1 Introduction

A germ-grain model may provide a good description for a very irregular pattern observed
in microscopy materials science, biology and analysis of images. Perhaps the best known
model is the Boolean model (Matheron [7]) formalizing a configuration of independent,
randomly placed particles. A Boolean model is formed by placing random balls centered
at the points of a Poisson process and taking the union of these balls. The points of the
Poisson process are sometimes called the germs and the associated balls the grains. In a
natural generalization of the Boolean model the Poisson process of grains is replaced by a
general point process and balls by any compact sets or even more general objects. If we
take these objects as a mark at the point of point process of germs, then such a marked
point process N (-,-) we will call a marked point process (abbreviated by m.p.p.) driving
the germ-grain model.

The simulation of a Boolean model within a compact set T' falls into the following
stages. First, the number of points is determined by simulating a Poisson random variable
J with the parameter A\|T|, where \ is the intensity of the Poisson process and |T'| the
volume of the set T. Then J independent random points are simulated in 7" according to
the Bernoulli process. Next, we generate J i.i.d. copies of radius r. Finally, the Boolean
model is constructed by

A(T) =" (ti + B(ri))
t; €T
where @ is Minkowski addition and B(R) is the ball with radius R.

We want to simulate the so-called rare event A for Boolean model A(T), or more
generally for a germ-grain model. That is, IPy(A) is "small” (typically of order 107).
Using the so-called Crude Monte Carlo (MC) method of simulation in this case is ineffi-
cient. Precisely, let n be a size of a sample and T(A;), I(As),..., I(A,) replicants of T(A).
Then we estimate p = Py (A) by

S|

p==> T(4).
=1
By

6% = p(1 —p)

we denote an empirical variance. According to the standard Central Limit Theorem

Va(p—p) 2 N©0,0%) ,

where 02 = p(1 — p). Hence
. 1.96
—
pE—
is an asymptotic 95% confidence interval. Note that although the absolute error &
p(1 — p) is small, the relative error is high:

2 .

Q»

1
Re(p) == — ~ — — 400, as p— 0.

poVp
In other words, a confidence interval of width 10~* may look small, but if the point
estimate p is of order 1076, then this estimation is in fact impossible.

Therefore we will use the Importance Sampling (IS) method. The main idea is to
compute IPy(A) by simulating a germ-grain model from a probability measure IP 5, such
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that IP is absolutely continuous with respect to it. By Theorem 2.1 this is the case when
driving m.p.p.’s in both germ-grain models are absolutely continuous. We also find the
Radon-Nikodym derivative L(-), that is

dPy

ﬂ(,4) = L(4) .

Then
Py (4) = By L(A)I(4) (1.1)
where the expectation is with respect to measure P 5. Hence to estimate IPy(A) we

generate (I(Ay), Ly), (I(A2), La), ..., (1(A,), Ly) from the measure IP ; and construct the
estimator

) 1 ¢
prs = Zle‘]I(Az‘) : (1.2)
P
The 95% confidence interval is then
1.96
pjg £ ——0 1.3
P1s \/’ﬁ grs , ( )
where
1< 2 2
675 = - > LII(A;) — s - (1.4)
i=1

We choose the measure IP i (that is, the parameters of the new germ-grain model) in such
a way that the event A is observed frequently. In other words, under a good choice of the
parameters we decrease the relative error.

In applications sometimes we consider events on a random set 7. This concept of
localization plays a fundamental role in simulation. Our goal is to prepare an appropriate
framework for it. Therefore, similarly like for a process on the real line, we introduce the
notion of a set indexed martingale and a stopping set 7. The likelihood process L(-) is a
mean one set indexed martingale. Then we can simulate an event A up to a stopping set
7. Namely, we use Wald’s formula:

We analyze in detail the Boolean model, where the point process is a Poisson process
and balls are i.i.d. distributed. We consider the event A such that balls form a chain
(all circles in this chain are connected), which joins the origin with the border of box T
with side length K. That is , we simulate the probability that the radius of the occupied
component of the origin is greater than K. The problem of finding IP 5 (A) is relevant in
industry when we apply the electrodes to the plates of the dielectric materials. Because
of the manufacturing process small holes arise in the electrodes. A chain of small holes
crossing from origin to the border of the box means a diminished value of the capacitance.
Typically the parameters of the model: size of T', intensity of Poisson process A and
distribution of radius of ball v are such that IPy(A) is "small”. We prove that the IS
scheme for an appropriate choice of a new intensity of the Poisson process is logarithmic
efficient which implies improvement. We also give some numerical results.

