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1 Introduction

In recent years a great deal of attention has been devoted to the computation

of derivatives of performance indicators in stochastic systems. More specifically,

suppose that the system can be modeled by a (general state–space) Markov

chain {Xθ(n)}, depending on a (vector–valued) parameter θ ∈ Θ, and assume

that the proces is ergodic for any θ ∈ Θ, that is, Xθ(n) converges, independent

of the initial state, to a steady–state Xθ(∞). We would like to compute the

gradient of the expected value of the Markov chain in equilibrium, that is,

∇E[Xθ(∞)]. A typical example is the GI/G/1 queue where the distribution of

the service times, or, of the interarrival times depends on a parameter, such as

the mean. We may be interested in computing the sensitivity of the expected

waiting time E[Wθ] with respect to the parameter θ. Moreover, the computation

of derivatives allows one to take an additional step and develop optimization

procedures for the performance indicator of interest.

In general, however, closed–form expressions for the steady–state derivatives

cannot be obtained, and one must resort to simulation methods. In addition,

it is necessary to show consistency of such estimators, since the steady–state

performance measure of the system under scrutiny is a limiting quantity and

hence so is its gradient. Extra conditions that guarantee some type of uniform

convergence, such as convexity are often imposed for that purpose.

A particularly neat situation occurs when the Markov chain {Xθ(n)} pos-

sesses a regenerative structure, that is, it restarts independent of the past when-

ever it hits a certain set α, called atom. If {Xθ(n)} is Harris ergodic with atom

α and E[g(Xθ(∞))] is finite, then

E[g(Xθ(∞))] =
E

[∑τθ−1
n=0 g(Xθ(n))

∣∣∣ X(0) ∈ α
]

E[τθ]
,

where τθ denotes the first–entrance time of Xθ(n) into α. Unfortunately, the

cycle time τθ typically depends on θ thus making differentiation of E[Xθ(∞)] a

difficult task. However, the advent of infinitesimal perturbation analysis (IPA)

allowed computing the sample gradient of g(Xθ(n)), see [13, 6, 2], and, provided

that the derivative process {∇Xθ(n)} regenerates at the same epochs as the
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original chain, it can be shown under some additional assumptions that

∇E[g(Xθ(∞))] =
E

[∑τθ−1
n=0 ∇g(Xθ(n))

∣∣∣ X(0) ∈ α
]

E[τθ]
,

see [7, 8].

An alternative concept to sample–path differentiation is that of weak differ-

entiation measures, as introduced by Pflug, see for example [18]. The concept

of weak differentiation is to derive a (general state space) Markovian chain

description of the system process such that the transition kernel, say Pθ, is dif-

ferentiable as a function in θ. Then the derivative of the transition kernel can be

represented as the difference between two transition kernels, say P+
θ and P−θ ,

i.e. dPθ/dθ = P+
θ −P−θ . Provided that the kernel is Harris ergodic with a regen-

eration set, say α, we estimate the gradient of the stationary costs as follows: We

start the process in α and simulate the system process under Pθ until it hits α.

At a time, say k, we evaluate the surrogate derivative D(Pθ, g, Xθ(k)) defined

as follows: at Xθ(k) we split our sample path; we do this by performing this

particular transition for one sub-path according to P+
θ , whereas we perform it

for the other sub-path according to P−θ ; subsequently, we resume generating the

transitions according to Pθ until both (sub) paths hit α; the surrogate deriva-

tive D(Pθ, g, ·) evaluates the difference between the g–performances evaluated

for the variants of the processes. Summing the values of D(Pθ, g, ·) over all τα

states yields the desired gradient information, in formula:

∇E[g(Xθ(∞))] =
E

[∑τθ−1
n=0 D(Pθ, g, Xθ(n))

∣∣∣ X(0) ∈ α
]

E[τθ]
, (1)

see [18, 19]. While this approach does not suffer from the restriction that the

derivative process has to regenerate at the same epochs as the Markov chain,

weak differentiation is restricted to bounded performance functions, and ex-

tensions to more general classes of performance indicators are possible only in

special cases, see, for example, [9]. For countable state–space, the derivative

operator D(·) is closely related to the deviation matrix, see [10].

In this paper we establish sufficient conditions for (1) to hold for unbounded

mappings. To this end, we work within the framework of measure–valued differ-

entiation (MVD), see [11, 12]. MVD extends the concept of weak differentiabil-

ity, as introduced in [18, 19], so that performance measures out of a predefined
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class D can be handled, and thereby overcomes the restriction to bounded func-

tions. As explained in [11], MVD implies no restriction to a particular estimation

method and the estimator in (1) is only one possible translation of the measure–

valued derivative of π into an estimator.

We will establish sufficient conditions for the stationary distribution πθ to

have a measure–valued derivative, called D–derivative. Pflug shows in [19] that

this holds true when D is the set of continuous bounded performance measures.

As key result of this paper, we show that this statement extends to (more)

general sets D, where the main condition on the set D will be imposed by the

ergodicity of the chain for mappings out of D.

The paper is organized as follows. Section 2 introduces MVD. In Section 3 the

main result of the paper is established, namely, that the stationary distribution

of a D–differentiable Markov chain is D–differentiable. In Section 4, we provide

a set of sufficient conditions, based on ergodicity concepts, for our main result

to hold that can be verified in applications. In Section 5, we address gradient

estimation and present some examples.

2 Background on MVD for Markov Chains

Let (S, T ) be a Polish measurable space. Let M(S, T ) denote the set of fi-

nite (signed) measures on (S, T ) and M1(S, T ) that of probability measures on

(S, T ).

Definition 1 The mapping P : S × T → [0, 1] is called a (homogeneous) tran-

sition kernel on (S, T ) if

(a) P (s; ·) ∈M(S, T ) for all s ∈ S; and

(b) P (·; B) is T measurable for all B ∈ T .

If, in condition (a), M(S, T ) can be replaced by M1(S, T ), then P is called a

Markov kernel on (S, T ).

Denote the set of transition kernels on (S, T ) by K(S, T ) and the set of

Markov kernels on (S, T ) by K1(S, T ). Consider a family of Markov kernels

(Pθ : θ ∈ Θ) on (S, T ), with Θ ⊂ R , and let L1(Pθ; Θ) ⊂ RS denote the set
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of measurable mappings g : S → R, such that
∫

S
Pθ(s; du) |g(u)| is finite for all

θ ∈ Θ and s ∈ S.

