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1. PRELIMINARIES
1.1. Introduction

Several basic notions of probability theory can be defined and investigated
in terms of approximation theory. As a classical example, the mean of
a probability measure P on R minimizes the mean squared loss [ |z —
a|?>P(dz) over R. Hence, in a a sense, the mean is the best one-point ap-
proximation of P. The minimum value of mean squared loss is the variance
of P - yet another important characteristic of P.

The idea of approximation of P by k points (k is a fixed integer) has led to
the notion of ”k-centre” (also called k-mean or principal points) of the dis-
tribution [3, 5, 8, 10, 11, 23, 24, 30]. Often the square function is replaced
by another power function, or by some more complicated discrepancy func-
tion ¢.

In this paper we consider a probability measure P on a separable metric
space (FE,d) equipped with the Borel o-algebra. We fix an integer k, a
discrepancy function ¢, and we define the loss function

A gneigl ¢(d(z,a))P(dx) =: W(A, P), (1)

where A € &, := {A C E: |A| <k}. A k-centre of P is any element of &
that minimizes (1). Thus, a k-centre is the best approximation of P by k
points at most.

The main objects of the paper are the sequences {A,}, A,, in & such that

Wi(Au, P) = inf Wi(A, P) =: Wi(P). 2)

A sequence satisfying (2) is called minimizing (for Wi(-, P)). The paper is
devoted to the study of convergence of minimizing sequences. We replace
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the usual assumption of compactness by the sequential compactness in an-
other suitably chosen topology 7, and then we study conditions that allow
strong convergence to be deduced from 7-convergence. For example, if F
is a separable dual space the weak™ topology serves for 7. The main result
of that kind is Theorem 2.1.

The problem of the convergence of minimizing sequence arises from the
investigation of the consistency of empirical k-centres. More precisely, let
X1, X, ... be a sequence of independent, identically distributed E-valued
random elements defined on a probability space (2, F, P) and having com-
mon distribution P. Let {P,} be the sequence of empirical measure. Thus,
P, is a random measure on (E, B) defined as follows

P;L’(B):%ZH:IB(Xi(w)), weQ, BeB. (3)

Here Ip is the indicator function. Often the empirical measure PY (for
some n and w) is the only information about P. Hence, the k-centres of
P? — the empirical k-centres — are the natural estimators of the k-centres
of P, which in the present context are called theoretical k-centres. We call
the empirical k-centres consistent if every sequence of empirical k-centres
converges (in the Hausdorff sense) to the set of theoretical k-centres, P-a.s.
The consistency of k-centres is a relatively widely investigated topic; for
an overview of that problem as well as the precise definitions of the consis-
tency see Subsection 3.1 below. It turns out that P-a.s., every sequence of
the empirical k-centres is minimizing for Wy(-, P) (Lemma 3.1). By con-
tinuity of Wy (-, P) (Lemma 2.2) the empirical k-centres are consistent if
every minimizing sequence is relatively compact. This observation justifies
the study of convergence of a more general class of sequences than that of
empirical k-centres — the class of minimizing sequences.

The described scheme for proving the consistency of an estimator obtained
by minimizing the empirical loss-function is standard — using the classical
tools of probability theory the sequence of empirical estimators is showed
to be minimizing for (unknown) non-random loss-function. The question
of the convergence of minimizing sequences now arises. At this stage the
sample-caused randomness is irrelevant, important are the properties of the
parameter space and loss function (in our case, & and Wy(-, P)). In the
present paper the k-centres are considered, but we believe that the intro-
duced methods can be applied for a more general class of estimators.

The paper is organized as follows. In Section 1 we introduce the main no-
tions: loss-function, k-variance, minimizing sequence. Section 2 is devoted
to the properties of minimizing sequences. In Subsection 2.1 we show that
every minimizing sequence is bounded (Lemma 2.1). In Subsection 2.2
we define the T-convergence and we prove an important auxiliary lemma
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(Lemma 2.2). In subsection 2.3 we investigate the conditions (in terms
of P and F) under which 7-convergent minimizing sequences are conver-
gent. Those conditions form the main convergence results for minimizing
sequences (Theorem 2.1). Several counterexamples demonstrate the role of
the conditions. In Section 3 we use the main result of previous section to
prove a consistency theorem for empirical k-centres (Theorem 3.1). The
latter generalizes previous results of this type.

We remark that the paper is based on the authors doctoral dissertation
[17]. The main results can be found in the dissertation, but the proofs in
the paper are better organized, shorter and more readable.

1.2. The Loss Function

Throughout the paper we assume that (E,d) is a separable metric space,
B is its Borel o-algebra and P is a probability measure on (F,B). Let T
denote the support of P.

