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Figure 1: Goodness of fit to large claim data by GPD (left) and perturbed GPD (right).

1 Introduction

A popular procedure in extreme value statistics is to model the excesses of a high threshold
in a data-set by a generalized Pareto distribution (GPD), a method commonly referred to
as the Peaks-Over-Threshold (POT) method (Smith, 1987; Davison and Smith, 1990). The
model enables estimation of large quantiles, small tail probabilities, and in fact any quantity
related to the tail of the distribution. Crucial in the whole approach is the accuracy of the
GPD approximation to the tail of the population distribution. This concern is far from
academic, as textbook distributions show.

We assess the GPD approximation accuracy by a second-order expansion under a
second-order refinement of the max-domain of attraction condition. Based on this ex-
pansion, we propose an extended family of distributions, coined perturbed generalized
Pareto distributions (PGPD). The new family incorporates the second-order term in the
expansion, and hence improves the GPD approximation by an order of magnitude.

For the 252 claims in a certain insurance portfolio exceeding 1.1 million euro, a so-called
W-plot (Figure 1) assesses the goodness of fit of the GPD and the PGPD (more details in
Sections 2 and 3). The GPD (left panel) fits rather unsatisfactorily, especially in the far
tail, the main region of interest. The PGPD (right panel) does a much better job.

The improved approximation to the excess-over-threshold distribution leads in many
cases to better estimates of the tail of the distribution, especially when the tail is heavy.
Moreover, the PGPD can cope with smaller thresholds, that is, it can handle a larger
fraction of the data than the GPD is capable of; the threshold choice becomes of much
lesser concern. On the other hand, thresholds for which both models correspond closely
can be considered appropriate for the classical GPD approach.

The POT method is reviewed in Section 2. A second-order expansion of the GPD
approximation serves as motivation for the new PGPD model in Section 3. The simulation
study of Section 4 compares the estimators of tail quantities that are generated by the
GPD and the PGPD. The appendix contains some computations concerning the PGPD.
All figures are gathered at the back of the paper.



2 Peaks-Over-Threshold method

The general framework governing the POT approach and in fact all existing extreme value
methods is the assumption that the distribution F' is in the domain of attraction of an
extreme value distribution. More specifically, let X be a random variable (rv) with distri-
bution function (df) F and tail function F =1 — F. Put

w = sup{z: F(z) < 1},
Ut) = inf{x: F(z) >1-1/t}, fort>1,

the right endpoint and the tail quantile function of F, respectively. In terms of U, the
domain of attraction condition reads as follows:

Assumption 2.1 (de Haan, 1970) There exists a positive function a, reqularly varying
at infinity with index v € R, such that

lim L) = U _ /y Ve =1 hy(y),  fory > 0. (1)

t—0o0 a(t) 1

The index 7 is called the extreme value index.

The POT procedure is based on a result by Pickands (1975) which rephrases the
extreme-value condition (1) in terms of the distribution of excesses over a high threshold
u. This result guarantees that the excess X — u, conditionally on X > w, is approximately
generalized Pareto distributed as v T w. Let G be the df of the GPD with shape parameter
v, that is, for x > 0,

B (1+y2)~ Y7 if y #0, 1+ ya > 0;
Gy(z) =1-G,(z)=1/h (v) =4 0 ify<0,z>1/|y; (2)
e " if vy =0,

where h:~ is the inverse function of h, in x > 0, i.e. b (x) =inf{y > 1:h,(y) > z}.

Proposition 2.2 (Pickands, 1975) Put o(u) = a(1/F(u)) for u < w, with a as in As-
sumption 2.1. Equation (1) is equivalent to

lim Pr <X — v <z
ulw o(u)

X > u) =G, (x), forxz>0. (3)

By Proposition 2.2, the excesses in a sample over a sufficiently high threshold can be
approximately described by a scaled GPD with df G,(-/0), for some real v and positive
o. Maximum likelihood or other estimation methods lead to estimates 4 and & of the
GPD parameters. Furthermore, the approximation P(X > y) = P(X > u)G, (") yields
estimators for various tail quantities, as we will describe next.