Definition 2 Let Θ be an open neighborhood of θ0. For θ ∈ Θ, let Pθ ∈ K(S, T )

and D ⊂ L1(Pθ; Θ) ⊂ RS. We call Pθ D–continuous at θ0 if, for any g ∈ D and

any s ∈ S,

lim
∆→0

∣∣∣∣
∫

Pθ0+∆(s; dz) g(z) −
∫

Pθ0(s; dz) g(z)
∣∣∣∣ = 0 .

Furthermore, we call Pθ D–Lipschitz continuous at θ0 if, for any g ∈ D, a

Kg ∈ D exists such that for any ∆ ∈ R, with θ0 + ∆ ∈ Θ:
∣∣∣∣
∫

Pθ0+∆(·; ds) g(s) −
∫

Pθ0(·; ds) g(s)
∣∣∣∣ ≤ |∆|Kg .

We denote the set of bounded continuous mappings from S to R by Cb(S).

Let Pθ ∈ K(S, T ), for θ ∈ Θ. We call D ⊂ L1(Pθ; Θ) a set of test functions for

(Pθ : θ ∈ Θ) if for any A ∈ T its indicator function is in D and Cb(S) ⊂ D.

Definition 3 Let D ⊂ L1(Pθ; Θ) be a set of test functions for (Pθ; θ ∈ Θ). We

call Pθ ∈ K(S, T ) differentiable at θ with respect to D, or D–differentiable for

short, if for any s ∈ S a P ′θ(s; ·) ∈M(S, T ) exists, such that, for any s ∈ S and

any g ∈ D
d

dθ

∫

S

Pθ(s; du) g(u) =
∫

S

P ′θ(s; du) g(u) . (2)

If the left–hand side of equation (2) equals zero for all g ∈ D, then we say that

P ′θ is not significant.

If Pθ is D–differentiable, then the measure–valued derivative P ′θ(·; ·) is

uniquely defined and again transition kernel on (S, T ), in formula: P ′θ(·; ·) ∈
K(S, T ), see [11].

ExampleExample 1. A typical choice for D is the set of measurable bounded functions

on S, denoted by Db (it is easily checked that Db is indeed a set of test functions).

In applications, to assume that the sample performance is bounded (g ∈ Db)

is often too restrictive. A convenient set of performance functions is the set Dp

of polynomially bounded performance functions defined by

Dp =

{
g : S → R

∣∣∣∣∣g(x) ≤
p∑

i=0

κi ||x||i , κi ∈ R, 0 ≤ i ≤ p

}
,
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for some p ∈ N, where || · || denotes a norm on S (assuming that S is indeed

equipped with a norm). Most cases of interest in applications fall within this

setting. The set Dp is a set of test functions if and only if Dp ∈ L1(Pθ; Θ), or,

equivalently, if
∫

S
Pθ(s; du)||u||p is finite for any s ∈ S and θ ∈ Θ.

÷×÷×÷×
If P ′θ exists, then the fact that P ′θ(s; ·) fails to be a probability measure

poses the problem of sampling from P ′θ(s; ·). For s ∈ S fixed, we can represent

P ′θ(s; ·) by its Hahn–Jordan decomposition as a difference between two proba-

bility measures. More precisely, for s ∈ S, let ([P ′θ]
+(s; ·), [P ′θ]−(s; ·)) denote the

Hahn–Jordan decomposition of P ′θ(s; ·) and set

cPθ
(s) = [P ′θ]

+(s;S) = [P ′θ]
−(s;S) (3)

and

P+
θ (s; ·) =

[P ′θ]
+(s; ·)

cPθ
(s)

, P−θ (s; ·) =
[P ′θ]

−(s; ·)
cPθ

(s)
,

then it holds, for all g ∈ D, that
∫

S

P ′θ(s; du) g(u) = cPθ
(s)

(∫

S

P+
θ (s; du) g(u) −

∫

S

P−θ (s; du) g(u)
)

. (4)

For the above line of argument we fixed s. For P+
θ and P−θ to be Markov ker-

nels, we have to consider P+
θ and P−θ as functions in s and have to establish

measurability of P+
θ (·; A) and P−θ (·; A) for any A ∈ T . This problem is equiv-

alent to showing that cPθ
(·) in (3) is measurable as a mapping from S to R.

Unfortunately, only sufficient conditions are known, see [11]. For example, if S

is finite, then measurability is guaranteed. In applications cPθ
is calculated ex-

plicitly and its measurability is therefore established case by case. Specifically,

in many examples that are of interest in applications, cPθ
turns out to be a

constant and measurability is thus guaranteed, see [11] for more details.

The Hahn–Jordan decomposition of P ′θ is not unique. To see this, choose

Q ∈ K1(S; T ) so that
∫

S
g(u)Q(s; du) is finite for any g ∈ D and s ∈ S. Set

P̃+
θ =

1
2
P+

θ +
1
2
Q , P̃−θ =

1
2
P−θ +

1
2
Q .

Equation (4) implies for all g ∈ D and all s ∈ S that

d

dθ

∫

S

Pθ(s; du) g(u)=2cPθ
(s)

(∫

S

P̃+
θ (s; du) g(u) −

∫

S

P̃−θ (s; du) g(u)
)

.
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We now introduce the notion of D–derivative, which extends the concept of

a weak derivative.

Definition 4 Let Pθ be D-differentiable at θ. Any triple (cPθ
(·), P+

θ , P−θ ), with

P±θ ∈ K1(S, T ) and cPθ
a measurable mapping from S to R, that satisfies (4) is

called a D–derivative of Pθ. The kernel P+
θ is called the (normalized) positive

part of Pθ
′ and P−θ is called the (normalized) negative part of Pθ

′; and cPθ
(·)

is called the normalizing factor.

We illustrate the concepts introduced above with a simple example.

ExampleExample 2. Let P, Q ∈ K1(S, T ) and set

Pθ = θP + (1− θ)Q , θ ∈ [0, 1] .

Note that Pθ ∈ K1(S, T ) for θ ∈ [0, 1], and that P0 = Q and P1 = P . Specifically,

let D(P,Q) , L1(Pθ; Θ) denote the set of measurable mappings g : S → R such

that both
∫

S
P (s; du) g(u) and

∫
S

Q(s; du) g(u) exist and are finite for any s ∈ S.