We consider a discrepancy function ¢ : ®T +— R* which is assumed to
be continuous, nondecreasing, ¢(0) = 0 and such that for an z, € E,
J ¢(d(z,x,))P(dx) < oo implies that for all ¢ > 0

/(b(d(x,xo) + ¢)P(dx). < oo (4)

The purpose of (4) is to ensure the finiteness of the loss-function. It holds
if ¢ has the Ao-property (there exists u, > 0 and A < oo such that ¢(2u) <
Ap(u) if u > u,). However (4) can also be true without the As-property.

Denote by £ the class of all finite subsets of E and define the loss function

W(,P):E—RT, W(AP)= miEqb(d(x,a))P(dx).

ac

Let d(x, A) := minge 4 d(x, a) be the distance of x from the set A. Since ¢
is monotone, W (A, P) = [ ¢(d(z, A))P(dz).

We now list some general properties of W (-, P). The proofs of them are
straightforward and can be found in [17].

P1. If W(B,P) < oo for a B €&, then W(A, P) < oo for every A € £.

Because ¢ is monotone, P1 follows from (4). It means that W (-, P) is
either finite or always infinite on £. Throughout the paper we assume that
it is finite.

P2. Ifsup, ,cp ¢(d(z,y)) =: ¢(o0) > 0, then W(a, P) < ¢(c0) for some
a€cb.
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Clearly ¢(c0) < oo if and only if ¢ o d is bounded.

P3. There exists a sequence of finite sets {Cy,} such that W(C,,, P) — 0.

1.3. k-variance

From now on let k¥ > 1 be a fixed integer, & := {A C E : |A| < k}. The
quantity
P):= inf AP
Wi(F):= inf W(A,P)

is called the k-variance of P. It measures the mean discrepancy of approx-
imating P by k points at most. The name ”k-variance” reflects the fact
that for £ = R and ¢ the square function, W7 (P) is the ordinary variance.
In most of what follows the function W (-, P) is considered on & only. To
emphasize the role of k the restriction of W (-, P) to & is denoted Wy (-, P).

DEFINITION 1.1.  Given an € > 0, any sequence of sets { A, } in & is said
to be e-minimizing (for Wi (-, P)) if limsup,, Wi(A4,, P) < Wi(P) +e€. A
0-minimizing sequence is called minimizing and then Wy (A,,, P) — Wy (P).

Definition 1.1 and P2 imply that ¢(co) > Wi (P) > Wa(P) > ---. In
this paper we assume that these inequalities are strict, i.e.

Wi (P) < Wi_1(P) < -+ < W1(P) < ¢(0). (5)
The following proposition gives a sufficient condition for (5). It generalizes
the previous results of the same type [26, 27].
ProposITION 1.1. If Wi._1(P) > 0, then (5) holds.

Proof. Tt suffices to show that Wy (P) = Wy_1(P) holds if and only if
Wk_l(P) = 0. Let Wk(P) = Wk_l(P) =: w, and let {Bn}, in &_1, be
a minimizing sequence for Wy_;(-, P). Then for all a € E the sequence
{{Bn,a}} is minimizing for W (-, P) so that

W(Bn, P) = W({{By,a}, P) = [ fi(z)P(dr) — 0, (6)

Sn(a)
where fI'(z) := ¢(d(z, By)) — ¢(d(z,a)) and Sy (a) := {x € E| fI(x) > 0}.
Consider a finite set C' = {¢1, ..., ¢} C E. Since (6) holds for every a € E,

W (B, P) = W({Bn,C},P) <> [ fi(x)P(dx) — 0.

i=1 v Sn(ci)



MINIMIZING SEQUENCES FOR K-CENTRES 5

Thus, W({B,,C},P) — w for every C € E. Clearly, W({B,,C},P) <
W(C, P), and P3 finishes the proof. |

The inequalities (5) are important. If
¢(u) =0 if and only if u =0, (7)

then Wi_1(P) > 0 if and only if T ¢ &1 [19, 23]. Hence, for strictly
increasing ¢, by assuming (5) we avoid the trivial case when P is concen-
trated on k — 1 or fewer points.

2. MINIMIZING SEQUENCES

Main task of the paper is to find the conditions for £ and P that ensure
the convergence of minimizing sequences. At first we present some general
properties of minimizing sequences.

2.1. General Properties

Denote Wy(P) := ¢(o0) and §; := W;_1(P) — W;(P). By (5), 6; > 0 for all
i=1,...,k.