The paper is organized as follows. In Section 2 we find sufficient conditions under which
the two germ-grain models are absolutely continuous. Section 3 deals with a wire frame
model. In Section 4 we consider simulation on a general random stopping set. Finally, in
Section 5 we analyze some numerical example.



2 Germ-grain model

We start with a formal definition of a germ-grain model. We will define a marked point
process as a point process on a product space of locations and marks with the additional
property that the marginal location process is itself a well-defined point process. By B(X)
we denote the Borel o-field of X. Let (T, B(T)) and (E, B(E)) be subspaces of some vector
Polish space (W, +) with binary operator +. Let N¥(.) constitute a simple point process
on T, that is integer valued random function such that Ny =1 or Ny = 1 for any ¢ € T.
Denote by {t,} the points of N¥(-). Then N(-,-) = {[tn, my]} is a marked point process,
where m,, is the mark corresponding to ¢,. In other words,

N(w,B,M) =" €1, (w)mn(w)) (B; M) (2.1)

n>1
for B € B(T), M € B(E) and €, m, () is a Dirac measure.

Example 2.1. In the case of the Boolean model, T and E are subspaces of IR?. The
space T' is a location space and F is a mark space, that is a space of balls.

Let p(dt,dm) be a mean measure of N:
EN(B, M) = u(B,M), BeB(T),M ¢ B(E) .
Similarly, let A(d#) be a mean measure of point process NZ(-):
ENE(B)=XB), BeB(T).

It can be shown that p(d¢,dm) is absolutely continuous with respect to A(d¢), that is from
the Radon-Nikodym theorem there exists density v4(dm) such that

w(dt,dm) = X(dt)ve(dm) , (2.2)
where v4(dm) can be interpreted as the distribution of the mark of the point ¢.

Example 2.2. If N¥(.) is a Cox process with i.i.d. marking, then p(dt, dm) = A(dt)F(dm),
where F'(-) is a distribution of mark.

Remark 2.1. In the classical theory of marked processes on the real line, it is well known
that under certain conditions on the probability space and filtration, the mean measure
of a marked point process determines its distribution (Jacod [5]). As we shall see, this is
not true for processes on general spaces. Consider the Poisson process N¥(-) = N(-, E)
on T = [0,1]? with mean measure equal to Lebesgue measure A(dt) = dt. However, the
Lebesgue measure is also the mean measure of the following process. Let Lg, L1, ... be
i.i.d. unit rate Poisson processes on [0,1]. Denote the time of the £ jump of L;, by T}
Now, let locations of the points be {(TZ-O,T,z),z', kE>1}.

Now, writing B®& M = {b+m:b &€ B,m € M} for the Minkowski addition of B and
M, we define a germ-grain model by the union:

A(N) = Up>1(tn, @ my) .

Denote S=T ¢ E.



Consider two marked points N and N on T x E having the mean measures p and
fi, respectively. Let IPy and Py be the distribution of the germ-grain model driven
by m.p.p’s N and N, respectively. Denote N = {n : P(N(T x E) = n) > 0} and
N ={n:P(N(T x E) =n) > 0}. For n € N define

Ni,(B, M) := E[N(B, M)|N(T,E) =n],  BeB(T),M e B(E) .

Note, that Nj, is also a marked point process on T x E. Let ,u‘n(dt, dm) be its mean
measure. Similarly we define N|n(-, -) and fij, (-, -)-

Proposition 2.1. Marked point process N(-,-) is absolutely continuous with respect to
marked point process N(-,-) (N << N) iff ppp, << fij, for n € N and N(T x E) <<

N(T x E).

Proof. If N << N, then N(T x E) << N(T x E) and N, << N‘n, hence also p, << fij,-
We prove the converse implication. We use the notation (¢, m) = (t1,m,...,tx, my) for
the (T x E)*-valued vectors (k = 1,2,...). The k' order factorial measure ozfn of Ny, is

a measure on (T x E)* defined by

a\kn(d(ta m)) = EN(;(d(t,m)) )

where

k—1
Nj(d(t,m)) = Nip(d(t1,m1)) (Njn = €ty ) (d(E2,m9)) - . (N, — ze(ti,mi))(d(tkamk)) :
Thus

[ remataem) = [ S femNaem)) (2.3
(t;m)

. # . .. . .
where the summation Z is over all n-tuples of distinct points in 7. We prove that

af“n is absolutely continuous with respect to df“n for each n € N NN and k < n. We use

induction. For k = 1 the assertion is satisfied, since we have a|1n(dt, dm) = p,(dt, dm)

and &‘ln(dt, dm) = fij,(dt,dm). Assume that the assertion is satisfied for £ — 1. Let
daﬁ;1
L—1(t,m) = W(tam) (2.4)
and
L(tm) = gy (2.5)
dM|n



Then

a (B1><M1,.. BkXMk / /
In TxE J(TxE)k Z Z

el — 1tk¢t i<k—1
€t1,m1 (Bl X Ml) <o €t omy, (Bk X Mk)

da (tl,ml,... tk_l,mk_l)dN‘n(tk,mk)

[n

/ / Z > ey (Br X M) ... €1 m, (Bi x My)
TxE T><E

colk—1 tp At i<k—1

doz‘kn Yt ma, ..y, tk—1,mk—1)dmn(tk,mk)

-/ / z ST Lot (bt 1) Dty mg)
TXE T><E

otk—1 tpF#tii<k—1
€t1,m1 (B1 X Ml) - €t my, (Bk X Mk)

da\kn 1(t1’ my, ... atkfla mkfl)d/]‘n(tk, mk)

# -
:/ S L6 m)erymy (Br % My) ... ety my (By x M)k (dt, dm) |
(TXE) t

k
t,. .tk

where Li(t,m) = Ly_1(t1,m1,...,tg—1, mp_1)L(tx, my). Thus oz‘k << oz‘ for £ < n.
Suppose now that N (B x M) = 0. That is,

Z]P @x By =m) [ LN m)
(TxE)™

=Y P(N(T x E) )/(BXM)narn(d(t,m)):o.

’I’LEN

Hence all terms must be zero and for all n € N O A we have
/ & (d(t,m)) = 0. (2.6)
(Bx M)
Thus from the above considerations for all n € A/
/ aﬁl(d(t, m)) =0 (2.7)
(BxM)™
yielding N(B x M) = 0. This completes the proof.

Remark 2.2. For a marked Poisson process with intensity A and a mark independent of
a position with a distribution measure v(-), we have

P(N(T x B) = n) = 2" i

n!

where |B| is the volume of a set B, and

o, (d(t,m)) =dty ... dtpdr(mi) ... dv(my) .



Remark 2.3. Note that from the assumptions of the Proposition 2.1 it follows that p is
absolutely continuous with respect to ji. In fact, let B x M be such that (B x M) = 0.
We have N C N. Then

Z]P (T x B) = n)fij,(B x M) =0

and for n € N we have fin(B x M) = 0. Hence also (B x M) = 0 for n € N and
finally 4(B x M) = 0. The converse statement in general is not true. In fact, consider
two points processes N¥(-) and N¥(-) on T = [0,1]* given by N¥(-) = 6(1/2,1/2)(-) and
NE() = d(1/2,1/2) () + 61ya,1/4) ()

Theorem 2.1. Let T and E be compact subsets of some vector Polish space W. If N <<
N, then Py << ]PN‘

Remark 2.4. The same assertion for a Boolean model driven by a Poisson process marked

by i.i.d. balls was proved recently by Van Lieshout [13].

Remark 2.5. Note that if N and N are Cox processes, then by Remark 2.2 the assump-
tions of Theorem 2.1 are satisfied.

Proof. Suppose that IP g (B) = 0 for some B € B(S). That is,

n

HEZN]P (T x B) )/(TXE)n ]IB(izzl(ti@mi))Nl’}L(d(t,m))

=Y P(N(T x E) )/(TXE)n 10 (ti & m;))a, (d(t,m)) = 0.

neN =1

Hence all terms must be zero and for all n € A/ we have

n

/(TXE)n 15(S(# & mi))al, (d(t,m)) = 0. (2.8)

i=1
Thus from Proposition 2.1 for n € N/

n

[y, T maf a(e ) =0 29)

i=1

yielding IP 5 (B) = 0. This completes the proof.

The likelihood ratio dIP i /dIPy is

L) = B gy Lnen PIV(T x B) = 1) [y Ta(X" @ mi))af, (d(¢, m))
T apy, Sneir POV(T X B) = 1) [y TAZT @ my))ar, (d(t, m))
i=1(bi (2.10)

Example 2.3. [ Poisson cluster process] Let N (-, -) be a Poisson process with the intensity
A marked by a point process N;(-) at position ¢;, where N;(-) are conditionally independent
given the realization of the parent Poisson process. Then N(-) = Y50, (t; & N;(+)) is a
cluster Poisson process (see [6]). Assume that N;(-) are absolutely continuous with respect
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to the unit Poisson process on S with the offspring intensity measure v(-). Let N(-) be
the Poisson cluster process with intensity A and the offspring measure . Then

dN Zfzozl He_)\me's‘ (1=n) Z¢ fsn :-L:l V(tqg—l(i) — s;)dsy ... dsy

where the sum is over all ordered partitions ¢ of A; see Van Lieshout [12]. If each parent
point has a single daughter point with displacement densities v(-) and 7(-), then (2.11)

reduces to
(;\ M)|T| A ds
L(A) = - = Il
( ) ¢ <>\) s’

where H(A) denotes the number of points in configuration A.

, (2.11)

Sometimes the expression (2.10) can be simplified. This is the case for a wire frame
model.

3 Wire frame model

The germ-grain model in which there is one-to-one correspondence between the driving
m.p.p. and the germ-grain model itself, we will call 'wire frame model’. The classical
example is a Boolean disc model on IR?, in which marks are discs centered at the location
points {t;} of the point process N¥(-) with diameters {r;}. That is, A(N) = U2, S;,
where S; = {t € R? : ||t — t;]| = r;} and || - || means Euclidean norm. Denote by
m:T®FE — T x E the 1 — 1 mapping such that 7(A(N)) = N. Then from (2.10) we have

dPy . dN
ap, () = L) = o) (3.1)

Consider the marked Cox processes N(-,-) and N(-,-) with intensity measures A(-) and
A(+), respectively, and with independent marking with measures v(-) and &(-). Let A << A
and v << v. Then by Prop. 6.10, p. 233 of Karr [6], N << N and hence also Py << Py.
In this case

H(w(A))

3%(14) — exp {/W(A) log <%(t)> dNE(t)} exp {/T <1 _ %(t)) dA(t)} 11 %(ti) ,

=1
(3.2)
where H(7(A)) is the number of points of the Cox process constructing a set A. In
particular, if N(-,-) and N(-,-) are marked Poisson processes, then

dP . A\ H () H(m(A)) dv
— N (4) = XNIT] <7> H —(t) .

d]PN by dov
For example, if the diameters in both Boolean disc models have the same distribution,
then H(r(4))
]P ~ ™
dPN 4y = (O-nimy (2 . (3.3)
d]PN A



4 Random stopping

In this section, we will index m.p.p.’s N(,-) and N(-,-) defined via (2.1) by a semilattice
T of a compact subset of T'x E, where BAC = BNC for B,C € T x E. Let W be a locally
compact space. We assume that () € 7, that 7 is closed under arbitrary intersections,
and that UgezB = T ((-) denotes the closure of set). The probability space (€2, F,Py)
is equipped with a right-continuous filtration {Fp, B € T} that satisfies Fg C F¢ for
B C C and Fy contains all the null sets. Let 7 =\/5 Fp.

We will denote the class C(u) of finite unions of sets in class C. Let ”C” mean strict

inclusion and (-)° denote the interior of a set. We make the following two assumptions:

SHAPE If B,C € T and B,C # 0, then BNC # 0. Also, if By,...,B, € T and
B C Zle B;, then there exists index i (1 < i < k) such that B C B;.

Separability from above There exists an increasing sequence of finite subsemilattices
7, such that 7, C 7, 0 € T, Az, = N, Vn, and sequence of functions g, : 7 —
7T, (u) U{T} preserving all intersections, satisfying B C (g,(B))° VB € 7, such that
gn(B) C gm(B) if n > m, and B = Nugn(B), VB € T. Also, if B # (), C € T and
B c C , then B C g,(B)NC Vn.

The condition SHAPE imposes a restriction on the geometric shapes of sets in 7.

Definition 4.1. 7: Q — 7T 1is called a stopping set if, for any set B € T,
{w:BC71(w)} € Fp, {w: 7(w) =0} € Fy.

Sometimes 7 is also called a simple stopping set.

Example 4.1. The classical example of set T' and lattice 7 fulfilling above conditions is
the case T = E = [0, D]¢ for some D > 0 and 7 = {[0,#] x [0,s] : t € T, s € E}. For
a filtration {Fp} one may take Fp = Un]-';n( B) where F7 is generated by the driving
m.p.p. on a set B € 7. As an example of stopping set 7 for a Boolean model one can
consider the smallest (in a sense of inclusion) box [0, (n,n,...,n)] (n € IN) such that
there exists a path through the balls joining origin with the corner (n,n,...,n) if it exists,
otherwise 7 =T x E. For more complicated examples, where e.g. W is a function space,
see Merzbach [4].

Consider the wire frame models Py and IP § such that Py << IP g, that is (3.1) holds.
Note that L(B) is a mean one martingale, that is IE[L(B)|F¢] = L(C) for C C B and
B,C € T. Then from Th. 2.5 of Merzbach [3], we have Wald’s formula

Py(A) = Eg[L(r); 4] (4.1)

for A € F;, where F, = {F € F: Fn{r C B} € Fg VB € T}. Then the IS estimator of
Py (A) in a wire frame model is

prs =Y Li(m)T(4;) . (4.2)
=1



5 Radius of the occupied component of the origin

In this section we consider the Boolean disc model driven by the marked Poisson process
N(-,-) with the intensity A and marks being i.i.d. discs. Marked Poisson process N(:, )
has the intensity A and marks being discs distributed like in a Boolean disc model governed
by Py. We will consider a rare event A on T for which limy_,oPx(A4) = 0. By (3.3) we
have
L(A) = (O] (i
A
We will give now an example of A for which the IS scheme work well, that is, it reduces
the relative error.

)H(W(A))

Definition 5.1. We say that the IS scheme is logarithmic efficient if

log Varprg

li >1.
) logp? —
If
Vars
lim ~2PIS _
A—0 p

then the IS scheme is an improvement over MC simulation.
Logarithmic efficiency implies improvement (see Asmussen [1]).

Theorem 5.1. Let A be such an event that

loglPy(A) =1 (5.1)

lim

1
A—0 6()\)
for some positive scaling function (). Let A> N If

B
li A
20 2B(N)
then IS scheme is logarithmic efficient. If B(-) is strictly decreasing such that

>1, (5.2)

im (65) — 50 = o0 (53)

A—0 5\
then the IS scheme is an improvement.

Proof. Let \ = % Denote by IPg and IEg the probability and the expectation with respect
to the Poisson process with the intensity 3, respectively. Note that

>

5 [L2(T); 4] = (O VITI, [(—)

CNITG-NIT I <i>
X\

ei()‘ NATIp (A) .

>

"

Thus -
lim log T [L*(T'); A] = lim log P(4) = —A(X)



and limy_,g logIP)(A) = —B()), which completes the proof in view of Definition 5.1.
O

Assume from now, that the radius of discs is equal to r = 1. Let T = T(K) :=
[-K,K]? CR? (d > 2) for fixed K > 1. We shall apply the above theorem to the event
A := {0 «— OT'(K)} that there exists a path through balls of the Boolean model joining
0 with the surface 0T of T"

IT(K) = {t = (t1,...,tg) € R : max|t;| = K} .

In other words, in the wire frame model, the origin is inside a disc which is connected
through a chain of discs with the surface 0T.

Theorem 5.2. The IS scheme for Ag is logarithmic efficient.
Before we give the proof we prove the following lemmas.

Lemma 5.1. There ezists a decreasing positive function ¢(X\) such that

lim _ﬁ(k) log 5 (0 —— OT(K)) =1 . (5.4)
Proof. Using version BK and FKG inequalities for continuous percolation (see Th. 2.2
and Th. 2.3 of Meester and Roy [8]) we obtain (6.24) in Grimmett [2]. Then using the
subadditive inequality limit theorem one can mimic the proof of Th. 6.10 of Grimmett [2]
to obtain its version for the continuous percolation. That is, there exist strictly positive
constants p and o, independent of A, and a decreasing positive function ¢(A) such that

pK1 =l K¢ < Py (0 — IT(K)) < o K4 Te Ko

for all K > 1. This completes the proof.

Lemma 5.2. Let 0 < f(x) < 1. Then

PN log()

A=0 G(Af (X)) log(Af(A))
Proof. The main idea of the proof is to approximate the continuous problem by site per-
colation problems on a special lattice constructed by partinioning R? into small cubes.
Let x be a positive integer and Zﬁ = %%d. We partition R? into cubes whose centers are
the points of Z¢, defining By (t) = x&,[t; — &=, t; + 5] for t € ZZ. We turn Z¢ into a
lattice G, by defining the adjacency relation ~ on %ﬁ with the rule that  ~ y iff there
exist points u € B, (X) and v € By (y) such that p(u,v) <2 where p(-,-) is the Euclidean
distance. We shall consider site percolation on the ensuing lattice G,. We declare a vertex
z of G, to be open if there exist one or more points of the Poisson process within the
cube By(z), and closed otherwise. The states of different vertices are independent random
variables and the probability p,(\) that any given vertex is open is given by

(5.5)

k—d

PN =1—e A (5.6)

Let v, = (1 + %\/E)d. From the rescaling property of a Boolean disc model and the con-
siderations made by Meester and Roy [8], p. 60 or Grimmett [2], Sec. 12.10, for sufficiently
small A we have

P, (3y) (0 OT(K)) <P)(0 «— IT(K)) <P} ,)(0 «— IT(K)) , (5.7)
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where P} (+) is a law of site percolation on G, defined by the adjacency relation ~ for p.
Thus by Th. 2.38 of Grimmett [2] applied to site percolation we have

log Py (1) (0 «— IT(K)) log A
logIP)(0 «— IT(K))log A f(\)
log ]Ppn(/\f()\))(o — 6T(K)) log A
~ log P, (3y,)(0 «— OT(K))log Af(})
log pr(Af(A)) log A
~ log pi(Ayi) log Af(A)

Note that lim,_.q 10%(%(&04) = 1. This completes the proof.

Proof of Theorem 5.2 Let f(\) = % < 1. Then from Lemmas 5.1 - 5.2 we have

log P10 — OT(K)) _ . $(Af(N))

A0 21og PA (0 —— OT(K)) a0 26(\)

o PEOSO)
A—0  2log A

which completes the proof of the theorem.
O

We make also some numerical analysis using the IS scheme described in this section.
We made 10000 simulations for K =64, d=2,r=1and A =1,7.

A PIS

1.6 | 7.5%107°
1.5 [ 2,5%107°
1.45 [ 1,2% 1076

Table 1: Simulation of the event 0 «— 9T'(K)
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