For any g ∈ D(P, Q) and any s ∈ S, we now compute

d

dθ

∫

S

Pθ(s; du) g(u)=
d

dθ

(
θ

∫

S

P (s; du) g(u) + (1− θ)
∫

S

Q(s; du) g(u)
)

=
∫

S

P (s; du) g(u) −
∫

S

Q(s; du) g(u) .

Note that D(P,Q) is a set of test functions. Hence, Pθ is D(P, Q)–differentiable

with D(P, Q)–derivative

(
1 , P , Q

)
.

÷×÷×÷×

3 MVD of the Stationary Distribution

Let Pθ be ergodic and denote its unique invariant distribution by πθ. Let L1(πθ)

denote the set of measurable mappings g : S → R such that
∫ |g| dπθ is finite.

We denote the ergodic projector of πθ by Πθ, that is, Πθ : L1(πθ) → R and, for

any g ∈ L1(πθ), Πθg =
∫

g dπθ. To simplify the notation, we set:

µ g =
∫

g(s)µ(ds) ,
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for µ ∈M(S, T ), and
(
Pθ g

)
(s) =

∫
g(r)Pθ(s; dr) ,

for Pθ ∈ K(S, T ), provided that the expression exists. Note that Pθg is a map-

ping from S to R ∪ {−∞,∞}. For any µ ∈ M with µ(S) = 0, we have the

following rule of computation

µPn
θ g = µ(Pn

θ −Πθ) g , n ∈ N , (5)

provided that the integrals exist. In what follows, we work locally and fix θ.

With slight abuse of notation, we take Θ to be an open neighborhood of θ.

Theorem 1 If

(i) P is D–Lipschitz continuous at θ,

(ii) for any θ̂ ∈ Θ, if h ∈ D then Pθ̂h ∈ D,

(iii) for any h ∈ D and any ∆ ∈ R, with θ + ∆ ∈ Θ,

lim
k→∞

(πθ+∆ − πθ)P k
θ h = 0 ,

(iv) for any h ∈ D,

(a)
∞∑

n=0

|(Pn
θ −Πθ)h| ∈ D ,

(b)
∞∑

n=0

(Pn
θ −Πθ)h ∈ D ,

(v) for any h ∈ D a finite number ch exists such that

πθ̂ |h| ≤ ch , ∀θ̂ ∈ Θ ,

then π is D–Lipschitz continuous at θ.

Moreover, if we assume, in addition to the above conditions, that Pθ is D–

differentiable at θ , then πθ is D–differentiable at θ with D–derivative

π′θ = πθ

∞∑
n=0

P ′θ Pn
θ ,

or, equivalently,

π′θ = πθP
′
θ

∞∑
n=0

(Pn
θ −Πθ) .
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Proof: Let I denote the unit operator, that is, πθI = πθ. Simple algebraic

calculation shows that

(πθ+∆ − πθ)(I − Pθ+∆)= πθ+∆ − πθ+∆Pθ+∆︸ ︷︷ ︸
=πθ+∆

−πθ + πθPθ+∆

= πθ(Pθ+∆ − Pθ) .

Hence,

(πθ+∆ − πθ)(I − Pθ+∆)
k∑

n=0

Pn
θ = πθ(Pθ+∆ − Pθ)

k∑
n=0

Pn
θ , (6)

with P 0
θ = I. By algebraic calculation,

(πθ+∆ − πθ)(I − Pθ+∆)
k∑

n=0

Pn
θ

= (πθ+∆ − πθ)

{
(I − Pθ)

k∑
n=0

Pn
θ + (Pθ − Pθ+∆)

k∑
n=0

Pn
θ

}

= (πθ+∆ − πθ)

{
k∑

n=0

Pn
θ −

k+1∑
n=1

Pn
θ + (Pθ − Pθ+∆)

k∑
n=0

Pn
θ

}

= (πθ+∆ − πθ)

{
I − P k+1

θ + (Pθ − Pθ+∆)
k∑

n=0

Pn
θ

}

= πθ+∆ − πθ − (πθ+∆ − πθ)P k+1
θ + (πθ+∆ − πθ)(Pθ − Pθ+∆)

k∑
n=0

Pn
θ .

Inserting the righthand side of the above equation into (6) yields:

πθ(Pθ+∆ − Pθ)
k∑

n=0

Pn
θ = πθ+∆ − πθ − (πθ+∆ − πθ)P k+1

θ

+(πθ+∆ − πθ)(Pθ − Pθ+∆)
k∑

n=0

Pn
θ . (7)

We now study the limit of the above expression as k tends off to ∞. Firstly,

under assumption (iii), we have

lim
k→∞

(πθ+∆ − πθ)P k+1
θ h = 0 . (8)

As a second step, we show

lim
k→∞

πθ(Pθ+∆ − Pθ)
k∑

n=0

Pn
θ h =πθ(Pθ+∆ − Pθ)

∞∑
n=0

(Pn
θ −Πθ) h , (9)
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for h ∈ D. By assumptions (ii) together with (v),

πθ(Pθ+∆ − Pθ)
k∑

n=0

Pn
θ h

exists and is finite for any k ≥ 0 and any h ∈ D. Elaborating on (5), this implies

that

πθ(Pθ+∆ − Pθ)
k∑

n=0

(Pn
θ −Πθ) h

exists and is finite for any k ≥ 0 and any h ∈ D, where we use that fact that

πθ(Pθ+∆ − Pθ) is a signed measure with total mass 0. By assumption (iv)(a),

for any h ∈ D,
∣∣∣∣∣

k∑
n=0

(Pn
θ −Πθ)h

∣∣∣∣∣ ≤
k∑

n=0

|(Pn
θ −Πθ)h| ∈ D .

Moreover, by assumptions (ii) together with (v),

πθ(Pθ+∆ − Pθ)
∞∑

n=0

|(Pn
θ −Πθ) h|

exists and is finite, for any h ∈ D. Hence, (9) follows from the dominated

convergence theorem.

Finally, following the line of argument in the above second step, we show

that

lim
k→∞

(πθ+∆ − πθ)(Pθ − Pθ+∆)
k∑

n=0

Pn
θ

= (πθ+∆ − πθ)(Pθ − Pθ+∆)
∞∑

n=0

Pn
θ . (10)

Taking the limit in (7) as k tends to ∞ we obtain from (8), (9) and (10), for

h ∈ D:

(πθ+∆ − πθ) h = πθ(Pθ+∆ − Pθ)
∞∑

n=0

(Pn
θ −Πθ)h

− (πθ+∆ − πθ)(Pθ − Pθ+∆)
∞∑

n=0

(Pn
θ −Πθ)h . (11)

For h ∈ D, condition (iv) (b) implies

∞∑
n=0

(Pn
θ −Πθ)h =: ĥ ∈ D ,
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and D–Lipschitz continuity of Pθ at θ implies

|πθ(Pθ+∆ − Pθ)
∞∑

n=0

(Pn
θ −Πθ)h| ≤ ∆πθKĥ

≤ ∆cKĥ
< ∞ ,

where finiteness of πθKĥ is guaranteed by (v). From the same line of argument,

we obtain that

|(πθ+∆−πθ)(Pθ − Pθ+∆)
∞∑

n=0

(Pn
θ −Πθ)h|

≤ (πθ+∆ + πθ)|(Pθ − Pθ+∆)
∞∑

n=0

(Pn
θ −Πθ)h|

≤ ∆(πθ+∆ + πθ)Kĥ

≤ ∆2cKĥ
,

for any h ∈ D. Because D is a set of test functions, the constant functions

∆cKĥ
,∆2cKĥ

as well as their sum lie in D. From (11) it thus follows that πθ is

D–Lipschitz continuous at θ. In particular, the Lipschitz factor is the constant

function 3cKĥ
.

Starting point for the second part of the theorem is equation (11). From

D–Lipschitz continuity at θ of both πθ and Pθ it follows that

lim
∆→0

1
∆

(πθ − πθ+∆)(Pθ − Pθ+∆)
∞∑

n=0

(Pn
θ −Πθ)h = 0 ,

for any h ∈ D. Moreover, because Pθ is D–Lipschitz at θ, assumption (v) yields

lim
∆→0

1
∆

πθ(Pθ+∆ − Pθ)
∞∑

n=0

(Pn
θ −Πθ)h

= πθ

(
lim
∆→0

1
∆

(Pθ+∆ − Pθ)
∞∑

n=0

(Pn
θ −Πθ) h

)

and, by D–differentiability of Pθ, this limit equals

= πθP
′
θ

∞∑
n=0

(Pn
θ −Πθ) h .

For h ∈ D, we therefore obtain from (11)

πθP
′
θ

∞∑
n=0

(Pn
θ −Πθ)h= lim

∆→0

1
∆

(πθ − πθ+∆) h .
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Using the fact the P ′θ(s; ·) is a signed measure with P ′θ(s; S) = 0, for any s ∈ S,

it readily follows from (5) that

πθ

∞∑
n=0

P ′θP
n
θ h = πθP

′
θ

∞∑
n=0

(Pn
θ −Πθ)h ,

which concludes the proof. ¤

Remark: If h ∈ D implies that |h| ∈ D, then condition (iv) (a) already implies

condition (iv) (b).

4 Ergodicity Framework

In this section, we provide sufficient conditions for conditions (ii) to (iv) to hold.

Let X(θ) = {Xθ(n)} = {Xθ(s, n)}, for θ ∈ Θ, be the Markov Chain with initial

state s and transition kernel Pθ, and set, for any B ∈ T ,

Pn
θ (s, B) , Pθ (s, n, B) = P (Xθ(s, n) ∈ B) .

The joint state-space of X(θ), θ ∈ Θ, is denoted by S. However, for any specific

θ the chain X(θ) may not be irreducible on S but only on a subset of S. For

the following ergodicity analysis, we will require that the state-space is indeed

irreducible and we denote by Sθ ⊂ S the class of states such that X(θ) be-

comes irreducible as a Markov chain on Sθ. Furthermore, we denote by Tθ the

intersection of T and Sθ. Consequently, (Sθ, Tθ) is a measurable space for any

θ ∈ Θ.

In Section 4.1, we discuss the general situation. Section 4.2 provides an

alternative representation of the D–derivative of πθ for the situation where X(θ)

possesses an atom.

4.1 General Chains

The main technical conditions needed for the analysis in this section are intro-

duced subsequently. We will use the following “Lyapunov function” condition:

(C1) There exists a function g(s) ≥ 0, s ∈ Sθ, such that any θ ∈ Θ

E
[
g(Xθ(s,mθ))

] − g(s) ≤ −ε + c IVθ
(s) , (12)
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for some mθ ≥ 1, ε > 0 and c < ∞, where for some d < ∞

Vθ = { s ∈ Sθ : g(s) ≤ d }

and IVθ
(s) = 1 if s ∈ Vθ and otherwise zero. Furthermore, we need the following

Harris-type condition for the set Vθ.

(C2) For any θ ∈ Θ there exist nθ ≥ 0, φθ(·) a probability measure on (Sθ, Tθ),

and pθ ∈ (0, 1) such that

inf
x∈Vθ

P
(
Xθ(x, nθ) ∈ B

) ≥ pθ φθ(B) , (13)

for all B ∈ B .

Under condition (C1), let

ξθ(s) , g(Xθ(s, 1))− g(s) , s ∈ S ,

and introduce the following condition:

(C3) The r.v. ξθ(s) is uniformly integrable (in s and θ) and there exist λ > 0

such that ξθ(s) eλξθ(s) are uniformly integrable (in s and θ).

Recall that uniform integrability of ξθ(s) in s and θ is defined as

lim
c→∞

sup
s,θ

∫

|t|>c

P (ξθ(s) ∈ dt) = 0 ,

and similarly the uniform integrability of ξθ(s)eλξθ(s) requires that

lim
c→∞

sup
s,θ

∫

|t|>c

P (ξθ(s)eλξθ(s) ∈ dt) = 0 .

In order to establish conditions (ii) to (iv) in Theorem 1, we will work with

normed ergodicity. Normed ergodicity dates back to the early eighties, see [4] for

a first reference. It was originally used in analysis of Blackwell optimality; see

[4], and [16] for a recent publication on this topic. Since then, it has been used in

various forms under different names in many subsequent papers. In [14] it was

shown for a countable Markov chain which may have one or several classes of

essential states (a so-called multichained Markov chain), that normed ergodicity

is equivalent to geometrical recurrence (for a similar result in Markov decision

chains see [5]). Inspired by this result for a countable Markov chain a similar

12



result was proved for a Harris chain in [17]. In this paper we use the recent

results of [1].

Let Vv denote the Banach space of real-valued functions f on S with the

finite v-norm

‖f‖v = sup
s∈S

|f(s)|
|v(s)|

and the associated operator norm for a linear operator, say T : Vv −→ Vv is

defined by

‖T‖v = sup
‖f‖v≤1

‖Tf‖v .

For µ a (signed) measure the associated norm is

‖µ‖v = sup
‖f‖v≤1

|µf | .

For our analysis, we choose v to be the following mapping:

v(s) , eλg(s) , s ∈ S , (14)

for some positive λ, where g is defined in (C1).

Lemma 1 The condition (C3) implies that for λ small enough

sup
θ∈Θ

||Pθ||v < ∞ .

Proof: With

ξθ(s) = g(Xθ(s, 1))− g(s) , s ∈ S ,

and

v(s) = eλg(s) , s ∈ S ,

we find that

‖Pθ‖v =sup
s

(Pθe
λg)(s)

eλg(s)

=sup
s
E

[
eλ(g(Xθ(s,1))−g(s))

]

=sup
s
E

[
eλξθ(s)

]
. (15)

13



By (C3), ξθ(s)eλξθ(s) is uniformly integrable which implies

sup
s,θ
E

[ ∣∣∣ξθ(s)eλξθ(s)
∣∣∣
]

< ∞ .

For s ∈ S, we now write

E
[
eλξθ(s)

]
= E

[
eλξθ(s)I(ξθ(s) ≤ 1)

]
+ E

[
eλξθ(s)I(ξθ(s) > 1)

]
.

The first term on the right hand side is bounded by eλ and the second term is

bounded by

sup
s,θ
E

[ ∣∣∣ξθ(s)eλξθ(s)
∣∣∣
]

< ∞ .

Inserting these bounds into (15) yields

sup
θ
‖Pθ‖v ≤ eλ + sup

s,θ
Eeλξθ(s) < ∞ .

¤
The following theorem follows from Theorems 3 and 5 of [1].

Theorem 2 Conditions (C1), (C2) and (C3) imply that, for any θ ∈ Θ, there

exist cθ < ∞ and 0 < ρθ < 1 such that for λ small enough

‖Pn
θ −Πθ‖v ≤ cθρ

n
θ , (16)

Note that this theorem implies that for any θ

‖Πθ‖v < ∞.

Let

Dv =
{
g : S → R

∣∣ ∃r ∈ R : |g(s)| ≤ r · v(s), s ∈ S
}

.

In words, Dv is the set of mappings g from S to R that are bounded by r ·v (for

some finite number r). It is easily seen that Lemma 1 implies that any g ∈ Dv

is integrable with respect to any Pθ, for θ ∈ Θ, or, more formally:

Dv ⊂ L1(Pθ, Θ) .

Theorem 3 Let Θ denote an open neighborhood of θ. If

(i) Pθ is Dv–Lipschitz continuous in θ,

14



(ii) conditions (C1) to (C3) are satisfied

then πθ is Dv–Lipschitz continuous.

Moreover, if we assume, in addition to the above conditions, that Pθ is Dv–

differentiable, then πθ is Dv–differentiable with Dv–derivative

π′θ = πθ

∞∑
n=0

P ′θ Pn
θ ,

or, equivalently,

π′θ = πθP
′
θ

∞∑
n=0

(Pn
θ −Πθ) .

Proof: We will show that conditions (ii) to (iv) of Theorem 1 hold. Condi-

tion (ii) is a straightforward consequence of Lemma 1. Note that

‖Pn
θ −Πθ‖v ≤ cθρ

n
θ

implies that, for any h ∈ Dv,

|(Pn
θ −Πθ)h| ≤ c̄θρ

n
θ v,

with

c̄θ , cθ ‖h‖v .

Hence,

∞∑
n=0

|(Pn
θ −Πθ)h| ≤ c̄θ

1− ρθ
v

and because c̄θ

1−ρθ
v ∈ Dv, this already implies that

∞∑
n=0

|(Pn
θ −Πθ)h| ∈ Dv .

Thus, (iv) (b) holds. Repeating the above argument without taking absolute

values, or using the remark after Theorem 1, shows that (iv) (a) holds as well.

With the relation (5) we have that

(Πθ+∆ −Πθ)P k
θ h = (Πθ+∆ −Πθ)(P k

θ −Πθ)h .

The condition (iii) then follows from (16) of Theorem 2.¤

15



4.2 Chains with an Atom

Throughout this section, we assume that conditions (C1)− (C3) are satisfied.

The setup is as in the previous section with the additional assumption that the

chain possesses an atom, say α. The expression of the stationary distribution

for a regenerative process is well-known (see [20])

πθ h =
1

E[τθ(s)]
E




τθ(s)∑
m=0

h(Xθ(s,m))


 , s ∈ α ,

where τθ(s) is the recurrence time to the atom α. With the notation (Qθ(s))f =
∫
S\α Pθ(s, 1, dy)f(y), s ∈ S this can also be written as

E




τθ(s)∑
m=0

h(Xθ(s, m))


 =

∞∑
m=0

(Qθ(s))m h .

Hence,

E[τθ(s)] =
∞∑

m=0

(Qθ(s))m e

and thus, provided that s ∈ α,

πθh =
∑∞

m=0(Qθ(s))m h∑∞
m=0(Qθ(s))m e

,

and
∞∑

m=0

(Qθ(s))m (I −Πθ)h(α) = 0. (17)

Using the taboo presentation of the deviation operator derived in [15] to-

gether with relation (5) the following representation of the derivative can be

given

π′θh = πθ(P ′θ)
∞∑

n=0

(Qθ(s))n (I −Πθ)h.

5 Gradient Estimation

In this section, we apply our result to gradient estimation. Section 5.1 establishes

an interpretation of the expression for the measure-valued derivative of π in

Theorem 1 in terms of stochastic processes. Illustrating examples are provided

in Section 5.2.
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5.1 The Process View

5.1.1 General Chains

Let Pθ be D–differentiable with D–derivative (cPθ
, P+

θ , P−θ ) (see Definition 4),

and let X±
θ (s, n), with initial state s, evolve according to the kernel

P±θ Pn
θ ,

or, equivalently, for n > 0, let the transition from X±
θ (s, n) to X±

θ (s, n + 1) be

governed by Pθ, whereas the transition from X+
θ (s, 0) to X+

θ (s, 1) is governed

by P+
θ and that from X−

θ (s, 0) to X−
θ (s, 1) by P−θ , respectively. Hence, while

n > 0, both X+
θ (s, n) and X−

θ (s, n) are driven by the same Markov kernel,

and, without loss of generality, we assume that the processes {X±
θ (s, n)} are

constructed using common random numbers. For g ∈ D, we set

D(Pθ, g; s) = E

[
cPθ

(s)
∞∑

n=0

(
g(X+

θ (s, n)) − g(X−
θ (s, n))

)
]

,

or, equivalently,

∞∑
n=0

P ′θP
n
θ g = D(Pθ, g) . (18)

Let τ±θ (s) denote the coupling time of X+
θ (m, s) and X−

θ (m, s), that is,

τ±θ (s) = inf
{
m ∈ N : X+

θ (s,m) = X−
θ (s,m)

}
, (19)

and τ±θ (s) = ∞ if the set on the righthand side of the above equation is empty.