Note first that if € < J; then every e-minimizing sequence {4,,} eventually
consists of sets of exactly & points. Indeed, if [A,,;| < k along a subsequence
{An, }, we would reach a contradiction: Wy_1(P) < limsup; Wi_1(Ay;, P)
The following important lemma states that, for sufficently small €, every
e-minimizing sequence {A,} is bounded. The proof of it can be found in
[17], we repeat the argument because of its importance. Fix an z, € E.

LEmMA 2.1.  Let {A,} be an e-minimizing sequence for Wi(-, P). If
€ < 0y then there exists a ball B(x,,7)) such that A, C B(x,, 1) for alln.

Proof. We may assume without loss of generality that |A,| = k for all
n=1,2,.... It will be shown that, for each [ = 0,1,...,k, there exists r;
such that | A, N B(x,,7)| > for all n. For [ = 0 there is nothing to prove.
If the statement is not true then there exists a largest [ in {0,1,...,k — 1}
such that the condition is satisfied by some 7;. Then, for each j = 1,2,...,
there exists n; such that n; > n;_; and

1> |An; N B(xo, 11+ J)| 2 [An; N B(xo,m)| > 1.

Let By, = An, N B(xo,77). Then Ay, \B,, C E\B(zo,7 + j).
If I = 0 then B,,, = () for each j. Thus, for each = € E, lim; ¢(d(z, Ay,)) =
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¢(00). But {4, } is e-minimizing and, therefore,

@d(o0) = /liminf o(d(x, Ap;))P(dr) < limsup Wi.(Ay;, P) < Wi +¢ (8)

J—00 Jj—o0

by Fatou’s lemma. Hence ¢(c0) < oo and, by the assumption on e, the
right side of (8) is Wy, + € < ¢(c0) which is a contradiction.

Sol > 1, |By,| =1 for all j, and ¢(d(x, An;)) and ¢(d(x, By,)) are even-
tually equal for each x € E. Furthermore, ¢(d(x, By;)) < ¢(d(z,xo) +
;) which, by (4) and our finiteness assumption, is integrable. So, by
Lebesgue’s dominated convergence theorem,

Wi(Ba,, P) = Wi, P) = [ (0(d(z. B.,)) = old(z. A,,)))P(d) =0

from which it follows that limsup; Wi(B,,, P) = limsup; Wy (A,,, P) <
Wi 4+ € < Wi, which is a contradiction. The proof is complete. |

The following corollary follows almost directly from Lemma 2.1 [17].
For each finite A = {a1,...,a;} C E define the sets

§°(a;) = {a € E|d(z,a;) < d(w, A\{a; D)},
$9(a:) = {o € Bl o(d(x, ;) < dld(x, A\{a;})}.

COROLLARY 2.1. Let{A,} be an e-minimizing sequence for Wy(-, P). If
€ < Oy then there exists an o > 0 such that P(Sg(a™)) > a for all a, € Ap.

DEFINITION 2.1. Let ¢ > 0. Any A € & satisfying Wi (A, P) <
Wi (P) + € is called an e-optimal k-centre of P. The set of all e-optimal
k-centres is denoted Uy (P). A O-optimal k-centre is called a k-centres of P.
The set of all k-centres is Uy (P).

Generally the k-centres are not unique or they might not exist. The
uniqueness is one of the crucial differences between 1-centres and k-centres
in general: when F is a rotund normed space and ¢ is strictly convex then,
unlike the cases k > 1, the 1-centre is always unique. In this paper we take
account of the possible nonuniqueness, but we do not deal with existence
problems. However, it is not hard to see that the assumption B used in
Theorem 2.1 is sufficient for the existence of k-centres. We also remark
that the existence of centres is a property that does not depend heavily on
k. For a large class of Banach spaces the existence of 1-centres was proved
in [12].
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2.2. T-convergence

Consider the metric space (€,h), where h stands for the Hausdorff met-
rics: h(A, B) = max{sup,c 4 d(a, B),sup,cp d(b, A)}. We denote Hausdorff
convergence of the sets by A, — A and it will be referred to as strong
convergence. For a class Y C € we write A,, — U if inf gy h(A,, B) — 0.
Clearly A,, — U if every subsequence of {A,} admits a subsequence which
converges to an element of U/, but not conversely.

Suppose E is equipped with a Hausdorff topology 7 (not necessarily com-
parable with the metric topology). The sets

V(Oq,...,0):={Ae€&AC O, U...UO, ANO; #£0, i=1,...,1},

l=1,2,..., O; € 7 form a basis for a topology which is called Vietoris
(or exponential) topology. If 7 is the metric topology, then the Vietoris
topology for £ coincides with the topology generated by the Hausdorff
metric. For finite sets, the convergence in the Vietoris topology generalizes
Hausdorff convergence. Indeed, a sequence {A,} converges in the Vietoris
topology to A = {ay,...,a;} if, for all sufficiently large n, there exists a
partition A, = A7 U---U A} such that |A}| > 1 and {A}'} converges in T
to a; for each i = 1,...,1. This convergence is denoted A4, — A.