Let N, be the number of observations in a sample of size n that exceed the threshold
u. The tail function is estimated by

= Nu—= (2 —u
F(z) = —G; for z > w. 4
0 =226, (£51). o> (@)
Invert equation (4) to obtain an estimator for the (1 — p)-quantile z, = U(1/p):
N N np
Ty =u+ oGy <1_F>’ for 0 < p < N,/n, (5)

where G5~ denotes the quantile function of the GPD.

In an excess-loss reinsurance treaty, the reinsurer takes responsibility for the overshoot
(X — R)4 of a claim X over a fixed priority R. The net premium for such a contract is

EXLp = E(X — R), = / () de.
R

Since the priority R is typically in the upper range of the already observed claims, the
POT method is a natural candidate to estimate the net premium (McNeil, 1997; Beirlant
et al., 2001): when R > u

— 0 ~ Nu 0 _
EXLR:/ F(z)dz = —/ G, <x _ “) da, (6)
R n Jp o
provided ¥ < 1. The mean excess function m is a conditional version of EX Lg:
>~ F
mR:E(X—R\X>R):/ F@) g,
r F(R)

If R>uand 4 < 1, the POT estimator is
mr = | Gy “ 1 / G5 i dx (7)
R ~ ~ .

Case study. As a practical example from reinsurance, we consider a set of 252 claims
from a given line of business. The available data concern claims of at least 1.1 million
euro. The portfolio is protected by an excess-loss reinsurance treaty with priority R set
at 5 million euro. The reinsurance company hopes to combine a good tail fit with a good
global fit, that is, taking the threshold u as low as possible, ideallyg)in to 1.1 million

euro. The left column of Figure 2 shows the estimates 7, Zg.01, and FX Ly as a function
of N, = k, where the threshold u is taken as the (k + 1)th largest observation z,_jpn,
k = 1,...,251. The estimates show a clear downward trend in k, raising the question
which threshold v = z,_, to choose. To evaluate the goodness-of-fit of the GPD for
the threshold u equal to 1.1 million euro, we constructed in the left panel of Figure 1 the
so-called W-plot (Smith and Shively, 1995), consisting of the pairs

(—1og (1 — G5 (X — u)/3)), —log(1 - j/253)), for j =1,...,252
The deviation of these pairs from the first diagonal indicates the poor fit by the GPD.
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3 The perturbed GPD model

If, as in the previous example, the GPD model turns out too restrictive, then it seems
natural to look for a wider class of models (paragraph 3.2). The new model is justified by
a second-order expansion of the GPD-approximation (paragraph 3.1).

3.1 Second-order expansion of the GPD-approximation

In order to assess the accuracy of the GPD-approximation in Proposition 2.2, we need to
refine the extreme value condition of Assumption 2.1 as in Pereira (1994).

Assumption 3.1 There ezists a positive function A such that lim;_., A(t) = 0 and a
function H : (0,00) — R such that

1 (U(ty) - U(t)
a(t)

lim

m o) = HG), fory >0 ®)

For v € R and p < 0, define
H, ,(x) = / v h,(v)dv, for z > 0.
1

The theory of generalized regular variation of second order provides a characterization of
the limit function H, see Theorem 1 of de Haan and Stadtmiiller (1996).

Proposition 3.2 Under Assumption 3.1, there exist constants c¢1,co € R and p < 0 such
that

H(y) = c1H, ,(y) + c2hyip(y),  fory > 0.

If p < 0, then an appropriate choice of the auxiliary function a results in a simplification
of the limit function H.

Proposition 3.3 Under Assumption 3.1 and with ¢y, ¢z, and p as in Proposition 3.2, if

p <0, then
lim tt) <U(tyz)i(;)U(t) - h'y(y)> = chy1,(Y),

where ¢ = p~'e; +co and a(t) = a(t) (1 — p~ et A(t)) for all t such that A(t) < |p/ci].

Proof. Since p < 0, we have for all y > 0

Yoy -1 -1
H,,(y) = . v P dv = p"" (hysp(y) — By (y)) -
Hence by Proposition 3.2, for all y > 0,
H(y) = (p~'er + ) hyin(y) — p~ iy (y).
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But then by Assumption 3.1, we have for all y > 0

1 (U(ty) U, (;,))

A(t) a(t)
_ 1 Ulty) - U() R
A (1= pleA(t)) < a(t) h7(y)> + 1— p_lclA(t)p 1hy(y)
— H(y)+p terhy (y) = chyi,(y),
as t — oo. -

The tail quantile approximation in Assumption 2.1 gives rise to the GPD approximation
in Proposition 2.2. In the same way, the second-order tail quantile approximation in
Assumption 3.1 gives rise to a second-order GPD approximation in Proposition 3.4 below.