With this definition, for g ∈ D,

D(Pθ, g; s) = E


cPθ

(s)
τ±θ (s)∑
n=0

(
g(X+

θ (s, n)) − g(X−
θ (s, n))

)

 .

Let Xθ be distributed according to πθ. Under the conditions in Theorem 1 it

holds

d

dθ
E[g(Xθ)]=E

[
D(Pθ, g; Xθ)

]
(20)

=E


E


cPθ

(Xθ)
τ±θ (Xθ)∑

n=0

(
g(X+

θ (Xθ, n)) − g(X−
θ (Xθ, n))

)
∣∣∣∣∣∣
Xθ




 ,

for any g ∈ Dv.

17



Even if the stopping time τ±θ is a.s. finite, it may be prohibitively large for

the estimator in (20) to be of practical use. For this reason we introduce a

truncated version of D(Pθ, g; s): for N > 0, set

DN (Pθ, g; s) =
N∑

n=0

P ′θP
n
θ g = E

[
cPθ

(s)
N∑

n=0

(
g(X+

θ (s, n)) − g(X−
θ (s, n))

)
]

.

Conditions (C1) − (C3) imply that DN (Pθ, g; s) converges geometrically fast

towards D(Pθ, g; s). Hence, for N sufficiently large,

d

dθ
E[g(Xθ)]≈E

[
DN (Pθ, g;Xθ)

]

=E

[
E

[
cPθ

(Xθ)
N∑

n=0

(
g(X+

θ (Xθ, n)) − g(X−
θ (Xθ, n))

)
∣∣∣∣∣ Xθ

]]
,

for any g ∈ Dv.

Remark: Elaborating on (5), it holds that

P ′θ

∞∑
n=0

(Pn
θ −Πθ)g = D(Pθ, g) , g ∈ Dv .

The operator D :=
∑∞

n=0(P
n
θ −Πθ) is called deviation operator in the theory of

Markov chains, and, elaborating on the deviation operator, the above equation

reads

P ′θ D g = D(Pθ, g) , g ∈ Dv ,

which extends a result on the relation between derivatives and the deviation

operator in [10] to chains on a general state–space.

5.1.2 Chains with an Atom

We now turn to the situation where X(θ) possesses an atom, denoted by α ∈ T .

Let Xθ(α, n) denote the Markov chain started in α and denote the first entrance

time of the chain into α by τθ,α. The expression of the stationary distribution

for a chain with atom is well-known (see [20]) and we obtain from (20) for any

g ∈ Dv:

d

dθ
E[g(Xθ)] =

1
E[τθ,α]

E

[ τθ,α∑
n=0

D(Pθ, g;Xθ(α, n))

]
.
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The above estimator can be rewritten as follows. Denote by τ±θ,α(s) the first

time that X+
θ (s,m) and X−

θ (s,m) simultaneously hit α:

τ±θ,α(s) = inf
{
m ∈ N : X+

θ (s,m) ∈ α , X−
θ (s,m) ∈ α

}
.

Then, for any g ∈ Dv:

D(Pθ, g; s) = E


cPθ

(s)
τ±θ,α(s)∑
m=0

(
g(X+

θ (s,m)) − g(X−
θ (s,m))

)



and the overall estimator becomes

d

dθ
E[g(Xθ)] =

1
E[τθ,α]

E

[ τθ,α∑
n=0

D(Pθ, g;Xθ(α, n))

]
. (21)

From a simulation point of view, formula (21) poses the problem of estimat-

ing the inner expected value. As we will show below the inner expected value

can be avoided. To see this, we simplify the notation and set

H(s,m) = cPθ
(s)

(
g(X+

θ (s,m)) − g(X−
θ (s,m))

)
. (22)

With this notation the right hand side of (21) reads

1
E[τθ,α]

E




τθ,α∑
n=0

E




τ±θ,α(Xθ(α,n))∑
m=0

H(Xθ(α, n),m)

∣∣∣∣∣∣∣
Xθ(α, n)





 .

Let F(τθ,α) denote the σ-field generated by Xθ(α, 0), . . . , Xθ(α, τθ,α). By cal-

culation,

E




τθ,α∑
n=0

E
[ τ±θ,α(Xθ(α,n))∑

m=0

H(Xθ(α, n),m)
∣∣∣∣Xθ(α, n)

]



= E


E

[ τθ,α∑
n=0

E
[ τ±θ,α(Xθ(α,n))∑

m=0

H(Xθ(α, n), m)
∣∣∣∣Xθ(α, n)

]∣∣∣∣∣F(τθ,α)

]


because Xθ(α, n) is measurable with respect to F(τθ,α)

= E


E

[ τθ,α∑
n=0

τ±θ,α(Xθ(α,n))∑
m=0

H(Xθ(α, n),m)

∣∣∣∣∣F(τθ,α)

]


= E




τθ,α∑
n=0

τ±θ,α(Xθ(α,n))∑
m=0

H(Xθ(α, n),m)
]


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and inserting (22) yields

= E

[ τθ,α∑
n=0

cPθ
(Xθ(α, n))×

τ±θ,α(Xθ(α,n))∑
m=0

(
g(X+

θ (Xθ(α, n),m)) − g(X−
θ (Xθ(α, n),m))

)

 . (23)

Hence, (21) becomes

d

dθ
E[g(Xθ)] =

1
E[τθ,α]

E




τθ,α∑
n=0

cPθ
(Xθ(α, n))

τ±θ,α(Xθ(α,n))∑
m=0

(
g(X+

θ (Xθ(α, n), m)) − g(X−
θ (Xθ(α, n),m))

)

 .

We conclude this section by presenting an alternative representation of

the above estimator. We define inhomogeneous Markov chains as follows. Let

X+
θ (n; m) be such that X+

θ (n; m) starts in α and the first n transitions are

performed according to Qθ and the transition from X+
θ (n;n) to X+

θ (n; n + 1)

is generated according to P+
θ and after n + 1 the transition kernel is Pθ. Define

X−
θ (n; m) in the same vein. Note that on the event {τθ > n}

X+
θ (n; m) = X−

θ (n; m) = Xθ(α, m) , m ≤ n . (24)

Denote by τ±θ,α(n) the first time that X+
θ (n; m) and X−

θ (n; m) simultaneously

hit α:

τ±θ,α(n) = inf
{
m ≥ n : X+

θ (n;m) ∈ α , X−
θ (n; m) ∈ α

}
. (25)

The expression in (23) then is equal to

E




τθ,α∑
n=0

cPθ
(Xθ(α, n))

τ±θ,α(n)∑
m=0

(
g(X+

θ (n;m)) − g(X−
θ (n;m))

)



= E




τθ,α∑
n=0

cPθ
(Xθ(α, n))

τ±θ,α(n)∑
m=n+1

(
g(X+

θ (n; m)) − g(X−
θ (n; m))

)

 ,

where the last equality follows from (24). Hence,

d

dθ
E[g(Xθ)] (26)

=
1

E[τθ,α]
E




τθ,α∑
n=0

cPθ
(Xθ(α, n))

τ±θ,α(n)∑
m=n+1

(
g(X+

θ (n;m)) − g(X−
θ (n;m))

)

 ,

with g ∈ D.
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5.2 Examples

Consider a single server queue with i.i.d. exponentially distributed service times

with rate µ. Service times and interarrival times are independent and let the

interarrival times be a sequence of i.i.d. random variables following a Cox dis-

tribution with rates ηj , j = 1, 2, and parameter θ, that is, the interarrival times

consist with probability 1 − θ of a single exponentially distributed stage with

rate η1, and a second stage with rate η2 follows with probability θ. Let hµ de-

note the density of the Exponential distribution with rate µ and write Eµ for the

distribution. Denoting the density of the sum of two independent exponentially

distributed random variables with rate η1 and η2 by hη1,η2(x) and the corre-

sponding distribution function by E(η1,η2), the density of the interarrival times

is given by

hθ(x) = (1− θ)hη1(x) + θhη1,η2(x) , x ≥ 0 .

The parameter of interest is θ. Observe that, for θ = 1, hθ(x) = hη1,η2(x)

and the interarrival times follow a phase-type distribution, whereas, for θ = 0,

hθ(x) = hη1(x) and the interarrival times follow an Exponential distribution.

5.2.1 Discrete State–Space

Let Xθ(n) = (Xθ(1, n), Xθ(2, n)) be the state of the system, with Xθ(1, n) ∈ N
the total number of customers in the system, and Xθ(2, n) ∈ {1, 2} the stage of

the interarrival time. Let

Pθ((k, i); (k′, i′)) = P (Xθ(m + 1) = (k′, i′) |Xθ(m) = (k, i) ) ,

for (k, i), (k′, i′) ∈ N× {1, 2}. Then, the probability that an arrival occurs is

Pθ((k, 1); (k + 1, 1)) = (1− θ)
η1

η1 + µ1k>0
,

Pθ((k, 2); (k + 1, 1)) =
η2

η2 + µ1k>0
,

the probability that the state of the interarrival time jumps from stage 1 to 2 is

Pθ((k, 1); (k, 2)) = θ
η1

η1 + µ1k>0
,
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and the probability that a departure occurs is

Pθ((k, 1); (k − 1, 1)) =
µ

η1 + µ
,

Pθ((k, 2); (k − 1, 2)) =
µ

η2 + µ
.

Set P = P1 and Q = P0, then

Pθ = θP + (1− θ)Q . (27)

For any θ the process is a discrete-time Markov chain which is irreducible,

and hence any state is an atom. In particular, (0, 1) is an atom for each of the

processes. Let us verify conditions (C1) to (C3). We assume that for any θ the

process is ergodic, from well-known results of the G/M/1 queue (see [3]) this

requires that the mean service time must be smaller than the mean interarrival

time. Hence, for all 0 ≤ θ ≤ 1,

(1− θ)
1
η1

+ θ

(
1
η1

+
1
η2

)
>

1
µ

,

or

1
η1

>
1
µ

For the Lyapunov function we try the function from S = N0 × {1, 2} to R+,

which is linear in the number of customers, i.e.:

g(k, i) , c k, (28)

for some c > 0 and i = 1, 2. Then for s = (k, 1) with k ≥ 1

E
[
g(Xθ(s, 1))

]− g(s) =Pθ

(
(k, 1); (k + 1, 1)) c (k + 1)

+ Pθ

(
(k, 1); (k, 2)

)
c k

+ Pθ

(
(k, 1); (k − 1, 1)

)
c (k − 1) − c k

=(1− θ)
η1

η1 + µ
c (k + 1) + θ

η1

η1 + µ
c k +

µ

η1 + µ
c (k − 1) − c k

< 0 .

Note that s = (k, 2) is only a reachable state if θ > 0, in this case we have

similarly for k ≥ 1,

E
[
g(Xθ(s, 1))

]− g(s)= c(k + 1)
η2

η2 + µ
+ c (k − 1)

µ

η2 + µ
− c k ,
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which is smaller than 0 if

1
µ

<
1
η2

.

We conclude that for any c > 0 the function g in (28) is a Lyapunov function

with

Vθ = {(0, 1), (0, 2)} for θ > 0

and

Vθ = {(0, 1)} for θ = 0 .

Without loss of generality, we take c = 1 in the Lyapunov function g. While the

ergodicity condition is

1
η1

>
1
µ

, (29)

we also required above that

1
η2

>
1
µ

. (30)

Let us point out, without going into details, that we do not need relation (30)

for satisfying the condition (C1) if we take mθ sufficiently large in relation (12).

Indeed, suppose that relation (29) is satisfied but relation (30) not, then

η2 > µ > η1 . (31)

In the long-run the fraction of states for which the interarrival process is in

phase 1 and phase 2 is f1 , c
η1

and f2 , cθ
η2

, where c , ( 1
η1

+ θ
η2

)−1. By (31),

f1 > f2

and the derivations above give that

E[g(Xθ(s, 1))] − g(s)





< 0 for s = (k, 1)

> 0 for s = (k, 2) .