From now on we assume that E is equipped with a Hausdorff topology 7,
such that the mapping d(-,y) : (E,7) — R is sequentially lower semicontin-
uous or, equivalently, that every closed ball of FE is sequentially 7-closed.
Then, ¢ being continuous and monotonic, ¢(d(-,y)) is also sequentially
lower semicontinuous, i.e.

liminf ¢(d(xn,y)) > ¢(d(z,y)) foralyeFE (9)

if £, = 2. In a normed space the weak topology satisfies (9). Similarly,
when FE is a dual, the weak* topology satisfies (9).
The next lemma is very important. A version of it can be found in [17].

LEMMA 2.2. Let A, = A be a minimizing sequence for Wy(-, P). Then
A € Up(P), and ¢(d(x, Ay)) — ¢(d(x, A)), P-a.s..

Proof. Let A={ay,...,a;}. Obviously, I < k. First we show that A €
U (P). The argument is adapted from Cuesta et al. [5]. Let {A},..., A}}
be the partition of A, ensured by the definition of 7-convergence. Fix
v € Eandi € {l1,...,1}. If a? € A? then a? = a; and so, by (9),
liminf, ¢(d(z, AT)) > ¢(d(z,a;)). Hence, liminf, ¢(d(z,A,)) =
lim inf,, min; ¢(d(z, A?)) = min, liminf,, ¢(d(x, A?")) and

minlim inf §(d(z, A7) > min §(d(x, a;)) = d(d(x, A)).  (10)
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By an appeal to Fatou’s lemma,

Wi(A, P) = [ ¢(d(z, A)P(dx) < [liminf, ¢(d(z, A,))P(dz)
< liminf, [ ¢(d(x, n)) (dz) = lim, Wi (A,, P) = Wy(P).

Consequently, A € Uy (P) and the inequalities in the previous display are,
in fact, equalities. This implies a.s. equality in (10). Thus P(V) = 1,
where V' := {x : liminf, ¢(d(z, A,,)) = ¢(d(z, A))}. We show that V is
closed in the metric topology.

Let z,, € V and z,, — z. Then, for each z,,,

|¢(d(x, A)) — liminf, ¢(d(z, An))|
¢(d(z, A)) = ¢(d(zm, A))| + |lim infy, ¢(d(zm, Ap)) — lim inf, ¢(d($,An))|
¢(d(x, A)) — ¢(d(zm, A))| + limsup,, |$(d(zm, An)) — ¢(d(z, An))]

(11)

The sequence {4,} is bounded by Lemma 2.1, |d(z,, B) — d(z,B)| <
d(x,x,,) for any set B, and ¢ is uniformly continuous on bounded set. It
follows that the right side of (11) tends to zero as m — oo and so z € V.
Thus V is closed and P(V)=1s0 T C V.

Any subsequence {4} is minimizing and 7-convergent to A. Hence,
the corresponding set V' := {z : liminf,, ¢(d(z, A,,)) = o(d(z,A))}
contains T or, equivalently, T' C N, V,, where the intersection is taken
over the sets V' corresponding to all subsequences of {A,}. Thus, T C

{z : lim, ¢(d(z, A,) = ¢(d(z, A))}, or ¢(d(z, An)) — ¢(d(x, A)), P-as. |

We assumed that (5) holds. Then any minimizing sequence eventually
consists of sets of k elements. Also every k-centre is a set of k elements.
Thus, by Lemma 2.2, any 7-limit of a minimizing sequence has exactly k-
elements. Hence, if A,, = {ai,...,a.} is a minimizing sequence, then for
each n big enough there exists a labelling A,, = {a?, ..., a}} such that a 5
a; for all i. We now specify the convergence ¢(d(z, A,)) — ¢(d(z, 4)) in
terms of ¢(d(z,al)). The proof of the following corollary is straightforward
and, therefore, omitted. It can be found in [17].

COROLLARY 2.2. Let A, = A be a minimizing sequence for Wy(-, P).
Then ¢(d(z,a;')) — ¢(d(z,a;)) for each i =1,....k and x € Sg(a;) NT.
If ¢ is strictly increasing then d(x,al’) — d(x, a;) for each x € So(ai) nT.

2.3. Strong Convergence

In this section we study conditions under which 7-convergence of minimiz-
ing sequences implies strong convergence.
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First Condition. Suppose ¢ satisfies (7) and let A,, = {ay,...,ax} be
a T-convergent minimizing sequence. By Corollary 2.2, if a; € T then
¢(d(al,a;)) — 0 and so d(al,a;) — 0. Hence, if A C T then a — a;, for
each 7 and A4,, — A.
It now follows, by Lemma 2.2, that in order to deduce strong convergence
of a T-convergent minimizing sequence one needs only that

ACT if Ae€U(P). (12)

The pair of assumptions (12) and (7) is called the first condition. Obviously,
(12) depends on P as well as on the setup of the problem. It might be
meaningful to minimize the loss function only over the support of P. Then
one can consider T as the whole space E and so (12) holds.

The condition (12) might seem technical and inessential. In the following
example (12) fails and weak convergence does not imply strong convergence.

ExampLE 2.1.  Let E =c,and P =Y "7 (8¢, +0_c, )Pn, Where e,, € ¢,
consists of zeros except for 1 in the n-th place, and p, >0, > pp, = % We
take k = 1 and ¢(z) = z2. Then W(a, P) = > oo, (|len —all*+ |len+al|®)pn
for each a € E. It is easy to see that {0} is the unique 1l-centre and that
W1 (P) = 1. Obviously, the sequence {e,,} is minimizing for W1 (-, P). Let
7 be the weak topology. Then e, — 0 but e, /4 0. However 0 ¢ T, (12) is
not satisfied and the example does not contradict the first condition.

Condition (7) also cannot be omitted. We can modify Example 2.1 in
such a way that A, - A C T but A4, /4 A.

ExXAMPLE 2.2. Let E = ¢,, kK =1, and consider the following ¢ and P:

0, if z €[0,1 >
¢($) = { (.’E _ 1)2 if ¢ > [1 ] ) P = 2(62(:'" + 572en)pn + 50170;
’ n=1

where p, >0, n=0,1,2,...,po+2> .~ pp=1.

Again, U; (P) = {0}, W1(P) = 1—pg, and the sequence {e,,} is minimizing.
The assumptions on P and {e,,} are satisfied. But (7) is not satisfied and
the strong convergence fails.

Second Condition. Suppose now ¢ is strictly increasing, but (12) is not
satisfied. Then some additional assumptions should be made.
Let (E, ||-||) be a normed space, and 7 be a topological vector space topology
on F that satisfies (9). This happens, for example, if F is a separable dual
and 7 is the weak™* topology. Consider a 7-convergent minimizing sequence
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A, 5 {a1,...,ax}, and let 2; € S°(a;) N T. By Corollary 2.1 S°(a;) N'T
is not empty. The convergence a} L a; implies x; — ay L x; — a;, and,
by Corollary 2.2 ||z; — al*|| — ||zi —ai|| , 4 = 1,...,k. Consequently, for
each ¢ = 1,...,k, there exists an x; such that z; — a} L z; —a; and
2; — a || = [l@; — aill.

Sometimes (F,T) possesses the property:

Yo —y and ys| = llyll imply yn — y. (13)

If so, then z; —a — x; —a; and a]' — a;. Hence, the following proposition
holds (recall that 7 satisfies (9)).

PROPOSITION 2.1. Let (E,| - ||) be a normed space. Assume (E,T) is
a topological vector space, satisfying (13). Let A, = A be a minimizing
sequence for Wy (-, P). If ¢ is strictly increasing then A, — A.

If (E,7) satisfies conditions of Proposition 2.1 then (F,7) is said to
have 7-Kadec-Klee property [1, 15, 20]. Usually Kadec-Klee property is
defined with respect to the weak topology and then it is sometimes called
the Radon-Riesz property or property H [16, 21]. In the best approximation
context the Kadec-Klee property is also called property A [22]. The 7-
Kadec-Klee property is a straightforward generalization. Often (E, || - ||)
is assumed to be a Banach space and 7 is weaker than norm-topology. In
this case conditions (13) and (9) are equivalent to the following [14, 15]

{z,} cB(0) & =z, >z & sep{z,}>0 imply |z| <1.

Here B(0) is the unit ball in E and sep{z,} := inf{||z,, — z,| : m # n}.
For examples of Banach spaces with 7-Kadec-Klee property see [15].

EXAMPLE 2.3. Proposition 2.1 needs not hold if ¢ is not strictly
increasing. Let E = lo,k = 1 and ¢ = 0 in [0,v/2] and ¢(z) = (z — v/2)?
otherwise. Consider the P as in Example 2.1. Clearly W7(P) = 0, and
the sequence {e,,} is minimizing. The space Il has Kadec-Klee property,
em — 0, but e, /4 0.

The Main Theorem. So far we have investigated the possibility of de-
ducing strong convergence of a minimizing sequence from 7-convergence
when 7 satisfies (9). The first and second conditions provide sufficient con-
ditions, in terms of P and FE, respectively. How to ensure the 7-convergence
of a minimizing sequence is a general and possible unsolvable problem. Be-
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cause of the boundedness of the minimizing sequences it is enough that:
B: every closed ball of E is sequentially 7-compact.

Obviously, B is stronger than (9). The weak* topology in a separable dual
satisfies B. In particular, the weak topology in a reflexive space satisfies B.
The main theorem now directly follows from Lemma 2.1, first condition
and Proposition 2.1.

THEOREM 2.1. If E admits a topology T which satisfies B and either
1) (7) and (12) are satisfied, or
2) ¢ is strictly increasing and E is a normed linear space such that (E,T)
has T-Kadec-Klee property,
then every minimizing sequence for Wy (-, P) has a subsequence that con-
verges strongly to an element of Uy (P).

If E is a reflexive Banach space with the Kadec-Klee property then the

assumptions of Theorem 2.1 are satisfied. Such a space is sometimes called
a Efimov-Stechkin space [21, 22]. A Efimov-Stechkin space posesses several
properties which are useful from the point of view of best approximation.
For example, a Banach space is a Efimov-Stechkin space if and only if every
weakly closed set is approximatively compact [13]. The Efimov-Stechkin
spaces include all uniformly rotund spaces, the spaces L,(;R) and the
Sobolev spaces W' (a,b) (1 < p < 00). A good overview of Efimov-Stechkin
spaces and related geometrical properties can be found in [21].
Examples 2.1 and 2.2 show the importance of conditions 1) of Theorem
2.1. The space ¢, with the weak topology does not satisfy (13) so the
same examples show that (13) cannot be omitted from 2) in Theorem
2.1. If ¢ does not satisfy (7) then Theorem 2.1 needs not hold even in a
Efimov-Stechkin space. To see this reconsider Example 2.3 and verify that
em 7> U1 (P). Indeed, a = (a1, az,...) € Uy (P) if and only if ||e, —al? < 2
and ||e,, + a|> < 2 for each n. Then |a,| < v2—1forn =1,2,..., and
lem —all >2— V2.

COROLLARY 2.3. If the conclusion of Theorem 2.1 holds and there is a
unique k-centre then any minimizing sequence for Wi (-, P) converges to A.

Remark 2. 1. If there is a unique k-centre the word ”sequentially” can
be skipped in B. Let {4,,} be a minimizing sequence. Let B be a closed ball
containing {A,}. Take E := B. Now (E, 1) is T7-compact, which implies
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the compactness of & for Vietoris topology [9, 3.12.26]. The loss function
Wi (-, P) is lower semicontinuous on & by Fatou’s lemma, and attains its
minimum on a (countably) compact subset of £. Now it is easy to see
that every minimizing sequence { A, } satisfies A,, = Uy (P) = A, and both
convergence conditions apply.

3. EMPIRICAL K-CENTRES
3.1. The Consistency Problem

Let X3, Xo,... be a sequence of independent, identically distributed FE-
valued random elements defined on a probability space (2, F, P) and having
common distribution P. Without loss of generality we may assume that
(Q, F,P) is complete, i.e. every subset of a O-measure set is measurable.
Let {P,} be the sequence of empirical measures as defined in (3). The k-
centres of P and P are called empirical k-centres and theoretical k-centres,
respectively. Hence, (for fixed n and w) the set of all empirical k-centres is
Ui (PY) and the set of all theoretical k-centres is Uy (P). Calculated from
the sample of n observations, Uy (PY) can be regarded as an estimator
of (usually unknown) Uy (P). Is such an estimator consistent, i.e. does
U (P,) (in some sense) converge to Uy (P), P-a.s.? In this paper we study
the following sense of convergence: let {A,} be an arbitrary sequence of
empirical k-centres, i.e. A, € U(PY) for each n. We call empirical k-
centres consistent if h(A,,Ur(P)) — 0 for P-a.e. w. Thus, empirical
k-centres are consistent if

P {w’ sup  h(An,Us(P)) — o} ~1. (14)
A, €UL(PY)

Clearly (14) holds if every subsequence of empirical k-centres has a further
subsequence converging to a theoretical k-centre, P-a.s.. Then

pfl

Also, the k-variance Wy (P,) of an empirical measure is an estimator of
Wi (P), which justifies the investigation of the convergence Wy (P,) —
Wi (P), P-as.. If the latter holds, then empirical k-variances are called
consistent. Since |¢(d(z, A,,)) — é(d(x, Bn))| — 0 if h(A,, B,) — 0, it
is not hard to see that by the strong law of large numbers (SLLN) the
consistency of empirical k-centres implies that of empirical k-variances. In

any subsequence {A,,}, where A,; € Uy(Py )has | _ L (15
a subsequence{Anjl} such that A,;, — A€ U(P) | (15)
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Lemma 3.1 we show the latter without (14).

The problem of consistency of k-centres has attracted much attention. In
[23], the consistency of k-centres and k-variances have been proved for finite
dimensional spaces. For trimmed k-centres in Euclidean spaces, similar
results were obtained in [8] (by calculation of a trimmed k-centre of P in
level § € (1,0), a restricted part of P is used. This restriction is chosen such
that it has total mass at least 1 — § and minimizes the loss function over
all such restrictions.) The strongly related case of compact metric spaces
were considered in [29]. The leading consistency results for k-centres in
uniformly convex spaces were obtained by Cuesta et al. in [5, 6]. They
used Skorohod Representation together with a version of Proposition 2.1.
The first condition was introduced in [19]. There we also developed the
connection between the consistency of k-centres and best approximation
theory. This allowed us to consider the consistency of k-centres as the
semicontinuity of a metric projection in the Lebsgue-Bochner space. This
approach has its origins in [4, 5, 7] and was studied also in [18]. The
disadvantage of it is the restriction on ¢ - the latter is usually a power
function. In the present paper we try to keep ¢ as general as possible.

If the theoretical k-centre is unique, i.e. Uy (P) = {A}, then (14) and (15)
reduce to the following

P{w| for any sequence {A,}, A, € Up(Py) it holds A,, — A} =1. (16)

In previous papers discussing consistency of k-centres [5, 6, 8, 23, 24] the
uniquess of theoretical k-centres was assumed, i.e. only (16) was consid-
ered. We deal with the generalized versions of consistency.

3.2. Main Consistency Results
In order to apply the results of Section 2, we show that every sequence of
empirical k-centres is minimizing for Wy (-, P), P-a.s..

PROPOSITION 3.1. Let I, N > 0 be integers and denote SZN ={Aec&:
A C B(xzo,N)}. If {P,} is a sequence of probability measures converging
weakly to P then for a sequence {B,} such that B,, € &, it holds

lim |W(By, P) — Wi(By, P)| = 0. (17)

Proof. Define A:={fs: A€ &V}, where fa(z) = ¢(d(z, A)). The fam-
ily A consists of continuous functions, bounded by g(z) := ¢(d(x,x,)+ N);
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A is equicontinuous [25]. If P, converges to P weakly and [ gdP, —
J 9dP < oo, then lim,, oo supsc 4 | [ fdP,— [ fdP| = 0, by the Ranga Rao

theorem [28]. That proves the proposition. |

LEmMA 3.1. For P-a.e. w,
i) Wi(Py) — Wi(P),
i) every sequence {A,} where A, € U, (P¥) is minimizing for Wy(-, P).

Proof. At first we show the existence of a set 2, € F such that P(Q,) =
1 and for every w € Q,,
1) lim sup,, Wk(P“’) < Wi (P),

2) [ ¢(d(x,z0) + N)dPY — [ ¢(d(z,z0) + N)dP, for each N =1,2,...,
3) PY = P, where = stands for the weak convergence of probability laws.
Let A € Uy(P). By SLLN, W(A, P,) — W (A, P) = Wy(P), P-a.s.. Since
Wk(Pn) < W(A, P,), we now obtain that limsup, Wi(P,) < Wi(P), P-

Let Q1 be the set of P-measure 1 where the latter holds.
4), [ ¢(d(z,x0) + N)P(dz) < oo for every N =1,2,.... By SLLN, for

each N there exists a set Qn € F such that P(Qn) =1 and [ ¢(d(z, z0) +
N)YdPY — [¢(d(z,z0) + N)dP if w € Qu. Take Qy := NyQy. Now
P(Q2) =1 and 2) holds for each w € .
Finally, due to the well-known result of Varadarajan (see, e.g. [2]) P(Q23) =
1, where Q3 := {w: P¥ = P}. Now take Q, := Q1 N Q2 N Q3.
We shall show that ), is the required set. Let w € Q,, P, := P2, and
consider a sequence {A,} such that A,, € Uy (P,), Vn. The first step is to
prove the boundedness of {A,}. For we that proceed as in the proof of
Lemma 2.1, i.e. we show that, for each [ = 0,1,...,k there exists r; such
that |4, N B(z,,7;)| > 1 for all n. Suppose 1 does not exists. Then there
exists a subsequence {A,,} such that lim; . h;(z) = ¢(oc0), where h; :
E +— [~00,00], hj(z) = ¢(d(x, Ay;)). Note that the convergence z; — x
yields hj(z;) — ¢(00). Hence, Py, hJ = 04(00) [2, Thm. 5.5], implying
that ¢(co) < liminf; [ h;dP,, = liminf; Wi(A,,, Pn,) < Wi(P) < ¢(o0)
[2, Thm. 5.3]. This is a contradiction, so r exists.
Suppose now that r; exists, and let B,, = A, N B(x,,r;). Suppose ;41 does
not exist. Then, for each j =1,2,..., there exists n; such that n; > n;_;
and f;(z) := ¢(d(x, Bp;)) — ¢(d(x, Anj)) is eventually zero for each z € E.
Furthermore, ¢(d(z, By,)) < ¢(d(z,2,) + N) =: g(z), where N > r;. It is
not hard to see that f;(z;) — 0, if z; — x, implying that P,, fj_1 = do.
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Since for every j, f; < g and, by 2), [ gdP,, — [ gdP, it holds

/ fidPy, = Wi(By,, Py,) — Wi(P,,) — 0. (18)

The convergence (18) follows almost immediately from the general theory
of weak convergence, see e.g. [17, Cor. 3.2.2] or [2, Thm. 5.4].
From (18) and 1) follows that

limsup Wi(By,,, Pn;) = limsup Wi(Ay;, P,;) < Wi(P).
J J

On the other hand, by (17), limsup; Wi(B,,,, P,;) = limsup; Wi(B,,, P) >
Wi (P). Hence, W;(P) < Wy (P) which is a contradiction. Therefore, {A,,}
is bounded and (3.1) yields

(Wi (Pn) = Wi(An, P)| — 0. (19)

From (19) and 1) we get i). From i) and (19) we now get ii). |

Remark 3. 1. Just like in Lemma 2.1, the argument of Lemma 3.1
holds also for the e-optimal empirical k-centres, provided ¢ < dx. So the
existence of empirical k-centres is not needed for proving the consistency
of k-variance.

For finite-dimensional spaces or compact metric spaces, the statements
of Lemma 3.1 were proved in [23, 29], respectively. In their proofs the Ao-
property of ¢ was assumed. In [25] these ideas were used to prove 4) for
general separable metric space E. However, our proof is much shorter and
more general. It generalizes the approach introduced in [5]. For trimmed
k-centres in the space R™, a counterpart of Lemma 3.1 can be found in [8].
We also remark that if F is a normed space, and ¢(x) = aP, p > 1, then
Lemma 3.1 follows from best approximation theory [18, 19].

From Theorem 2.1 and Lemma 3.1 we have the following theorem.

THEOREM 3.1. Suppose E admits a topology T, satisfying B and either
1) ¢ satisfies (7), and (12) are satisfied, or
2) ¢ is strictly increasing and E is a normed linear space such that (E,T)
has T-Kadec-Klee property,
then (15) holds.

The assumption 2) of Theorem 3.1 ensures (15) in a Efimov-Stechkin
space. This generalizes the consistency results for k-centres in [23, 29, 26,
5], where finite-dimensional space, compact metric space, Hilbert space or
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uniformly convex spaces were considered, respectively. The assumption 1)
ensures (15) in separable duals, provided (12) and (7) hold. We are not
aware of previous consistency results, where no additional assumptions on
E has been made.

ExAMPLE 3.1.  To emphasize the role of the definition (15) of consis-
tency we consider the example given in [5]. Let k = 2, and P be a probabil-
ity measure on (R, B) such that P(A) = }Leb(AN([0,2]U[3,4])) + 31a(2).
Let ¢ =0, in [0,1], and ¢(x) = (z — 1)? if z > 1. Then A € Up(P) if and
only if Wy (A, P) = 0. The 2-centres depend on the support P. Such type of
k-centres are sometimes called best k-nets. Now, Us(P) = {{1,b}|b € [3,4]}
and the empirical best 2-net is unique, P-a.s.. Then, for P-a.e. w, it holds
U2(P?) = A, :=: {al, a}}, where the points in A, are ordered such that
ay < a¥. In this case a — 1 and the sequence {a3} has two cluster points:
3 and 4.5. Therefore, every subsequence of best empirical 2-nets has a sub-
subsequence converging either to {1,3} € Up(P) or to {1,4.5} € Up(P),
P-a.s.. Originally this example was to demonstrate that the a.s. conver-
gence of empirical k-centres needs not hold, if Uy (P) has more than one
set. However, we still have the a.s. convergence to the set Uy (P). So, in
space R the a.s. convergence of empirical k-centres in the sense (16) might
not take place; because of Theorem 3.1, the consistency in a wider sense
(15) always holds.
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