times given in (7) is equivalent to

00 n Kj—1 j’r—l*N[ifrJrZ]

X, =€D D S D

=L =N —(SF Nyg-1) T2 =N (9=



Kj—1 Ja—1—Nji—q42] Jrj—1—Nli— K42

(® B ® © A @ H) o)

=7 1g=Jq =1
where
Fd 215:1 Nii—p for[r]=1
F S Mo + (51 + DL Ng) for [ =2, K.
Proof of Proposition 3.1

g(r) =

We use induction. Without loss of generality we assume that X’ =0, foralln <0andi=1,..., K.
We first show that (8) is correct for n = 1. First let 7 be a station such that N; > 0. Such an 4

always exists since N > 0. In this case, (8) reduces to
1 . .
= ) B, = Bi. (10)
k=1
On the other hand, it follows from (4) and our assumptions on initial conditions that X! = BY.
Next assume i is such that N; = 0 and N[i_l} > (0. Then (8) reduces to

®Bk @ GB GB ( ® B ® Bz[z—ﬂ) _ Bi'BF—q.

Ji=1j2=1 41=71 19=J2

Similarly, from (4), our assumptions on initial conditions and the fact that X{iil] = Bgifl} (which

follows from (10)) we have
X = BiepiBl™ = pipli~t

Continuing in this fashion, from (4) we have

Xi = B{Bgz'fl]BgifQ}”.Bgz'fk]

for + with N; = N[ifl} =...= N[z'f(kfl)] = 0 and N[z'fk] > 0,and any £k = 1,..., K — 1. In this
case (8) also reduces to

~@EeDD - D (@@ & 8l

Jj1=1j2=1 Jer1=1 11=71 12=7J2 Th+1=Jk+1

_ BiBEH} .. gliH

which completes the proof for n = 1. Now suppose that (8) holds for m < n — 1. Thus, it follows

from (9) that for allm <n —1

00 m J1—N;

X%-® 8 D

I=L =N~ (e, Ni—i =11 j2a=Nj—(2Ni+3 1, Ni—ig—1)



Je—N[i—1 J3—N[i—2]
. . K-—1 . . 2 K—1
J3=Nj—(@2Ni+2Ny_11+y -y Ni—g—1) ja=Nj—(2Ni+2) , _ Ni—pj+y s Ni—k—1)
Jr+1—Ni Jr+2—N[i—1)

. 4 K-1 4 4 K-1
Jr+2=Nj—(BNi+2Y " " Nyi_g—1) jr43=Nj—(BNi+3N;_11+2> 5 Njj—xg—1)

Joark4+1—N; JKj—2=Nits]  m Jj1—N,
d L e (@8 Qs
j2K+2:Nj7(4Ni+3ZK—711 Ni_g—1) Jrj—1=1 = i2=j2
J2—Nji—1 : }13 Nii_o i ] Jrk-1—N[iq2) 1)
1—2 i— i+1
R B, & B, Q B
13=J3 14=J4 IK=JK
Jr =Nt Jrj—2—N[i13) : ]jKjfl_N[i+2] 1)
i+2 i+1
® BlK+1 Tt ® Bin_1 ® Bl ) :
j =1

IK 1=K +1 IKj—1=JKj—1
First assume that ¢ is such that N; > 0. Then we have
n—1 J1—N;

(® 5o @ SY) D
I=1 ji=Nj- Esz_ll Nii_g—1) j2=Nj— ZEN[l SRSy
Jo—Npi—1 J3—N[i—2)
J’3=Nj—(2N[i—1]+ZkK=2 Nyi—g—1) ja=Nj—(2 Zizl N[i—k]+ZkK:3 Npi—p=1)
Jrx+1—N; Jr+2—Nji—1

Jr42=Nji—(2Y N —k—1) Jr43=Nji—BNu_y+2> 3 Ny _p—1)

Jar4+1—Ni JKj-1—Nlit2)  n j1—N.
S . & (®s5 ® B
Jor2=Nj-(33 Ni  —x-1) =1 = 2=72
J2—Npi—q; : ]js Nij_o i3] Jk—1—N[it2) 1]
i—2 1— i+1
® Y@ st ® 5l
13=J3 14=j4 IK=JK
Jr —Npit1 JKj—1—N[it2] [ ]jKj_N[i+1]
1+1 i
® BZK+1 T ® Bin ® Bl))@
K +1=JK+1 K =JK;j =1
_N; J1i—N[i—q

o0 n
= . . K . . K-—1
j=1 =NG=(Q N —1-k—1) G2=Nj—(2Np_1+) - Ni—1-x—1)
J2—Npi—9 J3—Npi—3
. . K-—1 . . 2 K—-1
JSZNJ_(2N[i—1]+2N[i—2]+Zk:2 Npi—1-p—1) ]4:NJ_(2N[i—1]+22k:1 N[i—l—k]+zk:3 Npj—1-p—1)
JE4+1=Npi—1] JK+2—NJi—2)

. . — . . K—1
JK+2=Nj—(3Np_11+2 Zszll Nii—1-k—1) Jx4+3=Nj—(3Ni_1+3Ni_o+2) 5 Ni—1-k—1)

(11)



Joer4+1—Npi—q) Jrj—2—N[i12) n—N; J1—Npii—q
- i—2
® e T men @ e
Jar42=Nj—(ANG_11+3 3 o, Nm1-4—1) Ixi-1=1 u=i 12702
J2—Npi—a : ]j3_N[i—3] - Jrx—1—N[ig1]
i—3 i—4 q
Q B, & B, ... Q B
13=73 14=j4 IK=JK
jrx—N; 1) JKrj—2—N[it2] 1) Jrj—1—N[it1)
11— 1 1
® Bl ® B' ® -5
iR 41=JK+1 iKj—1=JKj—1 =1
( n 00 n—1 J1—N;
= =1 . . K
k=1 I=1 ji=Nj- Zk 1 N[l K—1) J2=Nji—(>" %1 1)
J2—Npi—1 Ja—Nk3t
ja=Nj—(2Ng_1+3° N 1) ja=Nj—(237 S —x1—1)
it ANy k=3
Jr42=Nj—(2>" —k—1) Jr4s=Nj—(3Nj_11+2) 7k]* 1)
Joxc 41N . JKj—1=Nitz) g =2 ]1*
d e (@@
Jerra=Nj—BX" 1) Jg=L n=n =
Ni;
J2—Npi—1 : ]js—lﬁc[%—2§l i3] Jr—1—N[iq2) 1]
i—2 1—3 i+1
® B, & B, ... K B
13=J3 14=j4 IK=JK
Jrk =Ny Jrj—1— Ny : ]jKj*N[iJru
1+1 g
® BZK+1 """ ® Bin ® Bl))@
IR 41=JK+1 LKj=JK;j =1
00 n—N; J2—Npi—1
7=1 J2=Nji—3 N —k—1) Ja=Nj—(2Nj _1+Yy. N —x1—1)
ja—Nj_g k=170 gzl
J4=Nj—(2Ny_1+2Nj_o+ 3 N _—1) Gs=Nj—@N[i—142 30 ) N+ N —k—1)
Jr42—Npj—1F=3 r Jr+3—Npi—g h=a O
JK+3=Nj—(3Np_1j+2 ) k1) Jr1a=Nj—(BNy_11+3N;_g+2 > SRSy

Jex 42— N b2 . Jrj—1—Npita

n—N; . i
D .. B (Bi® B ® B!

) ) K - o -
Jor+3=Nj—(4Ny_11+3 3 —k]_) =1 12772 183
J3—Ni—2 i }k [1 3] - Jr =Nt
1—3 11—
@ s @ s Q@ 5.,
14=}4 i5=Js LK1= K+1

10



Jk+1—Ni JKj—1=Nit2) JKj=Nit1]

® P @ BY Q@ B

IK+2=JK+2 IKj=JKj

n _ ) n J1—N;
=B, &P S¥) D
k=1 I=L =N () Numg=1) j2=Nj—(3 s, Nig—r1—1)

J2—Npi—1 J3—Npi—o

G8=Nj—=(@Nji 11+ j_y Nii—x1=1) 5a=Nj—(2 3 ) Nl s+ g Ni—s1—1)

Jr+1—N; Jr+2= N1

D D

Jr+2=Nj=(23 ", Ni—x)—1) jr+3=Nj—(38Ny_17+2 ZkKZQ Nyi—r—1)

Jex+1—Ni JKj—1=Njita) n J1—N; (1]
[ 1=
S%) .. D (®B, Q B
‘ ' X e < <
Jak+2=Nj—(3 Zk:1 Nii—r—1) Jjrj=1 11=J1 12=72
J2—Npi—q; [ ]j3_N[i—2] i3] Jk—1—N[it2) 1)
1—2 1—3 i+1
Q B, Q B Q By
13=J3 14=j4 IK=JK
Jrk =Ny JKj—1—Nit2] 1) Jrj—N[ig1
1 i+1 1
® BiK+1 T ® Bin ® Bl)
iR 1=K 41 iKj=jKj =1

where we used (4), the induction hypothesis and the representation in (11) for X}Z:Jl\;i to obtain the

first equality, we relabeled the indeces to obtain the second equality, and the last equality follows
by putting all terms together. On the other hand, if 7 is such that N; = 0 and Nj;_;) > 0, then the
expression for X! can be obtained in the same way since we now have an expression for X! for all
1 with NV; > 0, and thus in particular for X,[f_l}. Continuing in this faghion one can obtain XfZ for

1 with V; = N[z'fl] == N[if(kfl)} =0 and N[z'fk] >0, forany k=1,---, K — 1. |

4 Cycle Times

Recall that C? denotes the n'" cycle time at station i (i = 1,..., K). By a cycle time we mean the
time between two successive departures of the same customer from a given station. Thus, the n'!

cycle time at station ¢ is computed as

C;L = X?V—l—n - Xi

n

11



Proposition 4.1 Fori € {1,...,K} and n > N — Njj1q], we have
P(C > ) ~ NZ ek F(z) asz — oo. (12)

Proof We first derive a lower bound for C?. By summing up all service times that appear in the

expression of X}, we get

X, < Bi..BioBl~] B

n—

i—2 i—2 i~ K41 i~ K41
OBy Nny - Bl D@ @B N BT (13)

Note that X! is the maximum of sums of service times. In order to get a lower bound for X7,
for each k, k = 1,..., K, we pick that sum of service times which contains a maximal number of
service times with upper index k. Each of these sums is bounded from below by considering only

the service times with upper index k£ and dropping all the rest. This yields

Xi>B,..BleB .. .8 NeBl N \  ..B7"
[i—3] [i—3] [i—K+1] [i—K+1]
@Bn—Ni—N[i—l]—N[i—zj .- By D...0 B —(N=Npqq) " By : (14)

From (13) and (14),

Ch = Xivin - X,

n

; ; i—1 i—1 —2 —2
> (Byiw-Bii — (BN, B Ve By B

n n
oo B, B)
® (Byin-w, - Bupiin, — (B Bi@ By Ny, Bl "
@ e BN BT
(Bz[szLNFN[,-, TR B1[11+1}7N1-7N[,-,1]
~(BL...BleB N ...BUT U eBIN Ny B
@..®B N - B
S...0 (B%jr’ﬁ(lj]v_]v[im) . B}f;f(_zl\;_N[m])
—(Bi...BieBLy ...Bi e @Bl (B )

; ; i—1 i—1
> (Biin-- Bha @BT[:+JV]_Ni...B,[:+1]_Ni

12



[i—K+1] [i—K+1]
©...0 BH+N (N—=Npigq) =" n+1*(N*N[¢+11))
i [i— 1} [i— 1} [i—K+1] [i—K+1]
~(B...BieB Ty ...Bi "o .oB (T ..B ).
Therefore, by Lemmas 8.4, 8.5 and 8.6
(C'Z > x)

We now obtain an upper bound on C%. Note that it follows from (8) that X/ 4y can be expressed

in the following form
. K
X111+N = @ Bk
k=1
where i is the sum of various combinations of service times that belong to the set

_ (g i-1) -1 = = =K +1] K]
@—{Bi, n_i_N’BZ "’BTZJerNl-)BlZ 7""B1’Z+N7N7;7N7;71""7Blz ;"‘7B7;+N7(N7N[i+1])}

and « is an integer determined by max{j : Nj — ( f:_ll Njj—g) — 1) <n+ N}. Similarly, X! can

be expressed as
. n
Xo =D
I=1
where -, is the sum of various combinations of service times that belong to the set

. ’Bgi—K-i—l] pli-K+1] }

- ; pli-1 i—1 i—2
TZ{B%,...,B%,B? }""ﬂB[Z—J\;ﬂBEZ ], B[Z]\; —N;_ 2 T n—(N—=Npiqq))

n—N; n

and n < k is an integer determined by max{j : Nj — (Zszfll Njji—gy — 1) < n}. Consider fy €
{B1,-.., Pk} We know that (i is written as a sum of the elements of some T, C T and some
O C ©\ T. However, it then follows from (8) that there exists a yx) € {71,...,7,} which also

contains all the elements of Y. Then

X, n— X, < PGB — )

k=1
where (), k= 1,...,k, is defined as above. Since for k =1,...,x
> =) O lieK+1]
K K
Br — (k) = ® n+j ®BH+J N; ®Bn+J (N—=Np—q)’
j:l = j 1

13



01 < ®B +J®Bn+] N; ®BT[Z+JK+]§ Np;— 1])

Thus, from Lemma 8.6,

P(C X
limsupw §Nch

r—00 (ZE)

which together with (15) completes the proof. O

Remark 4.1 The cycle time asymptotics is the same for each station. Thus, it does not matter
at which station a cycle starts. This is different for the cycle time distribution, for which indeed

one gets different results depending on where the cycle starts; see [8].
Remark 4.2 Let ¢;;, > 0 and ¢; =0 for all © # ig. Then
P(C! > ) ~ N¢j, F(z) ~ N By (z) as z — oo.

Thus the asymptotics depends only on the service time distribution with the heaviest tail.

5 Waiting Times

Let W/ denote the n'™ waiting time at station 4 (i = 1,...,K). Thus, W} is the time from the
arrival of the n'" customer at station i to the beginning of his service at this station and it is
computed as

X0

n—1 " n

@0
with the convention that X! =0 for alln < 0 and for all i = 1,..., K.
Proposition 5.1 Fori € {1,...,K} with B; € S and n > N, we have
P(W! > z) ~ (N —1)Bi(z) ~ (N —1)¢; F(z) as z — oo. (16)

Proof Using the bounds on departure times given in (13) and (14), for n > N we have

Wiz (B Bl - (BB_N],--Br Bl B

[i—K+1] [i—K+1] i
- ® By Ny B @ By_y...B})) @0
] —1 1 —2 1 —2
> Bl By oy - (Biy, BT e BN BT
[i—K+1] [i—K+1]
®Bn (N N[l 1]) "Bl )1
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and employing Lemma 8.4 and Lemma 8.6 we obtain

P 7
liminf P >2) o (v

For an upper bound, we proceed in the same way as for the cycle times. Since Xfl_l is expressed

as the maximum of sums of service times that belong to the set

] ] —1 —1 1 —2 j—2 i—K+1 i—K+1
(Bi,....B._,, B/ ... BIT! B L...,B}:ALNZ_?N[H],...,B;Z L., BizEH] }

and X}Z:Jl\;i is expressed as the maximum of sums of service times that belong to the set

[i=1] [i-1] pli-2] [i—2] [i—3] (i3] [i—K] [i—K]
{Bi By N B BN, B BN Ny N BE e Buy b

n i

employing the arguments used in the derivation of the upper bound for cycle times we conclude

that
W, <QB, ;.
=1
Thus,
P(W;.
limsupM <(N-1).
Since B;(z) ~ ¢;F(x) as x — oo, the assertion follows. O

6 Residual Service Times

In this section we analyze the asymptotic tail behaviour of the distribution of a residual service seen
by an arriving customer. In contrast to an open system where the arrival process is independent
of the service process, such a residual service time B%™ does not follow the residual service time
distribution B¥(z) = [y Bi(y)dy/B; where B; is the mean of B;(-), but, up to a constant, has the
same tail behaviour as B;(-) given that the latter distribution is subexponential. Let B;rkes denote
the residual service time seen by the n'" arriving customer at station i, i = 1,..., K, given that he

sees k customers in front of him. Then
B =08 (X, — XITY)
with the convention that X! =0 for alln < 0 and for all i = 1,..., K.
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Proposition 6.1 Foric {l,... K} with B;€ S, 1<k<N -1, andn> N — N;,
]P(B;lrkes > z) ~ (N — k)Bj(z) ~ (N — k)c;F(z) as z — oo.
Proof From the bounds in (13) and (14), for n > N — N;
By
i i pli-1] [i—1] i i
ZB’IZ*]C#‘N,"'BI Bn ...Bl ®"'®Bn—(N—Ni)"'Bl

= By _jini - B (v-non

_ ( pli-1] [i—1] [i—K+1] [i—K+1]
(B” B @ 0B, (v Npi— k11— Np— ])"'Bl )’

and thus from Lemmas 8.4 and 8.6

To get an upper bound, we again proceed in the same way as for the cycle times.

ka kN, is written as the maximum of sums of service times that belong to the set

‘ [i-1] [i-1] pli-2 [i-2] [i—K+1] K
{Bi,....B. N, B ....B, B ,an_k_N[i_H,...,Bf ,...,ank

and X7[f ~1is written as the maximum of sums of service times that belong to the set

1—1 — 1—2 1— 1—3 1— 1—K —
(i1 pli-a pli-4  plim2 o pgl=sl gl .., BITKL BT

By Npi-11? By Npi—11=Npi—21? """ ’

Employing the arguments used in the derivation of the upper bound for cycle times yields

zres
nk < ® Bn+N -7

Therefore, from Lemma 8.6
P Bi,res S 7
limsupy < (N —k).

Again, since B;(z) ~ ¢;F(z), this completes the proof.

(17)

Note that

|

Notice that the asymptotic constant in (17) is decreasing with respect to the number of cus-

tomers an arriving customer sees in front of him. Thus, an intuitive explanation for the result of

Proposition 6.1 could be as follows: the more customers there are waiting at a queue, the more

16



likely it is that the ongoing service has started quite a while ago giving rise to the build up of a
long queue, and is thus more likely to be finished soon. Similarly, seeing a short queue may indicate
that the ongoing service has started not too long ago and therefore is more likely to have a longer

residual service time.

Remark 6.1 Proposition 6.1 provides an alternative way to derive upper bounds for cycle and wait-
ing times. Consider the worst case scenario, namely that a customer always sees N — 1 customers

in front of him when arriving at a station, with one service going on. Then,

01 < Z(Z B[1+k I BLHJ»\;C]_;QS) ’

k=1 j=1
and thus
P(C! K
liﬁ)s;ip% < Nz;ck :
Similarly,
P 7
limsupM < (N —1)g

Note that these upper bounds agree with those obtained in the proofs of Propositions 4.1 and 5.1.

7 Stationary Results

In this section we assume that all service time distributions B;(-), 1 <14 < K, have infinite support.
Note that this assumption is always fulfilled for subexponential distributions. We observe the state

of the cyclic network at departure epochs from station ¢. Let

Yz(n) = (Yli(n)a S aYIi((n)ayli(—i—l(n)a S aYQZK(n))

be the system state vector, where Y;(n) and Yli(_i_é(n) (¢ = 1,...,K) represent, respectively, the
number of customers and the past service time of the ongoing service at station ¢ at the moment
of the n'" departure from station i. Hence, if Y/(n) = 0, then Y} 4¢(n) = 0. Moreover, let
Y(0) = (Ny,...,Ng,0,...,0) which is consistent with the initial condition defined in Sections 1
and 2. Note that {Y%(n),n = 0,1,2...} is a Markov chain. Let R = {Y°} be the one-point set

such that Y% is a {0,1,..., N}¥ x R¥ vector fulfilling
Yo, =1 Y'=N-1, Y)=0 ((#ii+1), Yi,=0 ((=1,....K).
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The event R means that at a departure epoch from station ¢ the departing customer leaves all the
other N — 1 customers behind at station 4. The one-step transition Y(n) — Yi(n+1) = Y takes
place if and only if

[i—1]
X1 > Xpin N;
Hence, the set R is a regeneration set such that, for any initial marking,

P(Y'(n+1) € R) =P(X},,, > X7[;+Jl\; N = P(B . > Xq[zzﬂlv} N; Xgﬂl} N

where the last step follows from (4). Now, analogous to the proof of Proposition 4.1,

N-1
i—1 1] j—2
X'r[:—l—]\;—Ni 7[:+1 N; < ® Bn+1 Ni+j ® Br[:+1]—Ni+j—N[i 1 ® Bn+1 Ni+j—(N—=N;) >
J=1
and therefore
P (X}, > X7[L+J\; N) (18)

N-1 2]

i
By > ® Bn+1 Ni+j ® Bn+1_Ni+j_N[i—1] ® Bn+1 Niti—(N-n;) | >0
J=1

Thus, Y?(n) is a Harris ergodic Markov chain and has a unique stationary distribution. Namely,
from (18) and Theorem 3.6 and Proposition 3.13 of [1] (see also [2, 3, 6]) we have the following

theorem.

Theorem 7.1 If service time distributions at every station have infinite support, then there exists
a random vector Y* such that the distribution of Y'(n) converges in total variation to the distri-
bution of Y'. The Markov chain {Y*(n)} couples with Y* in finite time for any initial marking

N1, N, ..., Ng.

Note that the n'" cycle at station i, C! = X]Z-\H»n — X!, can be expressed in terms of Y*(n) and the
completed services taking place in the time interval [X?, fl 4n)- At the k" departure epoch from
station 4, the number of completed services since time 0 at the individual stations depends on the
initial marking. Each station [ has completed at least max{k — N;,0} = (k— N;)* > (k— N)™* and
at most K+ N — N; —1 <k + N — 1 services. We define the following sequence of random vectors
forn> N

Be(n) == (Bf;—N—|—17B’fl—N+27 7B£+2N—1) ) e == ].,2,... ,K.
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Since & and ® are continuous operators, we have
Ct = f1(Yi(n),B'(n),...,BX(n))

for n > N and some continuous function f; : {0,1,..., N}¥ x R*¥ — R,. Thus, since con-
vergence in total variation implies weak convergence, from the continuous mapping theorem and

Theorem 7.1 we obtain the following result.

Theorem 7.2 If service time distributions at each station have infinite support, then there exists a
random variable C* = f1(Y', B!, ..., B¥) such that C! converges in distribution to C* as n — oo.

The sequence C! couples with C* in finite time for any initial marking N1, Na, ..., Ng.

It follows from Proposition 4.1 that for all n > N — N; ;1) and any € > 0 there exists L such

that for all z > L we have

K K
(1-e)N> e F(z) <P(C,>z)<(1+e)N> ¢ F(z),

k=1 k=1
fori € {1,...,K}, and ¢; > 0. Taking limits as n — oo and ¢ | 0 we obtain the following corollary.
Corollary 7.1 If service times at each station have infinite support, then for i € {1,...,K} we
have that

. K p—
P(C" > x) NNchF(ZE) as T — oo.
k=1
Note also that
Wy = f2(Y'(n),B'(n),..., B (n))

for some continuous function fy : {0,1,..., N}¥ x R3*»X — R,. Thus, from Theorem 7.1 and

Proposition 5.1 we can obtain the tail asymptotics of the distribution of the limiting waiting time

at station i (W?).
Corollary 7.2 Fori e {1,... K} with B; € S we have
P(W!>z) ~ (N —1)Bj(z) ~ (N —1)¢; F(z) as z — oo.

Similarly, we can obtain from Theorem 7.1 and Proposition 6.1 the asymptotics of the limiting

[i—1]

residual distribution Yy ;* given that Y;[i_” = k, which we denote by B,i’res.
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Corollary 7.3 Foric {l,... K} with B;€ S, 1 <k <N —1,

]P(B,i’]reS >z) ~ (N —k)Bj(z) ~ (N —k)c; F(z) as x — oo.

8 Appendix

In this appendix we first give the proof of Lemma 3.1 and then recall some properties of the class

S of subexponential distributions introduced in [13].

8.1 Proof of Lemma 3.1

First note that more explicitly (9) can be written as

) oo n J1—N;
1 __
X, =@ S, S,
) — . . K . . K-—1
I=L j1=Nj =Yy Np-i=1) J2=Nj—Ng g+ sy Nii—ay—1)

J2—Nji—1 Ja—Npi—2

G3=Nj—@N_ k1 +2Ng 1+, Ni—i—1) Ga=Ni—@Ni 423,y N+ 2y Ns—1)

Jr+1—Nji— K] Jr+2—Nji—1)

. . K-1 . . K-1
JK+2=Nj—(BNi_k1+2) | Ni—k—1) ix+3=Nj—BNy_ g +3N_q+2 ) Ni_g—1)

Jok+1—N[i_ K] Jrj—2—N[i—(Kx-3)]

n Ji—N; 1]
) i
Y . b (®B Qs
Jarcra=Nj—(A4Nu_ s +3 3, ) N —1) Jrj-1=1 us=n 2=
J2—Npi—1 [ 2]j3*N[¢72] i3] Jr—1—Npii—(x—2)] o KA1]
i i i—K+
® B.” Q By Q& B
13=J3 t4=ja 1K =JK
Jr—Nji—(k-1)] Jrj—2—N[i—(K-3)] i K+2]]’Kj71_N[i—(K—2)] K41
. 17— 71—
® B;KJrl T ® Bin—1 ® By ) : (19)
IK41=JK+1 IKj—1=JKj—1 =1
Thus, we will show that (8) is equivalent to (19). Let
K-1
j* =max{j EN: Nj— () Ny_—1) <n}, and
k=1

K
Jjo = max{j e N: Nj — (ZN[i_k} —1) <n}.
k=1

Note that j; always exists. However, if n < N; 4+ 1, j* does not exist. We start with this case.

Suppose j* does not exist which implies that j§ = 1 and which is only possible if N; > 0. Then (8)
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n
reduces to ® B:. On the other hand in (19) jo,j3,- -, jx_1 vanish since
k=1

Jo<j—N; <Ll

n
Moreover, the maximum in (19) is achieved for j; = 1 which yields ® Bfl. For the rest of the
i1=1

roof we assume that j* exists, then in (8), 7 = 1,---,5% and in (19), j = 1,---,75. Note that
b 0

n
0 < jg — j* < 1. Now suppose N; > 0 and j* = j§. We start with (X) B} and j = 1 term in (8),
k=1

n j1—N; d2—Npi—1) j3—Nji—2) Jk—1—Ni—(k-2)] n

e & OO @ - O (& '® Bl

J1=Ni+1 je=1  ja=1 Ja=1 Jr=1 t1=J1 12=J2
JE-1=Ni—(k-2)] JrE—Nji—(k-1)] ‘
® Bz[; K+1] ® Blz)
IK=JK =1
Jj1—N; Ni-k+11 n a—-Ni Jr—1=Ni—(k-2]
@ . P (®B, @85 ® BIe (20)
1=1 jo=1 Jr=1 da1=j1 12=72 tg=1
n J1—N; J2=Nji-1) JE-1=Ni—(k-2)] n j1—N,
D D d . B (R QB
J1=N+1 jo=N-N;+1js=N—-N;—=Np;_1;+1 Jk=Nji_k411t1 1=5 12=J2
JE-1—Ni—(k-2)] JrE—Nji—(k-1)]
® B ® B (21)
IK=JK =1

In order to obtain the above equality first note that for j1 < N; + 1, ja, j3,- -+, jKx vanish and for

n
j1 = 1 we obtain ®BfC and for 2 < j; < N; + 1 we have
k=1

n . n )
& 5. < @i
i1=j1 k=1

We then consider jx < Nj_gi1) and jx > Nj_gq] separately to obtain (20) and (21). If

JKk < NJi_k41], | vanishes and

Jr—1—Npi—(x—2)) : ] Jrx—1—Np—(x—2)] : |
i—K+1 i—K+1
K B = & By

for 1 < jk < Nj_g41). Finally, to obtain (21) for jx > Nj_g11], we need jx 1 > Nj_gqq] +
Ny—gao)+1, jx—2 > Ny—gy1) + Nji—g42] + Nji—g43) + 1, -+, j1 = N + 1. Note that (20) is the

J =1 term in (19). We next consider j = 2 term in (8) which is equal to

j1—N; Jrk-1—Nli— k42 Jr—Nji—k+1] Jr+1—Ni—k] Jrk+2—Ni—1)  Jexk—1—Nii—k42]
Jj1=N+N;+1 jo=N+1 ]K:N[FK]JrN[FKH]Jrl Jr+1=Ni_x)tl  jr42=1 Jr+3=1 Jox =1
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j1—N, Jrk—1—N[E_K 12 Jrk —Nii—x41]

(@B Q8. & B ® B

i1=J1 i2=J2 IK=JK IK4+1=JK+1
Jek —1— N[k 49] : | Jok —N[i— K1)
i—K+1 q
® Bi2K ® Bl) : (22)
I9K =J2K =1

Putting (21) and (22) together yields

j1—N, Jr-1—Nii—ky9] Jk—Ni-x+1] Jk+1—Nji—k) Jr4+2—Npi-1) Joxk—1— Nk 42
=N+1 jo=N—-N;+1 JE=Ni—k4+1+1  Jr41=1 Jr+2=1 Jr+3=1 Jex=1
n j1—N, Jrk-1—Nli—ky2 1) Jrk—Nii—r41) : |
i—1 i—1 1—K
(®B . ® A ® sl
11=Jj1 12=72 IK=JK IK+1=JK+1
Jok—1—Nli— k42 : ] Jok —N[i— k1)
1—K+1 q
Q B ®  Bi)
oK =J2K =1
j1—N, Jk—1—Nli—k19) JK—Nji—k41] Jk+1—Nii—k] Jr+2—N[i—1) Nii— k413
J1=N+1 jo=N-N;+1  jg=Nj_g41j+1  Jjr4+1=1 Jr42=1 Jr+3=1 Jax=1
n j1—N, Jrk—1—N[i—K42) 1) Jr =Nk 41 : |
i—1 i—1 1—K
(® 3, ®B . Q@ BN ® B
11=7J1 i2=J2 IK=JK IK+1=]K+1

Jok—1—Npi—K42)
—K+1
® B )e (23)
tog =1

n j1—N; Jk—1—Ni_r42) Jk—Ni—k41] Jrk+1—Nji—k] Jr+2— N1

S D ... D D D D

J1=2N+1 j2=2N-N;+1  jk=N+Np_gy1+1 Jr+1=N+1 jri2=N-N;i+1 jx43=N—-N;—Nj_1+1

Jox—1—Ni—K 43 Jok—1—Nii—Kk42) j1—N, Jrk—1—N[i—K12) 1]
—1] i—1
D © (3 @B @ B8
Jok —1=N+Nji_ 411+ Nji—k42) ok =Nji—r411+1 @1=41 12=J2 IK=JK
Jr—NJi—K41) : ] Joxk—1—Ni—K 42 : ]jQK_N[i—K+1]
i—K i—K+1 i
® BiK+1 t ® BiQK ® Bl) (24)
IKF1=JK+1 iag=1 =1

where the equality is obtained by considering jox < Nj;_g 1] and jax > Njj_ g 4q) separately as is
done above. Note that (23) is the j = 2 term in (19). Continuing in this fashion for j = 5* we have

n j1—N; Jrk—1—N[i_K 42 Jrk —=Nii— k41 Jrk+1— N~k

D S D D D

A=NG*=1)+1 ja=N(3*=1)=Ny+1  jr=N(G*-2)+Ny_g411+1 jx+1=N(G*—2)+1 jr12=N(j*—2)-N;+1

Jok —1— N[k 42] Jox —Nji—K41] Jr(G*—1)—Nii—k+1] Jr(G*—1)+1—Ni-K] Jrj* —1—Ni—K42)
Jex=N(G*=3)+Ni_ g 4111 Joax+1=N(j*—3)+1 Jr(j*—1)+1=1 Jr(j*—1)+2=1 Jrjx=1
n j1—N, Jrk—1—N[E_K 19 : ]jK*N[FKH] : |
i—1 i—1 i—K
(® B, Q B Q B, Q  Biey
11=J1 12=72 IK=JK IK+1=JK+1
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Ji*r—1—Nli—K42) oK l]jj*K*N[FKH]
i—K+ i
® m ®  B) @
i =i K I=1

In order to obtain (25) we combined the j = j* term of (8) with the remaining term from j = j*—1

(i.e. the part corresponding to jij«_1)x > Njj_g41)). Since n < Nj* + 1,
Jirre <n— (Nj* = Nji—g11)) < Nji—gy1 + 1.

Thus, jj«x — Nj—g41] < 1 and the [ term vanishes in (25). Moreover, the maximum is achieved
Ji*k—1—Ni—k421
for jxj+ = 1 since this yields ® Bz[z_*_fﬂ] which implies that (25) is equivalent to the
J
ije =1

J =Jj§ =" term in (19). This completes the proof for N; > 0 and j* = j§. If N; = 0 then clearly

n

3* = jo. The proof of N; = 0 is the same as the one given above except in this case ®B}C is
k=1

redundant since for 5 = 1 in (8), the expression corresponding to 71 = 1 and jo = 1 dominates

n
® B};. We next consider j; = j*+1 which is only possible if V; > 0. The proof will be the same as
k=1
the proof of j* = j§ except for j = j* we now again need to split (25) into two parts by considering

Jir < Nji—gq1) and Jyjsrc > Np_g 417 Thus, (25) is written as

n j1—N; Jr-1—Nli— k42 Jrk =Nl k41 Jr+1—Ni—K)

D SR D D D

J=NG*=1)+1 jo=N(G*=1)=Ny+1  jr=N(G*—2)+Ny_g411+1 jr+1=N(G*—2)+1 jr42=N(j*—2)—N;+1

Jok—1—Ni_K 42 Jox —Nji—K+1] Jr(G*—1)—Ni—k+1] Jr(G*—1)+1—Ni-K] Nii—r 41
Jer=N(3*=3)+Npi_g41)+1 Jar+1=N(5*=3)+1 Jr(j*—1)+1=1 IR (*—1)+2=1 Jrcjx=1
n j1—N; i) Jrk—1—N[E_k 42 [ ]jK*N[i7K+1] [ :

3 i—1 i—1 1— K

(® Bil ® Biz ® Biz ® BiK+1
11=J1 12=J2 IK=JK IK41=JK+1
Ji*r—1—Nli—K+42) : ]
—K+1
® B Me (26)
Zj*Kzl
n j1—N; Jr-1—Nli— k42 Jrk =Nk 41 Jr+1—Ni— K]

D D - D D D

J=Nj*+1 jo=Nj*=Ni+1  jx=N(G*—1)+Ny_r 1+l jx1=N(G*—1)+1 jx12=N(G*—1)-N;+1

Jok —1—N[i_K 42 Jox —N[i—K41] Jr(G*—1)—Ni—xk+11 Jr@G*—1)+1—Nji—K]

D e . D D

Jax=N(3*=2)+Nji_g41]+1 jarx+1=N(j*—2)+1 Jr(G*—1)+1=N+1 JrG*—1)42=N—-N;+1

Jrj*—1—Ni—k42] n j1—N; 1) Jr-1—Nli— k42 : ]jK*N[FKH] [ :
i i1 i1 i—K
o (@n@r. @ e @ s
Jrir=Ni—rx+1+1 i1=j1 i2=72 iK=jK IK41=JK 41
Ji*r—1—Nli—K+42) : ]jj*K*N[FKH]
i—K+1 i
- ® B ® B (27)
Zj*K:Jj*K l:l
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Note that (26) is the j = j* term in (19). On the other hand for j = j§ = 5* + 1 in (19) we have

n j1—N; Jk—1—N[i_K 12 Jrk —Nii—k+13 Jr+1—Ni—K)

D D - D D D

J=Nj*+1 jo=Nj*—Ni+1  jg=N(*—1)+Nu_g11+1 jr41=NG*—1)+1 jrt2=N(j*—1)—N;+1

Jok—1—Nli— k42 Jerk —Nii—k41] JrG*—1)—Ni—x+1] JrG*—1)+1—Ni—K]

D e - D D

Joax =N(j*=2)+Np_g41]+1 e +1=N(j*—2)+1 JrG*—1)+1=N+1 Jr*—1)42=N—-N;+1

Jrj*—1—Ni—k+42) Jrj* —Nii—Kk41] j1—N; Jr—1—N[Ei_r42] Jr =Nk 41

- " olie i i
D ® (®s. B, & B Q@ B

Jj*=Ni—k41+l  Jrj=p=1  a1=j1 12=J2 IK=JK IK+1=JK+1

Ji*rk—1—Ni—K+42] Ji*r —Nii—k 41

® B ®  BlL.) 28

jx K=Jj* K i K41=Jj* K+1
The terms corresponding to jrj«t2,jKj*+3,"*, JKj;—1 disappear when j = jg. Since n < Nj* +

N; + 1, we have
JKj 42 < Jij41 — Ny <n—Nj* = N; < 1.

Moreover, the maximum is achieved by setting jg ;-1 = 1 which implies that (28) is equivalent to

(27). This completes the proof. O

8.2 Subexponential distributions

As before, we write f(z) ~ cg(z) to express that lim, . f(z)/g(z) = ¢ for two functions f(z), g(z),

and some constant ¢ > 0.

Definition 8.1 A distribution function F on Ry = [0,00) with F(z) < 1 for all x > 0 is called
subexponential (F € S) if

F2(z) ~ 2F (),

where F(z) = 1 — F(x) and F*? denotes the convolution F x F.

The class S has some very useful properties. Those which are used in this paper are the following

ones.

Lemma 8.1 Let F, G be two distributions on Ry and assume that there exists a constant ¢ € (0, 00)

with G(z) ~ cF(x). Then, F € S if and only if G € S.
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Lemma 8.2 Let F,G,H be distributions on Ry such that F € S, G(v) ~ ¢1F(x) and H(z) ~

coF(x), where ¢; € (0,00) for i =1,2. Then,
G* H(z) ~ (c1 +c)F(x) .

The results stated in Lemmas 8.1 and 8.2 are well-known. For a proof see for example [14] and

[17].

Lemma 8.3 Let F € S and let G be a distribution on Ry such that G(x) = o(F(z)) as z — oco.

Then F + G(z) ~ F(z).

Lemma 8.4 Let X and Y > 0 be independent random variables with distribution functions Fx € S

and Fy, respectively. Then
P(X-Y >z)~P(X >z) as z — oo.

For the proofs of Lemmas 8.3 and 8.4, see [22]. We further need the following results, which

are easily derived from the above lemmas.

Lemma 8.5 Let F € S and let Gy, ..., Gy, n > 1, be distributions on Ry such that G;(z) ~ ¢;F ()

as © — 00; ¢; > 0. Then,
n

1- H Gi(z) ~ Zczﬁ(m) . (29)
i=1

i=1
Proof For m = 1, the assertion is true. Now assume that (29) holds for some n > 1. Since

n+1

1— ][ Gi(=) (I—HG ) nt1(7) +1 = Gpia(2) ,
i=1

the assumptions imply that
1 -1, Gi(z

1 o ’I’L+1 . n
Ih"nolo HF(iﬂ) ( ) - mlL%O T() Gn+1($) + :L‘ILOO _+1 Z € ¥ Cntl-

Lemma 8.6 Let F € S and let Fy, ..., F,, n>1, and G1,...,Gp, m > 1, be distributions on R4

such that Fi(x) ~ ¢;F(z) with ¢; >0, 1 <i <n, and Gi(z) = o(F(z)) for 1 <i < m. Then,

Fl*...*Fn*Gl*...*Gm(m)NZCiF(x).
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Proof By induction it follows immediately from Lemma 8.2 that

Fyx...x Fy(x) NZc,F(m)

. Gi(z) _
SR ) e ) A@)

(i.e., Gi(z) = o(H(z))) from Lemma 8.3 we have in particular H * G1(z) ~ H(z). Therefore the

assertion is true for m = 1, because H(z) ~ .1 ¢; F(z). Assume that the assertion holds for

some m € IN. Then,

: 1= Gmyi(2) _ o 1-Gnyi(z)  H(z) i ¢i F(z) _
lim = lim — . =0,
s=001l —HxGrx...xGp(x) 2—0  H(z) S F(x) 1—HxGyx...xGplz)

(i.e., Gmy1(x) = o(H * G1 * ... * Gyp(z))). Thus, by Lemma 8.3 and the induction hypothesis, the

assertion follows. O
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