We need some notation. The support of the GPD G, is the interval I, = {z > 0 :
1+ vz > 0}. The probability density function g, of G, in = € I, is given by

(1+72) 771 iy #£0,

gy(2) = [(1+y2)h (2)] 7 = { e it v = 0.

We also define g, () = 0 for = outside I,.

Proposition 3.4 Under Assumption 3.1, we have for x € I,

: 1 X —u
b5 (7 (>
where B(u) = A(1/F(u)) and o(u) = a(1/F(u)).

X>0—@M0=%@MW@»

Proof. Since 1/F is the right-continuous inverse of U, we have by Theorem 3 of de Haan
and Stadtmiiller (1996)

_ 1 1/F(u+xa(u))_ () = _ 2L h (1 (s
i s (L = ) ) = =0 ) B o) ()
Since st —t71 = (¢ — 5)/(st), the Proposition follows. O

Corollary 3.5 Under the assumptions of Proposition 3.3, we have

B$BQ)Q”<§@f>x

where 7(u) = a(1/F(u)).

X > u) —év(x)> = cgy(2)hyyp(h3 (x)), forx e, (9)

Under Assumption 3.1, the GPD approximates the distribution of the excess over the
threshold u up to error O(B(u)), see Proposition 3.4. If the rate at which B vanishes is
slow, this error might be appreciably large. Especially the modelling of the extreme tail of
the excess distribution by a GPD might be poor.
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3.2 Perturbed GPD

First we introduce some notation. For 7 < 0, we extend the definition of h, to h,(co0) =

[Z v dv = 1/|7]. For v € R and p < 0, define the function ¢, : [0,00) — [0, 00) by

Py p(z) = h’“H—p(h;(”U)) (10)
( (1 Ip/y _q
(1+77) ifv#£0, p+y£0, 1+yz >0,
Y+p
_ ) v og(l+yz) ify+p=0,
pr _ 1
¢ if y=0,
p
( 1/l7 + ¢l if v <0,z >1/]yl.

The left derivative of ¢, , is ¢ (v) = (h: (2))?, for ¥ > 0, where we set oo := 0. In
particular, 0 < ¢/ (z) <1 for z > 0.

Definition 3.6 The perturbed generalized Pareto distribution (PGPD) with parameters
veR, p<0, and 6 > —1, is given by its distribution function

Gypo(r) = Gy(x 4+ 8¢, ,(x)), forxz>0.
By the properties of ¢, , listed above, the function
[0, OO) — [0, OO) T — T+ 5¢7,p(x)

is strictly increasing, one-to-one and onto. Hence G ,; is indeed a distribution function.
We can include an additional scale parameter o > 0 in the PGPD by setting

G’Yaffaﬂ,(s(x) = G%p,é(x/U), for x > 0.

Computational details for the PGPD are provided in the appendix.
To appreciate the improvement of the PGPD over the GPD as an approximation to
the excess-over-threshold distribution, compare Proposition 3.7 with Corollary 3.5.

Proposition 3.7 Under the assumptions of Proposition 3.3, we have

i 5 (Pr @(;)u w7

where (u) = a(1/F(u)).

X > u) — é%p,_cB(u) (x)) =0, forzel,

Proof. Take x € I,. For ¢ close enough to zero, we have = + ¢, ,(z) € I,. Hence

0

%G%pﬁ (2)

= 9(2) b, p(2). (11)

0=0
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Hence
g (7 (T > | %> 1) =G0
- 7w (7 (5>

— gy (T)Dy,p(T) — €9y (T) Py ,(x) =0,

X > u) —év(x)) — Bgu) (G, p—cBu)(2) — G, ()

by Corollary 3.5 and equation (11). O

Parallel to the classical POT method based on the GPD, we propose to model the
excesses over a large threshold by a PGPD with df G, , ;. