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Abstract:
We consider the problem of adaptive point-wise estimation of an unknown regression function f(x)
whose observations at the points of a fixed design on a given interval [a, b] are corrupted by a white
Gaussian noise. The function f is assumed to belong to a the class A(γ,M) of analytic functions
bounded by a constant M inside the ellipse having its foci at the end-points of the interval [a, b]
and a sum (b− a) exp(γ) of the semi-axes.
First, for two different designs - Legendre and Chebyshev design - we describe asymptotically min-
imax estimators for any of the fixed classes A(γ,M), as the number of observations n increases.
A slight extension of this setting, with both γ,M allowed to depend on n, brings in the con-
cept of non-parametric (NP) and pseudo-parametric (PP) functional scales characterized by the
corresponding rates of convergence.
Finally, with γ and M unknown, we propose adaptive estimators ‘tuning up’ to the unknown
smoothness of f . We prove them to be asymptotically adaptively minimax for large collections of
NP functional scales, subject to being rate efficient for any of the PP scales.
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1 Introduction

In this paper we study adaptive non-parametric regression models with a fixed design in the
case when the unknown regression function f is analytic in a vicinity V of the observation
interval [−1, 1] of the complex plane. The smoothness of f is then characterized by the size of
V and maxV |f |. A more concise description of such dependence – and more accurate results
– become feasible when V is the region Eγ with boundary

∂Eγ = {z : z = cosh γ cosφ+ i sinh γ sinφ, 0 ≤ φ ≤ 2π}.

This boundary set is the ellipse with foci at the end points of the interval [−1, 1] and the
sum of its semi-axes equal to exp γ. The family of such elliptic areas is natural in the sense
that ∩Eγ = [−1, 1] and ∪Eγ = C. Note, without loss of generality we have assumed that
the regression interval is [−1, 1], but an obvious generalization can be made to any real
interval [a, b].

We will denote by A(γ,M) the set of functions which are analytic and bounded in Eγ

with |f(z)| ≤M in that region. For functions f ∈ A(γ,M) observed in the continuous-
time Gaussian white noise on the interval [−1, 1], Ibragimov and Has’minskii [1982] have
demonstrated point-wise asymptotically minimax estimators based on Legendre polynomials.

We consider the problem of discrete regression in the model

yk = f(xn
k) + ξk, k = 1, . . . , n, (1)

where the points xn
k form the design knots and the ξk are independent identically distributed

Gaussian random variables, with zero mean and given variance σ2. Given the observations
y = (y1, y2, . . . , yn), the function f ∈ A(γ,M) can be estimated by the projection-type
estimators

f̂n,N (x,y) =
N−1∑
r=0

ĉrQr(x), ĉr =
1
n

n∑
k=1

ykQr(xn
k),

where Qr are polynomials orthonormal over the design points xn
k . This method is easier to

implement and to study. For instance, if we consider the design of equally spaced knots

xn
k =

2k − n− 1
n

, k = 1, . . . , n, (2)

one could use the so called Chebyshev discrete polynomials Cr(x), r = 0, 1, ..., (cf. Bateman
[1953], Sect. 10.23, p. 223). However, for this design we will find it more convenient to use
a family pr(x), r = 0, 1, . . ., of normalized Legendre polynomials which are asymptotically
equivalent to Cr (cf. Bateman, Sect. 10.23, eq. 7). In particular, the normalized Legendre
polynomials pr(x) are asymptotically orthonormal over the design knots (2). Thus we shall
refer to these knots as the Legendre knots or equidistant knots, and to the set of these knots
as the Legendre design or equidistant design.

As intuition suggests, when we use the equidistant design to estimate the unknown re-
gression function at points which are close to the border of the interval, less information is
gathered than when we are interested in estimation inside the interval. Although it might
seem that the number of observations available at the end-points is just halved, we shall see
that in fact the accuracy of estimation near the border becomes worse by a factor of order√

log n, compared to the accuracy obtained inside the interval.
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This situation can be improved by using another – non-uniform – design which will balance
the distribution of the design points, in favor of increasing the accuracy of the estimation at
the end-points. A special classical design having this property is specified by the knots

xn
k = cos

(2k − 1)π
2n

, k = 1, . . . , n, (3)

which we will conveniently call the Chebyshev knots and the corresponding design the Cheby-
shev design. Remarkably, the classical orthornormal Chebyshev polynomials tr(x), r = 0, 1, ...,
are also orthonormal over the Chebyshev design. As we shall see later, with this polynomials
the same rate of convergence is achieved inside the interval, whilst at the end-points the rate
is only a factor 2 slower. 1

Given that for the equidistant design we use the Legendre polynomials and for the Cheby-
shev design we use the Chebyshev polynomials, one can question whether the difference in
rates of convergence is due to the particular method of estimation we are studying or indeed
is property of the design itself. To clarify this, we will demonstrate that in each of the cor-
responding designs, our estimators are asymptotically optimal among all possible estimators,
at every point of the interval [−1, 1]. This leads us to the conclusion that the observed differ-
ence in the rates of convergence near the end-points is a direct consequence of the use of the
equidistant design and that this problem does not present itself in the case of the Chebyshev
design.

Several remarkable properties of the functions pr(x) and tr(x) make this approach at-
tractive for practical purposes. The normalized Legendre polynomials pr(x) are asymptoti-
cally orthonormal over the equally spaced knots while the normalized Chebyshev polynomials
tr(x) are orthonormal over the Chebyshev knots. This makes the evaluation of the projection
polynomials straightforward. At the same time the orthonormality property allows an easy
evaluation of the variance of the corresponding regression estimators in the statistical frame-
work (1). In the case of known classes A(γ,M), the variance can be easily balanced against
the systematic error, thus determining the optimal number N of polynomials in use.

A property that will play a major role in the application of Legendre or Chebyshev design
for estimation is the behavior of the functions

1
N

N−1∑
r=0

t2r(x) and
1
N

N−1∑
r=0

p2
r(x)

both inside the interval [−1, 1] and near the end-points (see Lemmas 1 and 2). These terms
appear as variances of the corresponding estimators and to a great extent are important in
shaping the results (see Theorems 1 and 2).

The structure of this paper is as follows. In Section 2 we introduce the functional classes
A(γ,M) and discuss the Legendre and Chebyshev polynomials. In Section 3 asymptotically
minimax estimators f̂n, n → ∞, are described in the case when the unknown regression
function f belongs to a given fixed class A(γ,M), using Legendre and Chebyshev polynomials
for their corresponding designs. In both cases the polynomial estimates we consider are shown
to be point-wise asymptotically efficient, for their corresponding designs. In Section 4 we
introduce functional scales and construct asymptotically optimal adaptive estimators, under
the assumption that the parameters γ and M are unknown.

1Motivated by this study B. Levit (2001) introduced a general theory of Optimal Designs in Non-parametric
Regression.
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2 The building blocks

The purpose of this section is to introduce classes A(γ,M) of analytic functions, as well
as the Legendre and Chebyshev polynomials. We discuss their properties and the relation
between them. Classes A(γ,M) will serve as the underlying functional classes in the regression
problems that we will study, while Legendre and Chebyshev polynomials will be used, in
corresponding designs, for constructing the estimators.

2.1 The class A(γ,M)

For γ > 0 let Eγ be the open ellipse in the complex plane, with its boundary defined by

∂Eγ = {z ∈ C : z = cosh γ cosφ+ i sinh γ sinφ, 0 ≤ φ ≤ 2π}.
The ellipses Eγ represent a convenient family of vicinities of the interval [−1, 1], expanding
from [−1, 1] to C, as γ increases from 0 to ∞. One can verify by simple algebra that the
elliptic boundary ∂Eγ has its foci at the end-points of the interval [−1, 1], thus

Eγ = {z ∈ C : |z − 1| + |z + 1| < eγ + e−γ}.
Definition 1 We denote by A(γ,M) the class of functions analytic inside Eγ such that
|f(z)| ≤M , for all z ∈ Eγ.

Denote by ργ the distance from the interval [−1, 1] to the boundary ∂Eγ . From the integral
Cauchy formula for the mth derivative of analytic functions we know that for any ε > 0 and
any ball Bργ−ε of radii ργ − ε centered at x ∈ [−1, 1],

f (m)(x) =
m!
2πi

∫
Bργ−ε

f(z)
(z − x)m+1

dz, m = 1, 2, . . . .

Thus, since ε is arbitrary, one obtains for the derivatives of the functions f ∈ A(γ,M) the
following bounds:

|f (m)(x)| ≤Mm!/ρm
γ (4)

for all x ∈ [−1, 1]. An elementary calculation shows that

ργ = cosh γ − 1. (5)

Equations (4) and (5) will be used later in Section 3, in obtaining some discrete-type approx-
imations to analytic functions.

2.2 Legendre polynomials

Legendre polynomials form a complete system of orthogonal polynomials in L2([−1, 1]). Their
explicit definition is (cf. Szegö [1975], p. 68)

Pr(x) = 2−r
r∑

ν=0

(
r

r − ν

)(
r

ν

)
(x− 1)ν(x+ 1)r−ν , (6)

and their recurrent form is (cf. Szegö, p. 71)

P0 ≡ 1,
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P1(x) = x,

rPr(x) = (2r − 1)xPr−1(x) − (r − 1)Pr−2(x), r ≥ 2.

In particular, from the definition (6), it holds

Pr(1) = 1, Pr(−1) = (−1)r. (7)

An important bound for the derivatives of Legendre polynomials can be obtained by combining
the A.A. Markov inequality (cf. Timan [1963], Sect. 4.8.8)

|P (m)
r (x)| ≤ r2m max

−1≤x≤1
|Pr(x)|, m = 1, 2, . . . ; (8)

with the fact that the maximum of |Pr(x)| is attained at the end points of the interval
(cf. Szegö, Sect. 7.21),

max
−1≤x≤1

|Pr(x)| = |Pr(±1)| = 1. (9)

The normalized Legendre polynomials, given by

pr(x) = (2r + 1)1/2Pr(x), r = 0, 1, . . . , (10)

satisfy, from (8)–(10),

max
−1≤x≤1

|p(m)
r (x)| ≤ (2r + 1)1/2r2m m = 1, 2, . . . . (11)

The defined normalized Legendre polynomials form an orthonormal basis in the space L2([−1, 1])
corresponding to the inner product

〈f | g〉 :=
1
2

∫ 1

−1
f(x)g(x) dx.

Besides that, they are asymptotically orthonormal with respect to a “discrete” inner product
defined below which is a discrete version of the “continuous” inner product just mentioned.
For a given design, xn

k , k = 1, 2, . . . , n, we define the corresponding discrete inner product of
the functions f and g to be

(f | g) :=
1
n

n∑
k=1

f(xn
k)g(xn

k).

In this subsection, we consider the discrete inner product with respect to the Legendre design,
for which xn

k represent the equidistant knots

xn
k =

2k − n− 1
n

, k = 1, . . . , n. (12)

Let us denote the kernel corresponding to the Legendre family pr by

KN (x, y) :=
N−1∑
r=0

pr(x)pr(y).

Underlying the quality of our estimators will be remarkable properties of the following
type.
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Lemma 1 Let N ∈ N. The normalized Legendre polynomials pr satisfy

(a) Uniformly for 0 ≤ r1, r2 ≤ N ,

( pr1 | pr2) =
1
n

n∑
k=1

pr1(x
n
k)pr2(x

n
k) = δr1 r2 +O

(
N6

n2

)
, (n→ ∞).

(b) If

α2
N (x) :=

1
N
KN (x, x) =

1
N

N−1∑
r=0

p2
r(x), (13)

then
α2

N (x) =
2

π
√

1 − x2
(1 + o(1)), (N → ∞),

uniformly on any interval [a, b] ⊂ (−1, 1), and α2
N (±1) = N .

Remark 1 Note the different behavior of αN inside the interval and at the end-points. This
will explain why the results presented below hold uniformly only on the compact subsets of
(−1, 1) while at the extremes of the interval the accuracy of estimation, based on the equidistant
design, will deteriorate, even to the extent of being of a different order!

Proof. (a) The numerical integration method for approximating
∫ b
a g(x)dx, in which the

interval is divided in n equally spaced sub-intervals and the function is evaluated at the middle
points of the sub-intervals, has the accuracy bounded by

(b− a)2

24n2
max

a≤x≤b

∣∣∣ d2

dx2
f(x)

∣∣∣ (14)

when the function f ∈ C2[a, b] (cf. e.g. Stoer and Bulirsch). Thus, we have

| ( pr1 | pr2) − 〈pr1 | pr2〉 | =

∣∣∣∣∣ 1
n

n∑
k=1

pr1(x
n
k)pr2(x

n
k) − 1

2

∫ 1

−1
pr1(x)pr2(x)dx

∣∣∣∣∣
≤ 1

3n2
max

−1≤x≤1

d2

dx2
(pr1(x)pr2(x)) . (15)

Applying L2-orthonormality and bounds (11) for the derivatives of pr(x) we get

| ( pr1 | pr2) − δr1,r2 | ≤ 1
3n2

(2r1 + 1)(2r2 + 1)(r21 + r22)
2 = O

(
N6

n2

)

as n→ ∞.

(b) Using the asymptotic formula of Laplace (cf. Szegö, p. 194)

pr(x) ∼ 2√
π(1 − x2)1/2

cos((r + 1/2)
√

1 − x2 − π

4
) +O(r−1),

r → ∞, |x| < 1 (16)
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and formula (cf. e.g. Gradshtein and Ryzhik, f. 1.341(1), p. 29)

N−1∑
r=0

sin(rθ1 + θ2) = sin(
N − 1

2
θ1 + θ2) sin

Nθ1
2

csc
θ1
2

we obtain, with some algebra,

1
N

N−1∑
r=0

p2
r(x) =

2
π
√

1 − x2

(
1 − 1

N

N−1∑
r=0

sin((2r + 1)θ) +O(N−1 logN)
)

=
2

π
√

1 − x2
(1 + o(1)), (N → ∞),

uniformly on compacts in (−1, 1). At the end-points

1
N

N−1∑
r=0

p2
r(±1) =

1
N

N−1∑
r=0

(2r + 1) = N.

�

Finally, let us mention the following bound on the growth of the Legendre polynomials
outside the interval [−1, 1]. According to Timan, Theorem 2.9.11, for any polynomial Pr of
order r and any z ∈ C

|Pr(z)| ≤ |Tr(z)| max
−1≤x≤1

|Pr(x)|.

Here Tr(x) are the Chebyshev polynomials which will be discussed in the next section. In
particular we will see that |Tr(z)| ≤ eγr, z ∈ Eγ . Therefore according to (13),

|pr(z)| ≤ (2r + 1)1/2eγr (17)

for every z ∈ Eγ .

2.3 Chebyshev polynomials

Chebyshev polynomials appeared for the first time in the problem of finding polynomials
Tr(x) = xr + a1x

r−1 + · · ·+ ar least deviating from zero, in the uniform norm on the interval
[−1, 1]; Chebyshev [1859]. Normed by Tr(1) = 1, they can be represented as

Tr(x) = cos r arccosx, r = 0, 1, . . . , (18)

or in the recurrent form
T0(x) = 1,

T1(x) = x,

Tr+1(x) = 2xTr(x) − Tr−1(x), r = 1, 2, ... .

The Chebyshev polynomials are extensively used as an appropriate Fourier basis for ap-
proximating non-periodic functions. Consider the normalized family

tr(x) =




T0(x), r = 0
√

2Tr(x) r �= 0.
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These polynomials constitute an orthonormal system in the weighted L2-space with the scalar
product

〈f | g〉 :=
1
π

∫ 1

−1

f(x)g(x)√
1 − x2

dx, (19)

i.e. they satisfy 〈tr1 | tr2〉 = δr1,r2 for all integers r1, r2 ≥ 0.
Denote by

KN (x, y) :=
N−1∑
r=0

tr(x)tr(y)

the kernel associated with the polynomials tr(x). For a given function f , the corresponding
Chebyshev-Fourier series is given by

∞∑
r=0

〈f | tr〉tr(x). (20)

This expansion becomes just the classical trigonometric series if the change of variables
x = cos θ is made. The partial sum

fN (x) =
N−1∑
r=0

〈f | tr〉tr(x) = 〈f |KN (x, ·)〉 (21)

provides the best approximation to a function f , with respect to the weighted L2-norm
corresponding to (19), among all polynomials of degree less than N . The class A(γ,M)
has the important property that the coefficients of the Chebyshev-Fourier series (20) decrease
very fast (cf. Timan, Sect. 3.7.3). For all r = 0, 1, . . ., the inequality

sup
f∈A(γ,M)

|〈f | tr〉| ≤ √
πMe−γr (22)

holds. From (21),(22) and the bound |tr(x)| ≤
√

2 it follows that for every f ∈ A(γ,M)

max
x∈[−1,1]

|fN (x) − f(x)| ≤
∞∑

r=N

|〈f | tr〉| |tr(x)| ≤
√

2πM
1 − e−γ

e−γN , (23)

(cf. Timan, Sect. 3.7.3 and 5.4.1).
The function fN (x) is the polynomial of the best approximation in the weighted L2-space.

Remarkably, for analytic functions of the classes A(γ,M), the approximation fN (x) based on
Chebyshev polynomials is asymptotically also the polynomial of the best uniform approximation
on [−1, 1]. More precisely,

sup
f∈A(γ,M)

lim sup
N→∞

( inf
p∈QN

‖f − p‖∞)1/N = sup
f∈A(γ,M)

lim sup
N→∞

(‖f − fN‖∞)1/N ,

where QN is the class of all the polynomials of the form p =
∑N−1

k=0 akx
k, (cf. Timan,

Sect. 6.5.2).
According to their definition, the Chebyshev polynomials satisfy |tr(x)| ≤ √

2 for all
x ∈ [−1, 1]. Now we shall exhibit an interesting bound that can be obtained in the whole
region Eγ . From the identity

2 cos rt = (cos t+ i sin t)r + (cos t− i sin t)r
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it follows that
Tr(x) =

1
2

((
x+

√
x2 − 1

)r +
(
x−

√
x2 − 1

)r
)

=
1
2
(ωr + ω−r),

where x = 1
2(ω + ω−1). Further, the transformation z = 1

2(ω + ω−1) maps the ring{
ω ∈ C : e−γ < |ω| < eγ

}
into Eγ and therefore Tr(z) = 1

2(ωr +ω−r). Thus the normalized Chebyshev polynomials are
bounded in Eγ by

|tr(z)| =
√

2 |Tr(z)| ≤
√

2 eγr. (24)

Denote the discrete inner product by

( f | g ) :=
1
n

n∑
k=1

f(xn
k)g(xn

k) (25)

where the points xn
k correspond to the Chebyshev design3

xn
k = cos

(2k − 1)π
2n

, k = 1, . . . , n. (26)

We can state next a lemma which is similar to Lemma 1. The first of the properties is
usually referred to as ‘double-orthogonality’ (cf. e.g. Fox and Parker, Sect. 2.7) and is closely
related to the corresponding property of the classical trigonometric polynomials. The second
property follows from a standard calculation.

Lemma 2 The normalized Chebyshev polynomials tr satisfy

(a) For any r1, r2 = 0, 1, ...

( tr1 | tr2) =
1
n

n∑
k=1

tr1(x
n
k)tr2(x

n
k) = δr1 r2 ,

(b) If

β2
N (x) :=

1
N
KN (x, x) =

1
N

N−1∑
r=0

t2r(x) (27)

and we denote x = cos θ then, for N → ∞,

β2
N (x) = 1 +

1
N

cos(Nθ) sin((N − 1)θ)
sin θ

= 1 +
O(1)
N

, (28)

uniformly on any [a, b] ⊂ (−1, 1), and β2
N (x) = 2 for x = ±1.

3Given the parallel between our work with Legendre and Chebyshev polynomials we duplicate some of the
notations, e.g. xn

k , the inner products, the projection operator KN , etc. The reader must just keep in mind
whether we are working under the Chebyshev or the Legendre setting.
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Remark 2 Note the slightly different behavior at the end-points when compared with the
inner points. Compare this with Lemma 1.

Proof. (a) This is a consequence of the double orthogonality property of the trigonometric
Fourier basis (cf. e.g. Gradshtein and Ryzhik, f. 1.351(1), p. 30).

(b) This is a classical identity (cf. e.g. Gradshtein and Ryzhik, f. 1.351(2), p. 31); compare
with the proof of Lemma 1.

�

In the following section we will discuss the use of the Legendre and Chebyshev polynomials
in constructing pointwise asymptotically minimax estimators for analytic functions, in the
non-adaptive (known γ,M) setting.

We shall see, in particular, that the best achievable rate of convergence at the end-points
using the Chebyshev design is faster than that in the case of the Legendre design. Here we
have only considered and compared two most important designs: one which often appears to
be the natural choice – the equidistant design, and one which is actually more preferable –
the Chebyshev design. There are of course many others designs; their importance and a more
comprehensive study has only started recently, partly as a result of the study presented here.

In Section 4 we shall restrict our study to Chebyshev designs, in constructing minimax
estimator in the adaptive (unknown γ,M) setting. Statistical estimation using the uniform
norm as the quality criterion of estimators requires a different approach (cf. Golubev, Lepski
and Levit [2001]).

3 Minimax regression in A(γ, M)

3.1 The statistical setting

Our observation model is given by

yk = f(xn
k) + ξk, k = 1, . . . , n,

where the random variables ξk are independent identically distributed N (0, σ2), and the
design xn

k is either Legendre or Chebyshev design. Throughout this paper the unknown
regression function f belongs to A(γ,M). In this section we assume that the parameters γ
and M which determine the class are fixed and known to the statistician. We prove that
it is possible, asymptotically, to have as good minimax risk using projection-type estimators
based on the Legendre-Fourier and Chebyshev-Fourier series, for their respective designs, as
with any other estimator.

Let W be the class of loss functions w : R → R
+ such that

w(x) = w(−x),

w(x) ≥ w(y) for |x| ≥ |y|, x, y ∈ R,

and for some 0 < η < 1
2 ∫

e−ηx2
w(x) dx <∞.
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Let f̃n(x) = f̃n(x,y) be an arbitrary estimator of f(x) based on the observation vector
y = (y1, . . . , yn), and denote by Pf , Ef and Varf the distribution, the expectation and the
variance corresponding to f . Sometimes the sub-index f will be dropped, when there is no
possibility of confusion.

Our main interest will be in the asymptotic behavior of the minimax risk

inf
f̃n

sup
f∈A(γ,M)

Ef w
(
σ−1

n

(
f̃n(x) − f(x)

))
where w ∈ W. The parameter σn defining the minimax rate of convergence, for each of the
corresponding designs, Legendre or Chebyshev, will be specified later in Theorems 1 and 2.

3.2 Estimation in the Legendre design

Given the observations y taken at the Legendre knots (12), and following the notation intro-
duced in Section 2.2, define the estimator

f̂n,N (x) =
1
n

n∑
k=1

ykKN (x, xn
k) =

N−1∑
r=0

(
1
n

n∑
k=1

ykpr(xn
k)

)
pr(x).

With a slight abuse of the notation, we will write

f̂n,N (x) = (y |KN (x, ·)) =
N−1∑
r=0

(y|pr) pr(x). (29)

Now consider two auxiliary functions:

fN (x) = 〈f |KN (x, ·)〉 =
N−1∑
r=0

〈f | pr〉 pr(x), (30)

and

fn,N (x) = (f |KN (x, ·)) =
N−1∑
r=0

(f |pr) pr(x). (31)

Notice that the projection-type estimator f̂n,N (x) is an unbiased estimator of the finite ex-
pansion term fn,N (x) which, in turn, approximates the sum fN of the first N terms of the
Legendre-Fourier series.

The following theorem holds.

Theorem 1 For any w ∈ W and every x ∈ [−1, 1]

lim
n→∞ sup

f∈A(γ,M)
Ef w

(
α−1

N (x)
√

n

σ2N

(
f̂n(x) − f(x)

))

= lim
n→∞ inf

f̃n

sup
f∈A(γ,M)

Ef w

(
α−1

N (x)
√

n

σ2N

(
f̃n(x) − f(x)

))
= Ew(ξ)

where αN (x) is defined in (13), f̃n is an arbitrary estimator of f , f̂n = f̂n,N is the projection
estimator (29) with

N = Nn :=
⌊

1
2γ

log n
⌋

and ξ ∼ N (0, 1). (32)
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Proof: the upper bound. Let N be given by (32). As usual we decompose the mean
square error as

E
(
f̂n,N (x) − f(x)

)2 = Var v2
N (x) + b2N (x) (33)

where, according to (29) and (31),

vN (x) = f̂n,N (x) − fn,N (x) =
1
n

n∑
k=1

ξkKN (x, xn
k) (34)

is a zero-mean stochastic term and

bN (x) =
(
fn,N (x) − fN (x)

)
+

(
fN (x) − f(x)

)
(35)

is the bias.
Let us first analyze the variance of vN (x). Applying Lemma 1(a) we get

Var vN (x) =
σ2

n2

n∑
k=1

K2
N (x, xn

k) =
σ2

n2

n∑
k=1

(
N−1∑
r=0

pr(x)pr(xn
k)

)2

=
σ2

n

N−1∑
r1=0

N−1∑
r2=0

pr1(x)pr2(x)
1
n

n∑
k=1

pr1(x
n
k)pr2(x

n
k)

=
σ2

n

N−1∑
r1=0

N−1∑
r2=0

pr1(x)pr2(x)
(
δr1r2 +O

(
N6

n3

))

=
σ2

n

N−1∑
r=0

p2
r(x) +O

(
N6

n3

)N−1∑
r1=0

N−1∑
r2=0

pr1(x)pr2(x). (36)

Now, applying the Cauchy-Schwartz inequality we see that

∣∣∣∣∣
N−1∑
r1=0

N−1∑
r2=0

pr1(x)pr2(x)

∣∣∣∣∣ =

(
N−1∑
r=0

pr(x)

)2

≤ N
N−1∑
r=0

p2
r(x)

= N KN (x, x) = N2 α2
N (x).

Thus, according to the last two equations and (32),

Var vN (x) = α2
N (x)

σ2N

n
(1 + o(1)) (37)

for any x ∈ [−1, 1], as n goes to infinity.
Now let us consider the bias. First, we have

fn,N (x) − fN (x) =
N−1∑
r=0

(
(f | pr) − 〈f | pr〉

)
pr(x).

12



By definition

∣∣ (f | pr) − 〈f | pr〉
∣∣ =

∣∣∣∣∣ 1
2

∫ 1

−1
f(x)pr(x) dx− 1

n

n∑
k=1

f(xn
k)pr(xn

k)

∣∣∣∣∣ . (38)

Next, applying (14), this difference can be bounded by

1
3n2

max
x∈[−1,1]

∣∣∣∣ d2

dx2
f(x)pr(x)

∣∣∣∣ . (39)

Thus, applying the bounds for the derivatives |f (m)(x)| ≤ Mm!/ρm
γ (cf. Sect. 2.1) and

|p(m)
r (x)| ≤ (2r + 1)1/2r2m (cf. eq. (11)), it follows that

∣∣ (f | pr) − 〈f | pr〉
∣∣ ≤ M

3n2
( (2ργ)−2 + 2ρ−1

γ (2r + 1)1/2r2 + (2r + 1)1/2r4)

= O
( r5
n2

)
, (n→ ∞). (40)

Combining Cauchy-Schwartz inequality with the previous bound and using the fact that N
is of order O(logn), cf. eq. (32), we find

( fn,N (x) − fN (x) )2 ≤
N−1∑
r=0

(
(f | pr) − 〈f | pr〉

)2 N−1∑
r=0

p2
r(x)

= α2
N (x)N

N−1∑
r=0

(
(f | pr) − 〈f | pr〉

)2 = α2
N (x)O

(N12

n4

)

= α2
N (x)

σ2N

n
O
(N11

n3

)
= o(1)VarvN (x). (41)

As demonstrated in Ibragimov and Has’minskii [1981], for functions f ∈ A(γ,M)

|〈f | pr〉| ≤ C1 e
−γr

for some constant C1 > 0. According to the Laplace formula (16) the polynomials pr(x) are
uniformly bounded, on any interval [a, b] ⊂ (−1, 1). Thus, from previous inequality, for some
C2 > 0,

(
fN (x) − f(x)

)2 ≤
( ∞∑

r=N

|〈f | pr〉| |pr(x)|
)2

≤ C2 e
−2γN ∼ C2n

−1 = o(1)Var vN (x). (42)

At the end-points of the interval we have |pr(±1)| = (2r + 1)1/2, see eqs. (7) and (10), thus
for x = ±1

|fN (x) − f(x)| ≤ C1

∞∑
r=N

(2r + 1)1/2e−γr ≤ C3

∞∑
r=N+1

r1/2e−γr

≤ C3 e
γ

∫ ∞

N+1
r1/2e−γrdr = C3N

1/2e−γN ( 1 + o(1) )

13



as N → ∞. Therefore for some C4 > 0 and N large enough

(
fN (x) − f(x)

)2 ≤ C4Ne
−2γN ∼ C4

N

n
= o(1)Var vN (x). (43)

From (33), (37), (41) and (42) or (43) we can conclude that

E
(
f̂n,N (x) − f(x)

)2 = α2
N (x)

σ2N

n
( 1 + o(1) ),

uniformly on [−1, 1]. It follows that

α−1
N (x)

√
n

σ2N

(
f̂n,Nn(x) − f(x)

)
is normally distributed with mean of order o(1) and variance equal to 1+o(1), when n goes to
infinity, uniformly with respect to f ∈ A(γ,M). Therefore using the dominated convergence
theorem we obtain the following upper bound:

lim sup
n→∞

sup
f∈A(γ,M)

Ef w

(
α−1

N (x)
√

n

σ2N

(
f̂n(x) − f(x)

))
= Ew(ξ). (44)

Proof of the lower bound for the risk. For fixed x ∈ [−1, 1] and any z ∈ C consider the
following parametric sub-family of functions

fθ(z) = θ

√
σ2

n

KN̄ (x, z)√
KN̄ (x, x)

, |θ| < θn = N̄1/2, (45)

where we will use
N̄ = N̄n = �Nn − 3 logNn� , (46)

see (32). Note that N̄ is asymptotically equivalent to N = Nn when N → ∞. This implies,
according to Lemma 1(b), that

α2
N̄

(x)
α2

N (x)
→ 1, (47)

uniformly in [−1, 1], when n→ ∞.
We need the following lemma.

Lemma 3 For a given x ∈ [−1, 1] and any z ∈ Eγ, let fθ(z) be defined by (45). Then

(a) fθ(x) = θ αN̄ (x)
√

σ2N̄
n .

(b) fθ ∈ A(γ,M), |θ| < θn, for all n big enough.

(c) The statistic

T =
1

σ
√
n

n∑
k=1

yk
KN̄ (x, xn

k)√
KN̄ (x, x)

has a normal distribution N (θIn, In) under fθ, where In = 1 + o(1).
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(d) The statistic T is sufficient and the log-likelihood ratio Λ := log dPθ
dP0

(y) satisfies

Λ = θT − θ2

2
In

where Pθ and P0 denote the probabilities associated with fθ and f0 respectively.

Proof of lemma.

(a) This follows directly from the definitions of fθ and αN̄ (x).

(b) Obviously fθ(z) is analytic in the whole complex plane, thus also in Eγ . Using (17),
applying the Cauchy-Schwartz inequality and recalling the definition of N̄ = N̄n, we obtain

|fθ(z)| ≤ θN̄

√
σ2

n

(
K2

N̄
(x, z)

KN̄ (x, x)

)1/2

≤
√
σ2N̄

n
K

1/2

N̄
(z, z) =

√
σ2N̄

n


N̄−1∑

r=0

p2
r(z)




1/2

≤
√
σ2N̄

n


 N̄−1∑

r=0

(2r + 1)e2γr




1/2

= O(1)
N̄√
n
eγN̄ = O(N̄−1/2) ≤ M,

in Eγ for all n large enough.

(c) Denote

In =
1
n

n∑
k=1

K2
N̄

(x, xn
k)

KN̄ (x, x)
.

We can see that T is normally distributed,

ET =
1

σ
√
n

n∑
k=1

fθ(xn
k)

KN̄ (x, xn
k)√

KN̄ (x, x)
= θ

1
n

n∑
k=1

K2
N̄

(x, xn
k)

KN̄ (x, x)
= θIn, and

VarT =
1
n

n∑
k=1

K2
N̄

(x, xn
k)

KN̄ (x, x)
= In.

Thus T ∼ N (θIn, In). Now let us show that In → 1 when n → ∞. Using Lemma 1(a) and
the Cauchy-Schwartz inequality, we obtain

In =
1
n
K−1

N̄
(x, x)

n∑
k=1

K2
N̄ (x, xn

k) =
1
n
K−1

N̄
(x, x)

n∑
k=1


N̄−1∑

r=0

pr(x)pr(xn
k)




2

= K−1
N̄

(x, x)
N̄−1∑
r1=0

N̄−1∑
r2=0

(
pr1(x)pr2(x)

1
n

n∑
k=1

pr1(x
n
k)pr2(x

n
k)

)

= K−1
N̄

(x, x)
N̄−1∑
r1=0

N̄−1∑
r2=0

(
pr1(x)pr2(x)

(
δr1 r2 +O

(
N6

n2

)))
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= K−1
N̄

(x, x)
N̄−1∑
r=0

p2
r(x) +O

(
N̄6

n2

)
K−1

N̄
(x, x)

N̄−1∑
r1=0

N̄−1∑
r2=0

pr1(x)pr2(x)

= 1 +O

(
N̄6

n2

)
K−1

N̄
(x, x)


N̄−1∑

r=0

pr(x)




2

= 1 + o(1), (n→ ∞). (48)

(d) It is easy to see that the log-likelihood

Λ = log
n−1∏
k=0

exp
{
− 1

2σ2

(
yk − fθ(xn

k)
)2 +

1
2σ2

y2
k

}

= − 1
2σ2

n∑
k=1

(yk − fθ(xn
k))2 +

1
2σ2

n∑
k=1

y2
k

= θ
1

σ
√
n

n∑
k=1

yk
KN̄ (x, xn

k)√
KN̄ (x, x)

− θ2

2n

n∑
k=1

K2
N̄

(x, xn
k)

KN̄ (x, x)

= θ T − θ2

2
In.

This completes the proof of the lemma. �

Now we can continue the proof of the theorem. Given α2
N̄

(x) ∼ α2
N (x), see eq. (47),

R := inf
f̃n

sup
f∈A(γ,M)

Ef w

(
α−1

N (x)
√

n

σ2N

(
f̃n(x) − f(x)

))
(49)

= inf
f̃n

sup
f∈A(γ,M)

Ef w

(
α−1

N̄
(x)

√
n

σ2N̄

(
f̃n(x) − f(x)

)
(1 + o(1))

)
(50)

≥ inf
f̃n

sup
fθ

Efθ
w

(
(1 + o(1))α−1

N̄
(x)

√
n

σ2N̄

(
f̃n(x) − fθ(x)

))
, (N̄ → ∞).

Denote θ̃ = α−1
N̄

(x)
√

n
σ2N̄

f̃n(x). Then applying Lemma 3(a)

R ≥ inf
θ̃

sup
|θ|≤θn

Eθ w
(
(θ̃ − θ)(1 + o(1))

)
, (n→ ∞).

Since |θ| ≤ θn, we can restrict ourselves exclusively to estimators such that |θ̃| ≤ θn; otherwise
trimming θ̃, at an appropriate level, will produce a smaller risk. For such estimators |θ̃− θ| ≤
2θn. Now, from equations (49) and (50), applying Lemma 1(b) and definition (46) of N̄ we
can verify that the term o(1) in the previous equation is of order (logN)/N . Thus θno(1) → 0
and therefore the previously mentioned estimators satisfy |θ̃ − θ|o(1) → 0. Hence

R ≥ inf
θ̃

sup
|θ|≤θn

Eθ w
(
(θ̃ − θ) + o(1)

)
, (n→ ∞).
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We can approximate any loss function w ∈ W, by a sequence of bounded uniformly continuous
functions wδ ∈ W such that wδ ↗ w when δ → 0 and see that for any δ

R ≥ inf
θ̃

sup
|θ|≤θn

Eθ wδ

(
(θ̃ − θ) + o(1)

)
= inf

θ̃
sup

|θ|≤θn

Eθ wδ (θ̃ − θ) + o(1).

Now let us fix an arbitrary prior density λ on (−θn, θn) with a finite Fisher information I(λ).
Then

inf
θ̃

sup
|θ|≤θn

Eθ wδ (θ̃ − θ) ≥ inf
θ̃

∫ θn

−θn

Eθ wδ (θ̃ − θ)λ(θ)dθ

= inf
θ̃(T )

∫ θn

−θn

Eθ wδ (θ̃(T ) − θ)λ(θ)dθ

given that T is sufficient for θ, according to Lemma 3(c). Applying results presented in Levit
[1980], we get that

inf
θ̃

sup
|θ|≤θn

Eθ wδ (θ̃ − θ) ≥ E wδ(ξ) +O(θ−2
n ), (n→ ∞),

where ξ ∼ N (0, 1). Thus lim infn→∞R ≥ Ewδ(ξ). Applying the dominate convergence
theorem for δ → 0 we get

lim inf
n→∞ inf

f̃n

sup
f∈A(γ,M)

Ef w

(
α−1

N (x)
√

n

σ2N

(
f̃n(x) − f(x)

)) ≥ Ew(ξ). (51)

Finally, from (44) and (51) the theorem is proved. �

Corollary 1 For any [a, b] ⊂ (−1, 1), uniformly in x ∈ [a, b],

lim
n→∞ sup

f∈A(γ,M)
Ef w

(√
(1 − x2)1/2

πn

σ2Nn

(
f̂n(x) − f(x)

))
=

lim
n→∞ inf

f̃n

sup
f∈A(γ,M)

Ef w

(√
(1 − x2)1/2

πn

σ2Nn

(
f̃n(x) − f(x)

))
= Ew(ξ)

where f̂n and f̃n are as in the Theorem 3.1. For x = ±1,

lim
n→∞ sup

f∈A(γ,M)
Ef w

(√
n

σ2N2
n

(
f̂n(x) − f(x)

))
=

lim
n→∞ inf

f̃n

sup
f∈A(γ,M)

Ef w

(√
n

σ2N2
n

(
f̃n(x) − f(x)

))
= Ew(ξ).
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3.3 Estimation in the Chebyshev design

Consider now the design given by the Chebyshev knots (26). Following the notation of
Section 2.3 define the estimator

f̂n,N (x) =
1
n

n∑
k=1

ykKN (x, xn
k) =

N−1∑
r=0

(
1
n

n∑
k=1

yktr(xn
k)

)
tr(x).

As before, we will write, with a slight abuse of the notation

f̂n,N (x) = (y |KN (x, ·)) =
N−1∑
r=0

(y|tr) tr(x), (52)

and consider the two functions

fN (x) = 〈f |KN (x, ·)〉 =
N−1∑
r=0

〈f | tr〉 tr(x),

and

fn,N (x) = (f |KN (x, ·)) =
N−1∑
r=0

(f |tr) tr(x);

see the footnote on page 9 with regards to these notations. Then the following result holds.

Theorem 2 For any w ∈ W and every x ∈ [−1, 1]

lim
n→∞ sup

f∈A(γ,M)
Ef w

(
β−1

N (x)
√

n

σ2N

(
f̂n(x) − f(x)

))
=

lim
n→∞ inf

f̃n

sup
f∈A(γ,M)

Ef w

(
β−1

N (x)
√

n

σ2N

(
f̃n(x) − f(x)

))
= Ew(ξ)

where f̃n is an arbitrary estimator of f , f̂n = f̂n,N is the projection estimator (52) with

N = Nn :=
⌊

1
2γ

log
(
M2 γ (1 − e−γ)−2n

)⌋
, (53)

β2
N (x) is defined by (27) and ξ ∼ N (0, 1).

Remark 3 Note that β2
N (x) plays the same role in the present context of estimation using

Chebyshev design as played by α2
N (x) in the previous Legendre case.

Proof: the upper bound. The proof of this theorem is similar to the proof of the equivalent
result for Legendre polynomials, Theorem 1. However, notice that in the case of Chebyshev
polynomials we have exact orthogonality, and not just asymptotic orthogonality, as for the
Legendre polynomials; compare the Lemmas 1(a) and 2(a). This will make some computa-
tions more straightforward. Some steps in this proof will be presented somewhat differently;
we will keep track of the dependency in the variance and the bias on the parameters of the
class, γ and M . This will be used in the next section for adaptive estimation.
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Let N ∈ N. Applying the same decomposition as in Theorem 1, cf. (34) and (35), we have

E(f̂n,N (x) − f(x))2 = Var v2
N (x) + b2N (x). (54)

Let us first analyze the variance of vN (x). As before (cf. eq. (36)), applying Lemma 2(a) we
obtain

Var vN (x) =
σ2

n

N−1∑
r1=0

N−1∑
r2=0

tr1(x)tr2(x)δr1r2 = β2
N (x)

σ2N

n
(55)

for any x ∈ [−1, 1].
Now let us consider the bias

bN (x) =
(
fn,N (x) − fN (x)

)
+

(
fN (x) − f(x)

)
. (56)

Using Cauchy-Schwartz inequality we see that

(
fn,N (x) − fN (x)

)2 ≤
N−1∑
r=0

(
(f | tr) − 〈f | tr〉

)2 N−1∑
r=0

t2r(x)

= N β2
N (x)

N−1∑
r=0

(
(f | tr) − 〈f | tr〉

)2
.

If we rewrite the inner products as

(f | tr) =
1
π

n∑
k=1

f
(
cos(k − 1/2)

π

n

)
cos

(
r(k − 1/2)

π

n

) π
n

and
〈f | tr〉 =

1
π

∫ π

0
f(cos ζ) cos(rζ)dζ

(cf. eqs. (19) and (25)), we can apply the same arguments that we used in (38)–(40). Using
the bounds for the derivatives of f given in eq. (4) we find that

∣∣(f | tr) − 〈f | tr〉
∣∣ ≤ π

24

(π
n

)2
max

ζ

∣∣∣∣ d2

dζ2
f(cos ζ) cos(rζ)

∣∣∣∣
≤ π3

24n2
M

(
r2 +

(2r + 1)
ργ

+
2
ρ2

γ

)

≤ π3(r + 1)2

6n2
M max(1, ρ−1

γ , ρ−2
γ ) = MCγ

(r + 1)2

n2
(57)

where, using (5), one can verify that

Cγ = O(1 − e−γ)−4, (58)

both at γ = 0 and γ = ∞ and it is bounded when γ is varying in compact subsets of (0,∞).
Thus, both for γ → 0 and for γ → ∞, uniformly in N

(
fn,N (x) − fN (x)

)2 = β2
N (x)O

(
M2 (1 − e−γ)−8N

6

n4

)
. (59)
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If we choose N = Nn(
fn,N (x) − fN (x)

)2 = o(1)VarvN (x), (n→ ∞). (60)

In the previous section we saw that in order to bound the truncation error term fN (x)−f(x)
it was necessary to consider separately two cases: |x| < 1 and |x| = 1 (cf. eqs. (42) and (43)).
Now, one can see that both cases can be considered simultaneously. From (23) one can see
that for any x and N = Nn

(
fN (x) − f(x)

)2 ≤ 2πM2(1 − e−γ)−2 e−2γN = O
( 1
γn

)

= β2
N (x)

σ2N

n
O
( 1
γN

)
= o(1)Var vN (x), (61)

when n→ ∞. From (54)–(56), (60) and (61) we have proved that

E
(
f̂n,N (x) − f(x)

)2 = β2
N (x)

σ2N

n
(1 + o(1)), (n→ ∞),

which holds uniformly on [−1, 1]. It follows that

β−1
N (x)

√
n

σ2N

(
f̂n,N (x) − f(x)

)
is normally distributed with mean of order o(1) and variance equal 1+o(1), n→ ∞, uniformly
with respect to f ∈ A(γ,M). Therefore using the dominated convergence theorem we obtain
the upper bound:

lim
n→∞ sup

f∈A(γ,M)
Ef w

(
β−1

N (x)
√

n

σ2N

(
f̂n(x) − f(x)

))
= Ew(ξ). (62)

Proof of the lower bound for the risk. We can follow the same proof of the lower bound
we did in Theorem 1. For fixed x ∈ [−1, 1] and any z ∈ C consider again the parametric
sub-family of functions

fθ(z) = θ

√
σ2

n

KN̄ (x, z)√
KN̄ (x, x)

|θ| < θn = N̄1/2 (63)

where KN̄ is now defined in terms of the Chebyshev polynomials and

N̄ = N̄n = �Nn − 3 logNn� (64)

(cf. definition of Nn in eq. (53)).

Lemma 4 The following properties are satisfied for any x ∈ [−1, 1]:

(a) fθ(x) = θ βN̄ (x)
√

σ2N̄
n .
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(b) fθ ∈ A(γ,M), |θ| < θn, for n big enough.

(c) The statistic

T =
1

σ
√
n

n∑
k=1

yk
KN̄ (x, xn

k)√
KN̄ (x, x)

has the normal distribution N (θ, 1) under fθ, i.e. it can be represented as

T = θ + ξ (65)

where ξ ∼ N (0, 1).

(d) The statistic T is sufficient and the log-likelihood ratio satisfies

Λ := log
dPθ

dP0
= θT − θ2

2
. (66)

where Pθ and P0 denote the probabilities associated with fθ and f0 respectively.

Proof of the lemma. The proof is the same as that of Lemma 3. Nevertheless, a couple
of remarks can be made. First, the bound (17) for Legendre polynomials is also a bound for
the Chebyshev polynomials, thus the proof of (b) remaines the same. Second, in the present
case, In = 1 given exact orthogonality of Chebyshev polynomials (cf. eq. (48)). The rest of
the proofs of the lemma and the theorem remain the same and we get

lim inf
n→∞ inf

f̃n

sup
f∈A(γ,M)

Ef w

(
β−1

N (x)
√

n

σ2N

(
f̃n(x) − f(x)

)) ≥ Ew(ξ). (67)

The theorem follows from (62) and (67). �

Corollary 2 For any [a, b] ⊂ (−1, 1) uniformly in x ∈ [a, b]

lim
n→∞ sup

f∈A(γ,M)
Ef w

(√
n

σ2Nn

(
f̂n(x) − f(x)

))
=

lim
n→∞ inf

f̃n

sup
f∈A(γ,M)

Ef w

(√
n

σ2Nn

(
f̃n(x) − f(x)

))
= Ew(ξ)

where f̃n and f̂n are as in the previous Thorem. For x = ±1,

lim
n→∞ sup

f∈A(γ,M)
Ef w

(√
n

2σ2Nn

(
f̂n(x) − f(x)

))
=

lim
n→∞ inf

f̃n

sup
f∈A(γ,M)

Ef w

(√
n

2σ2Nn

(
f̃n(x) − f(x)

))
= Ew(ξ)
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Till now we have proved, first, that the polynomial estimators we proposed, with the
order of polynomials adequately chosen, are asymptotically minimax for fixed classes A(γ,M).
Secondly, we have seen that the optimal rate of convergence may be affected by the chosen
design. One is tempted to think that what we have proved is a consequence of the polynomials
we used but in fact the optimal rate is intrinsic to the problem - and thus the design - and
not the applied estimators.

In particular we have shown that the rate of convergence at the end-points of the interval
is worse for the Legendre design as compared to the Chebyshev design. For that reason, we
will restrict ourselves to the study of the regression problem on a bounded interval under the
Chebyshev design. In the next subsection we will make necessary steps towards the adaptive
framework.

3.4 Estimation for non-fixed classes

In order to create an adaptive framework we follow a procedure which is based on the ideas
introduced in Lepski and Levit [1998]. The basic underlying idea is to allow the parameters
of the model – in our case γ and M – take values from the broadest possible set, pushed to
its ‘limits’. Such ‘limits’ can be taken to be the extreme values for which either there is no
consistency or, on the other hand, a parametric rate O(n−1) is possible. Since in both cases
these extreme values are not some fixed values (γextr,M extr), but rather should be thought as
some sequences (γextr

n ,M extr
n ), our first step towards the adaptive framework will be to look

for corresponding results in the situation where the parameters of the model, though known,
are allowed to depend on n.

Thus we will assume in this subsection that although the parameters γ = γn > 0 and
M = Mn > 0 are still known, they may depend on the number of observations n. This is
not yet a proper adaptive framework. However it will allow us to explore the ‘limits’ of the
model if the parameters have more freedom. Let Nn be as it was defined in Theorem 2.
The dependence of Nn on n comes also from the parameters γ,M in the present situation.
Nevertheless, the statement of Theorem 2 will still hold provided the appropriate assumptions
are fulfilled.

Theorem 3 Let w ∈ W, γ = γn, M = Mn and let N = Nn be as defined in (53). If the
following conditions are satisfied

lim
n→∞ γN = ∞, (68)

lim
n→∞M2(1 − e−γ)−8N5 n−3 = 0, (69)

lim
n→∞N = ∞, (70)

then

lim
n→∞ sup

f∈A(γ,M)
Ef w

(
β−1

N (x)
√

n

σ2N

(
f̂n(x) − f(x)

))
=

lim
n→∞ inf

f̃n

sup
f∈A(γ,M)

Ef w

(
β−1

N (x)
√

n

σ2N

(
f̃n(x) − f(x)

))
= Ew(ξ),

for all x ∈ [−1, 1]. Here f̂n = f̂n,N is the projection estimator (52) and f̃n is an arbitrary
estimator of f .

22



Proof. Note that the previous conditions were automatically fulfilled in the case of fixed
classes. The proof in the general case is similar to the proof of Theorem 2, and consists
on checking that conditions (68) and (69) guarantee asymptotic unbiasness of the optimal
estimator (cf. eqs. (59) and (61)), while (70) allows us to prove the lower bound result. The
rest of the proof is the same.

�

Though conditions (68)–(70) are sufficient to prove optimality results in non-fixed classes,
it may be more convenient to express them explicitly in terms of the parameters γ and M ,
as is done in the following theorem.

Theorem 4 Let w ∈ W and the parameters γ = γn and M = Mn be such that

lim sup
n→∞

M2

log n
= 0, (71)

lim inf
n→∞ M2 log n = ∞, (72)

lim sup
n→∞

γ

log log n
= 0, (73)

lim inf
n→∞ γ log n = ∞, (74)

then, with N = Nn defined by (53),

lim
n→∞ sup

f∈A(γ,M)
Ef w

(
β−1

N (x)
√

n

σ2N

(
f̂n(x) − f(x)

))
=

lim
n→∞ inf

f̃n

sup
f∈A(γ,M)

Ef w

(
β−1

N (x)
√

n

σ2N

(
f̃n(x) − f(x)

))
= Ew(ξ),

for all x ∈ [−1, 1]. Here f̂n = f̂n,N is the projection estimator (52) and f̃n is an arbitrary
estimator of f .

Proof. In order to prove the theorem, we only need to verify that hypothesis of the Theorem 3
are satisfied, i.e. we just need to assure that the limits (68)–(70) are still valid (cf. eqs. (59)
and (61)). If γ and M are bounded then trivially (68)–(70) hold. Let us consider the two
extreme cases γ → 0 and γ → ∞. Remember that

N = Nn =
⌊

1
2γ

log
(
M2 γ(1 − e−γ)−2n

)⌋
.

Case γ → 0 : Applying some asymptotics and conditions (72) and (73), we see that for n
large enough

M2γ(1 − e−γ)−2n ∼ M2γ−1n ≥ γ−1 log n → ∞.

Thus γN and N go to infinity. Using (71) and (74)

M2(1 − e−γ)−8N5n−3 = O
(
M2γ−13n−3 log5(M2γ−1n)

)
= O

(
n−3 log14 n log5(n log2 n)

)
= o(1).
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Case γ → ∞: Applying (72) and (73)

N ≥ logM2n

2γ
= O

(
logn

log log n

)
→ ∞, (n→ ∞),

thus N and γN go to infinity. From (71) and (74)

M2(1 − e−γ)−8N5n−3 = O
(
M2γ−5n−3 log5(M2γn)

)
= O

(
n−3 logn log5(n log n)

)
= o(1), (n→ ∞).

Thus the theorem is proved. �

4 Adaptive minimax regression

4.1 Adaptive estimation in functional scales

In the previous section we described asymptotically minimax estimators for classes A(γ,M)
where the parameters γ and M were known. However, in practice we do not usually know
to which class the unknown function belongs, in other words we do not know the smoothness
parameters. A data-dependent method for choosing an estimator in the presence of the
unknown smoothness parameters is then necessary. In order to create the adaptive framework
in a situation where γ and M are unknown we consider the following class of parameters.
Let υ = (γ,M) where υ belongs to the region Γn ⊂ R

2
+. Let A(υ) = A(γ,M) and define the

functional scale AΓn ,
AΓn :=

{
A(υ)

∣∣ υ ∈ Γn

}
,

corresponding to the parameter class Γn. As our scales AΓn can be identified with corre-
sponding subsets Γn, we will speak sometimes about a scale Γn, instead of AΓn , when there
is no risk it could lead to a confusion.

From now on we will restrict ourselves to the loss functions w(x) = |x|p, p > 0. Let AΓn

be a functional scale, and F a class of estimators f̃n, both possibly depending on n.

Definition 2 An estimator f̂n ∈ F is called (p,Γn,F)-adaptively minimax, at a point x ∈ R,
if for any other estimator f̃n ∈ F

lim sup
n→∞

sup
υ∈Γn

supf∈A(υ) Ef |f̂n(x) − f(x)|p
supf∈A(υ) Ef |f̃n(x) − f(x)|p ≤ 1.

This property depends crucially on which classes Γn and F are considered. The rate of
convergence in estimating f(x) over the whole scale A

R
2
+

can be of any order; it can vary from
extremely fast parametric rates to extremely slow non-parametric ones, even to no consistency
at all. We thus define a type of scales, so-called regular-pseudo-parametric scales, for which
the parametric rate n−1/2 can be achieved, consider estimators which are rate efficient on
these scales and build an adaptive minimax estimator in regular-non-parametric ones.

Definition 3 A functional scale AΓn (or the corresponding scale Γn) is called a regular, or
an R scale if the condition

lim
n→∞ sup

υ∈Γn

M2(1 − e−γ)−8N5
n(υ)n−3 = 0, (75)

where Nn(υ) was defined in (53), is satisfied.
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The previous condition is aimed to guarantee that the approximation arguments which
were used in (59) and (60) are still applicable. Let us remark that in this condition the powers
of the terms are not so relevant as far as we have Nn(υ) of orden logn at most.

We shall restric our study to regular scales. Two special cases of regular scales are:

Definition 4 A functional scale AΓn (a scale Γn) is called a regular-pseudo-parametric, or
RPP functional scale (regular-pseudo-parametric, or RPP scale) if there exit finite constants
M+and C+ such that for all (γ,M) ∈ Γn uniformly

lim sup
n→∞

sup
υ∈Γn

M ≤M+, and (76)

lim sup
n→∞

sup
υ∈Γn

γ−1 logn ≤ C+. (77)

Regular-pseudo-parametric scales are regular, in the sense of Definition 3, and uniformly
on them, we have parametric rates, i.e. the rate n−1/2 is achieved given

lim sup
n→∞

sup
υ∈Γn

Nn(υ) <∞.

Definition 5 A functional scale AΓn (a scale Γn) is called a regular-non-parametric, or RNP
functional scale (regular-non-parametric, or RPP scale) if

lim sup
n→∞

sup
υ∈Γn

M2

log n
= 0, (78)

lim inf
n→∞ inf

υ∈Γn

M2 log n = ∞, (79)

lim inf
n→∞ sup

υ∈Γn

γ

log logn
= 0, (80)

lim inf
n→∞ inf

υ∈Γn

γ log n = ∞. (81)

Note that conditions for regular-non-parametric scales require that the assumptions of
Theorem 4 hold uniformly on RNP scales. Thus, according to the proof of Theorem 4, the
conditions of Theorem 3 also hold uniformly in RNP scales; in particular

lim inf
n→∞ inf

υ∈Γn

Nn(υ) = ∞.

Also note that regular-non-parametric scales are regular, in the sense of Definition 3.
Let Fp = Fp(x) be the class of all estimators f̃n that satisfy

lim sup
n→∞

sup
υ∈Γn

sup
f∈A(υ)

Ef

∣∣∣n1/2
(
f̃n(x) − f(x)

)∣∣∣p <∞

for any RPP functional scale AΓn and let F0
p = F0

p (x) be the class of all estimators such that

lim sup
n→∞

E0

∣∣∣n1/2 f̃n(x)
∣∣∣p <∞.

One can see that Fp ⊂ F0
p , since f ≡ 0 belongs to any of the classes A(γ,M). Below we

present an adaptive estimator f̂n ∈ Fp and prove an upper bound on the quality of the
estimator in RNP functional scales. Then we prove a lower bound with the same rate for any
estimator in F0

p . Finally we shall conclude that our adaptive estimator is (p,Γn,Fp)-adaptive
minimax for RNP functional scales.
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4.2 Upper bound on the quality of adaptive estimators

Theorem 5 For any p > 0 there exists an adaptive estimator f̂n such that for any x ∈ R

and for any RNP functional scale AΓn , f̂n ∈ Fp and

lim sup
n→∞

sup
υ∈Γn

sup
f∈A(υ)

Ef

∣∣∣ψ−1
n (υ)

(
f̂n(x) − f(x)

)∣∣∣p ≤ 1.

Here

ψ2
n(υ) = p (logNn) · β2

Nn
(x)

σ2Nn

n

where Nn was defined in (53) for any υ ∈ Γn.

The estimator. Let us first describe our adaptive estimator. Fix the parameters, 1/2 < l < 1,
1/2 < δ < 1, p1 > 0, l1 = δl and consider the sequence of truncation orders N0 = 0,
Ni = �exp(il)� for i = 1, 2, . . .. Two consecutive elements of this sequence satisfy

Ni+1 −Ni ∼ l(logNi)1−
1
l Ni → ∞ (i→ ∞) (82)

but, at the same time, they are close enough so that they are asymptotically equivalent,

Ni+1

Ni
∼ eli

l−1 ∼ 1 (i→ ∞). (83)

For each n we will consider the subsequence Sn =
{
N0, N1, . . . , NIn

}
, where

In = arg max
i

{
Ni ≤ n1/2

}
. (84)

Since for any δ, (0 < δ < 1/2) and for n large enough, Nn(υ) ≤ n1/2−δ for all υ in any RPP
scale as well as any RNP scales, one can always find i(υ) ≤ In such that

Ni(υ)−1 < Nn(υ) ≤ Ni(υ). (85)

For fixed x ∈ [−1, 1] denote

f̂i(x) = f̂n,Ni(x), bi = Ef f̂i(x) − f(x),

σ2
i = Varf f̂i(x), σ̂2

i = β2
Ni

(x)
σ2Ni

n
,

σ2
i,j = Varf

(
f̂j(x) − f̂i(x)

)
, σ̂2

i,j = σ̂2
j − σ̂2

i ,

and define the sequence of thresholds

λ2
j = p logNj + p1 logδ Nj .

Adaptive procedure. Define

î = min
{

1 ≤ i ≤ In :
∣∣f̂j(x) − f̂i(x)

∣∣ ≤ λj σ̂i,j ∀j (i ≤ j ≤ In)
}
.

We will prove that the estimator
f̂n(x) = f̂î(x)

satisfies Theorem 5. First, however, we derive some inequalities which are necessary for the
proof.

26



Lemma 5 Using the previous notation, uniformly with respect to υ in any RPP or RNP
scale, and uniformly with respect to 1 ≤ i, j ≤ In, as n→ ∞,

(a) b2j = o(1) σ̂2
j for all j such that i(υ) ≤ j ≤ In;

(b) σ2
j = σ̂2

j for all j;

(c) (bj − bi)2 = O(1) σ̂2
i,j for all i, j such that i(υ) ≤ i ≤ j ≤ In;

(d) σ2
i,j = σ̂2

i,j for all i, j.

Proof of lemma. (a) As we saw before

b2j ≤ 2
(
fn,Nj (x) − fNj (x)

)2 + 2
(
fNj (x) − f(x)

)2
.

From equations (59), (84), and conditions for RPP scales, or as well, conditions for RNP
scales (cf. Definitions 4 and 5), we have

(
fn,Nj (x) − fNj (x)

)2 ≤ β2
Nj

(x)
σ2Nj

n
O
(
M2(1 − e−γ)−8N5

j n
−3
)

≤ β2
Nj

(x)
σ2Nj

n
O
(
M2(1 − e−γ)−8n−1/2

)
= o(1) σ̂2

j .

From (61),(
fNj (x) − f(x)

)2 ≤ 2πM2(1 − e−γ)−2 e−2γNj ≤ 2πM2(1 − e−γ)−2 e−γNn

= O
( 1
γn

)
= O

( 1
γNj

)
σ̂2

j .

In RPP scales γ goes to infinity uniformly, thus γNj goes to infinity uniformly for all Nj ≥ N1.
In RNP scales γNj ≥ γNn → ∞, thus(

fNj (x) − f(x)
)2 = o(1) σ̂2

j ,

as n → ∞. From previous equations we have that b2j = o(1) σ̂2
j for all j ≥ i(υ), uniformly in

RPP- as well as RNP functional scales.

(b) From (55), taking N = Nj , we obtain

σ2
j = Var f̂j(x) = β2

Nj
(x)

σ2Nj

n
= σ̂2

j .

(c) We have(
bj − bi

)2 =
(
fn,Nj (x) − fn,Ni(x)

)2
≤ 2

(
(fn,Nj (x) − fNj (x)) − (fn,Ni(x) − fNi(x))

)2
+ 2

(
fNj (x) − fNi(x)

)2
:= 2 b21(x) + 2 b22(x).
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Now,

b1 =
(
fn,Nj (x) − fNj (x)

)− (
fn,Ni(x) − fNi(x)

)
=

Nj−1∑
r=Ni

(
(f |tr) − 〈f | tr〉

)
tr(x).

Applying the Cauchy-Schwartz inequality, (57) and (58) we see that for regular scales, as we
did in (a),

b21 = O
(
M2(1 − e−γ)−8N5

j n
−4
)(Nj−1∑

r=0

t2r(x) −
Ni−1∑
r=0

t2r(x)
)

= O
(
M2(1 − e−γ)−8n−1/2

) (
β2

Nj
(x)

σ2Nj

n
− β2

Ni
(x)

σ2Ni

n

)

= o(1) (σ̂2
j − σ̂2

i ), (n→ ∞).

Also, applying the Cauchy-Schwartz inequality,

b22 ≤
(Nj−1∑

r=Ni

|〈f | tr〉| |tr(x)|
)2

≤
∞∑

r=Nn

|〈f | tr〉|2
Nj−1∑
r=Ni

t2r(x),

where using (22), the definition (53) of Nn and condition (81) one can verify that
∞∑

r=Nn

|〈f | tr〉|2 = O
(
M2 e

−2γNn

1 − e−2γ

)
= O

( (1 − e−γ)2

γ(1 − e−2γ)

) 1
n

= O(1)
1
n
.

Now,

b22 = O(1)
1
n

(Nj−1∑
r=0

t2r(x) −
Ni−1∑
r=0

t2r(x)
)

= O(1)
(
β2

Nj
(x)

σ2Nj

n
− β2

Ni
(x)

σ2Ni

n

)

= O(1) (σ̂2
j − σ̂2

i ), (n→ ∞).

Thus
(
bj − bi

)2 = O(1) (σ̂2
j − σ̂2

i ) for any x ∈ [−1, 1], when n→ ∞.

(d) Applying again the Cauchy-Schwartz inequality together with Lemma 2(a) we see that

Var
(
f̂j(x) − f̂i(x)

)
=

σ2

n2

n∑
k=1

(
KNj (x, x

n
k) −KNi(x, x

n
k)
)2

=
σ2

n

Nj−1∑
r1=Ni

Nj−1∑
r2=Ni

(
tr1(x)tr2(x)

1
n

n∑
k=1

tr1(x
n
k)tr2(x

n
k)
)

=
σ2

n

Nj−1∑
r1=Ni

Nj−1∑
r2=Ni

tr1(x)tr2(x)δr1r2 =
σ2

n

Nj−1∑
r=Ni

t2r(x)

= σ̂2
j − σ̂2

i .
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Proof of the theorem. For arbitrary scale of parameters Γn and for any f ∈ A(υ) for some
υ ∈ Γn,

Rn(f) = E
∣∣∣ f̂î(x) − f(x)

∣∣∣p

= E
{

{̂i≤i(υ)}
∣∣f̂î(x) − f(x)

∣∣p}+ E
{

{̂i>i(υ)}
∣∣f̂î(x) − f(x)

∣∣p}

:= R−
n (f) +R+

n (f).

Let us examine R−
n (f) first. We have that{

î ≤ i(υ)
}

⊂
{ ∣∣f̂î(x) − f̂i(υ)(x)

∣∣ ≤ σ̂î,i(υ) λi(υ)

}

⊂
{ ∣∣f̂î(x) − f̂i(υ)(x)

∣∣ ≤ σ̂i(υ) λi(υ)

}
,

given the definition of î and the property σ̂2
i,j = σ̂2

j − σ̂2
i . Therefore

R−
n (f) ≤ E

{
{̂i≤i(υ)}

( ∣∣f̂î(x) − f̂i(υ)(x)
∣∣+ ∣∣f̂i(υ)(x) − f(x)

∣∣)p}

≤ E
(
σ̂i(υ)λi(υ) +

∣∣f̂i(υ)(x) − f(x)
∣∣)p

≤ E
(
σ̂i(υ)λi(υ) + |bi(υ)| + σi(υ)|ξ|

)p
(86)

where ξ ∼ N (0, 1).
In RPP scales, the family of Nn(υ), the optimum bandwidths, is uniformly bounded with

respect to υ. Thus, the families of Ni(υ) and λi(υ) are also uniformly bounded in Γn, and we
can see that the variance satisfies

σ2
i(υ) =

σ2

n

Ni(υ)−1∑
r=0

t2r(x) ≤ 2
σ2Ni(υ)

n
= O(n−1),

uniformly in such scales, when n → ∞. From Lemma 5 we know that b2i(υ) = o(1) σ̂2
i(υ), thus

b2i(υ) = o(n−1). Using the above in (86) we have that for any RPP scale, uniformly,

sup
f∈A(υ)

R−
n (f) = O(n−p/2), (n→ ∞). (87)

From (86), applying Lemma 5, the dominated convergence theorem and asymptotic (83),
uniformly in any RNP scale

sup
f∈A(υ)

R−
n (f) ≤ ψp

n(υ)
(
1 + o(1)

)
, (n→ ∞). (88)

Now let us examine R+
n (f). Consider the auxiliary event

Ai =
{
ω :

∣∣f̂i(x) − f(x)
∣∣ ≤ √

2 σ̂i λi

}
.
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Applying the Hölder and Cauchy-Schwartz inequalities we obtain

R+
n (f) = E

{
{̂i>i(υ)}

∣∣f̂î(x) − f(x)
∣∣p} =

In∑
i=i(υ)+1

E
{

{̂i=i}
∣∣f̂i(x) − f(x)

∣∣p }

=
In∑

i=i(υ)+1

E
{∣∣f̂i(x) − f(x)

∣∣p ( {̂i=i}∩Ai
+ {̂i=i}∩Ac

i

)}

≤
In∑

i=i(υ)+1

E
{∣∣f̂i(x) − f(x)

∣∣p {̂i=i}∩Ai

}
+

In∑
i=i(υ)+1

E
{∣∣f̂i(x) − f(x)

∣∣p
Ac

i

}

≤ R+
n,1(f) +R+

n,2(f)

where

R+
n,1(f) =

In∑
i=i(υ)+1

(2σ̂2
i λ

2
i )

p/2 P(̂i = i)

and

R+
n,2(f) =

In∑
i=i(υ)+1

E1/2
∣∣f̂i(x) − f(x)

∣∣2p P1/2(Ac
i ).

We have that

P(̂i = i) ≤ P(̂i ≥ i)

≤
∞∑

j=i+1

P
(∣∣f̂j−1(x) − f̂i−1(x)

∣∣ > σ̂i−1,j−1 λj−1

)
, (89)

but f̂j(x)−f̂i(x) = σi,jξ+bj−bi, where ξ ∼ N (0, 1). Therefore applying Lemma 5, (c) and (d),
and a well known bound for the tails of the normal distribution (cf. Feller [1968], Lemma 2)
we find that

P( | f̂j(x) − f̂i(x)| >σ̂i,jλj ) ≤ P
(
|ξ| > λj − |bj − bi|

σ̂i,j

)

≤ exp
{
−1

2
(λj − C1)

2

}
≤ exp

{
−1

2
λ2

j + C1λj

}
,

for some C1 > 0 and n large enough. Returning to (89) we obtain that

P(̂i = i) ≤
∞∑

j=i+1

exp
{
−1

2
λ2

j−1 + C1λj−1

}
=

∞∑
j=i

exp
{
−1

2
λ2

j + C1λj

}

=
∞∑
j=i

exp
{
−pj

l + p1j
l1

2
+ C1

√
pjl + p1jl1

}
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≤
∞∑
j=i

exp
{
− pjl

2
− p1j

l1

3

}
∼ 2

pl
i1−l exp

{
− pil

2
− p1i

l1

3

}

=
2
pl
i1−lN

−p/2
i exp

{
− p1i

l1

3

}
≤ C2N

−p/2
i exp

{
− p1i

l1

4

}
for some C2 > 0 and all i ≥ i(υ), when n is sufficiently large. Therefore uniformly in Γn

sup
f∈A(υ)

R+
1 (f) = O(n−p/2)

∞∑
i=1

ipl/2 exp
{
− p1i

l1/4
}

= O(n−p/2), (90)

when n → ∞. In order to bound R+
2 (f) note that f̂i − f(x) = bi + σiξ , ξ ∼ N (0, 1). Then

applying Lemma 5, (a) and (b), in the same way as before, we have

P(Ac
i ) ≤ P

(
|ξ| >

√
2λi − |bi|

σi

)
≤ P

(
|ξ| >

√
2λi −

√
2
)

≤ exp
{
−1

2

(√
2 λi −

√
2
)2
}

≤ exp
{
− λ2

i + 2λi

}

≤ exp
{
− pil − p1i

l1/2
}

∼ N−p
i exp

{
− p1i

l1/2
}
,

for all i ≥ i(υ), n large enough. Thus, applying again Lemma 5, (a) and (b), and previous
bound

R+
n,2(f) =

In∑
i=i(υ)+1

E1/2
∣∣∣f̂i(x) − f(x)

∣∣∣2p
P1/2(Ac

i )

≤
In∑

i=i(υ)+1

σ̂p
i E1/2

∣∣∣ o(1) + ξ
∣∣∣2p

P1/2(Ac
i )

= O
(
β2

Ni

σ2

n

)p/2
∞∑
i=1

exp
{
− p1i

r1/4
}

and finally
sup

f∈A(υ)
R+

n,2(f) = O
(
n−p/2

)
. (91)

Finally we can conclude from (87), (88), (90) and (91) that f̂n ∈ Fp(x) and

lim sup
n→∞

sup
υ∈Γn

sup
f∈A(υ)

E
∣∣∣ψ−1

n (υ)
(
fn(x) − f(x)

)∣∣∣p ≤ 1,

in RNP scales, thus ending the proof of the theorem.

4.3 Lower bound

Theorem 6 Let p > 0. Let AΓn be an arbitrary RNP functional scale. For each υ ∈ Γn,
define

ψn(υ) = σn(υ)φn(υ)
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where

σ2
n(υ) = β2

Nn
(x)

σ2Nn

n
, φ2

n(υ) = p logNn,

and Nn is the same as in Theorem 5. Then, for any estimator f̃n ∈ F0
p (x)

lim inf
n→0

inf
υ∈Γn

sup
f∈A(υ)

E
∣∣∣ψ−1

n (υ)
(
f̃n(x) − f(x)

)∣∣∣p ≥ 1.

Proof. Denote for shortness ψυ = ψn(υ), φυ = φn(υ) and συ = σn(υ). Choose N̄ as it was
defined in (64), and define ψ̄υ = σ̄υφ̄υ where

σ̄2
υ = β2

N̄ (x)
σ2N̄

n
and φ̄2

υ = p log N̄ .

Define f0 ≡ 0 and f1 = fθ for θ = φ̄υ − φ̄υ
1/2, where fθ belongs to the parametric family

defined in (63). Notice that |θ| < N̄1/2 for all n big enough. According to Lemma 4, f1 ∈ A(υ)
and

f1(x) = θ βN̄ (x)

√
σ2N̄

n
.

For an arbitrary estimator f̃n ∈ F0
p (x) denote f∗n = ψ̄−1

υ f̃n(x) and L = φ̄−1
υ θ. Then

ψ̄−1
υ

(
f̃n(x) − f1(x)

)
= f∗n − ψ̄−1

υ f1(x) = f∗n − φ̄−1
υ θ = f∗n − L (92)

whereas
√
n

σ

(
f̃n(x) − f0(x)

)
=

√
n

σ
ψ̄υ f

∗
n(x) =

√
N̄ φ̄υ f

∗
n(x)

= f∗n exp
{ log N̄

2
+ log φ̄υ

}
. (93)

Denote P0 and P1 the probabilities associated with f0 and f1 respectively. From equations
(65) and (66),

dP0

dP1
(y) = exp

{
−θ

2

2
− θξ

}
(94)

with respect to P1, where ξ P1∼ N (0, 1). Denote q = exp
{− φ̄υ

}
so that q → 0 since N̄ → ∞

(n → ∞) in NP scales. Now, given f1 ∈ A(υ), for any f̃n ∈ F0
p (x), uniformly in υ ∈ Γn as n

goes to infinity, we have

R̄ := sup
f∈A(υ)

E(n)
∣∣∣ ψ̄−1

υ

(
f̃n(x) − f(x)

) ∣∣∣p ≥ E1

∣∣∣ ψ̄−1
υ

(
f̃n(x) − f1(x)

) ∣∣∣p

≥ qE0

∣∣∣ √n
σ

(
f̃n(x) − f0(x)

) ∣∣∣p +

(1 − q)E1

∣∣∣ ψ̄−1
υ

(
f̃n(x) − f1(x)

) ∣∣∣p +O(q). (95)
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According to (92)–(95),

R̄ ≥ q exp
{ φ̄υ

2
+ p log φ̄υ

}
E0

∣∣∣f∗n(x)
∣∣∣p + (1 − q)E1

∣∣∣ f∗n(x) − L
∣∣∣p +O(q)

≥ (1 − q)E1 (Z | f∗n(x) |p + | f∗n(x) − L |p ) +O(q)

≥ (1 − q)E1 inf
x

(Z |x|p + |x− L |p ) +O(q) (96)

where

Z = q exp
{ φ̄υ

2
+ p log φ̄υ

}dP0

dP1
.

From (94) and definition of θ we have

Z = exp
{
− φ̄υ +

φ̄2
υ

2
+ p log φ̄υ −

(
φ̄υ − φ̄1/2

υ

)
ξ − 1

2

(
φ̄υ − φ̄1/2

υ

)2 } P1→ ∞

given φ̄υ → ∞. Now consider the same optimization problem as before:

min
x

{g(x) := Z|x|p + |L− x|p}.

We saw in the previous chapter that

g(xmin) = χLp (97)

where χ P1→ 1. Therefore according to equations (96) and (97), uniformly in υ ∈ Γn,

R̄ ≥ (1 − q)LpE1χ+O(q) = 1 + o(1).

Finally, uniformly in Γn

sup
f∈A(υ)

E(n)
∣∣∣ψ−1

υ

(
f̃n(x) − f(x)

)∣∣∣p = sup
f∈A(υ)

E(n)
∣∣∣ψ̄−1

υ

(
f̃n(x) − f(x)

)∣∣∣p(1 + o(1))

≥ 1 + o(1).

This completes the proof of the theorem. �

Corollary 3 Let AΓn be an arbitrary RNP scale. Then for any p > 0 and x ∈ R, the
estimator f̂n of Theorem 5 is (p,Γn,Fp(x))-adaptively minimax at x.

Proof. This is a consequence of Theorems 5 and 6. �
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