(32)

Write E[g(Xθ(s, t))]− g(s) as a telescope sum:

E[g(Xθ(s, t))]− g(s) = E

[
t∑

k=1

(
E[g(Xθ(s, k)) |Xθ(s, k − 1)] − g(Xθ(s, k − 1))

)]
.
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Ergodicity implies that

lim
t→∞

E

[
t∑

k=1

(
E[g(Xθ(s, k))] − g(Xθ(s, k − 1))

)]

exists. This together with (32), we find that the number of negative terms minus

the number of positive terms in the right hand side tends to infinity as t →∞
with probability one. Hence, for t sufficiently large the left hand side is negative

for any state s. Take mθ = t, then relation (12) is satisfied. We conclude that

indeed the ergodicity condition is sufficient for condition (C1).

In an ergodic Markov chain with an atom the Harris condition is automati-

cally fulfilled, which implies that condition (C2) is satisfied. It is straightforward

to check the condition (C3). By Theorem 2 together with relation (14), we may

choose the bounding function v as

v(s, i) , eλs , (s, i) ∈ S

for a sufficiently small λ, which gives

Dv =
{
g : S → R

∣∣ ∃r ∈ R : |g(s, i)| ≤ r · eλs, (s, i) ∈ S
}

.

Note that Theorem 2 implies that

Dν ⊂ L1(Pθ,Θ) ∩ L1(Πθ,Θ) .

Only the transition out of state (k, 1) does depend on θ. Specifically, for g ∈ Dν ,

it holds:

d

dθ

∑

r∈S

Pθ((k, 1); r) g(r) = g(k, 2)
η1

η1 + µ1k>0
− g(k + 1, 1)

η1

η1 + µ1k>0
,

whereas

d

dθ

∑

r∈S

Pθ((k, 2); r) g(r) = 0 .

Set

P+((k, 1); (k, 2)) =
η1

η1 + µ1k>0
= P−((k, 1); (k + 1, 1)) ,

P+((k, 1); (k + 1, 1)) = 0 = P−((k, 1); (k, 2)) ,
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and for any other pair of states s, s′ set P+
θ (s; s′) = Pθ(s; s′) = P−θ (s; s′). In

words, under P+ there are two possible events that can trigger the Markov chain

to leave state (k +1): a departure takes place, or the phase of the interarrival is

increased. Under P− the two possible events that can trigger the Markov chain

the leave state (k + 1) are: a departure takes place, or an arrival occurs. Then,

for any g ∈ Dν it holds that

d

dθ

∑

r∈S

Pθ(s; r) g(r) =
∑

r∈S

P+(s; r) g(r) −
∑

r∈S

P−(s; r) g(r) , s ∈ S ,

which implies that (1, P+, P−) is a Dν–derivative of Pθ. Observe that P+ = P1

and P− = P0.

A quick way of obtaining the above result is as follows. We revisit the repre-

sentation of Pθ as the mixture of the kernels P and Q in (27). For any g ∈ Dν ,

it holds that
∫

P (s; du)g(u) and
∫

Q(s; du)g(u) exist and are finite. Hence, by

Example 2, Pθ is Dν-differentiable with Dν-derivative (1, P, Q), where P+ = P

and P− = Q.

Because the Dν–derivative of Pθ is independent of θ, Pθ is Dν–Lipschitz

continuous at any θ ∈ [0, 1]. Hence, provided that 1/η1 > 1/µ, Theorem 3

applies and the estimator in (20) with τ±ã as in (19) is unbiased for any g ∈ Dν .

5.2.2 Continuous State–Space

Let Wθ(n) be the waiting time of the nth customer arriving to the system.

We have S = R and we take the usual norm on R for || · ||S . Let Fθ denote the

distribution function of the interarrival times. Let {Aθ(n)} be the i.i.d. sequence

of interarrival times and {S(n)} the i.i.d. sequence of service times, respectively.

Lindley’s recursion yields:

Wθ(n + 1)= max( Wθ(n) + S(n)−Aθ(n + 1) , 0 ) , n ≥ 1 ,

and Wθ(1) = 0. For w > 0, the transition kernel for the waiting times is given

by

Pθ(v; (0, w])=
∫ ∞

0

∫ ∞

max(w+a−v,0)

G(ds) Fθ(da)

and

Pθ(v; {0})=
∫ ∞

0

∫ max(a−v,0)

0

G(ds) Fθ(da)
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For the ergodicity of Markov chain Wθ(n), 0 ≤ θ ≤ 1, we need that (see [3])

1
µ

<
1
η1

. (33)

Note that µ−1 < η−1
1 implies µ−1 < η−1

1 + η−1
2 . Since G and F1 are both

exponentially distributed we have
∫ ∞

0

∫ a

0

yG(dy) Fθ(da) = µ

(
(1− θ)

1
η1

+ θ

(
1
η1

+
1
η2

))
> 1

Choose c such that for all θ

∫ ∞

0

∫ min(a,c)

0

yG(dy)Fθ(da) ≥ 1,

and choose the Lyapunov function such that for v ≥ 0,

g(v) = v for v ∈ R+ .

Then, for v ≥ c

∫
Pθ(v; dy) g(dy)=

∫ ∞

0

∫ min(a,v)

0

(y − a + v) G(dy) Fθ(da)

≤ v − 1 ≤ g(v)− 1.

Hence, g satisfies condition (C1) with

Vθ = [0, c] .

Also this Markov chain has an atom and it is straightforward to check conditions

(C2) and (C3). The bounding function is

v(s) , eλs , s ∈ R+ ,

which gives

Dv =
{
g : S → R

∣∣ ∃r ∈ R : |g(s)| ≤ r · eλs, s ∈ S
}

.

Note that Theorem 2 implies that

Dv ⊂ L1(Pθ,Θ) ∩ L1(Πθ, Θ) .

Like the previous example, the kernel can be written as mixture of two

kernels P = P1 and Q = P0:

Pθ = θP + (1− θ)Q , θ ∈ [0, 1] .
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Specifically, under P , the interarrival times are distributed according to E(η1,η2),

and under Q, the interarrival times have distribution Eη1 . Hence, Pθ falls into

the setup of Example 2 and it readily follows that Pθ is Dv-differentiable with

Dv-derivative (1, P,Q). Because the D1–derivative of Pθ is independent of θ, Pθ

is D1–Lipschitz continuous at any θ ∈ [0, 1]. Hence, if the system is stable at

θ = 1 (see (33)), then Theorem 3 applies and the estimator in (26) with τ±θ,α as

in (25) is unbiased for any g ∈ Dv.
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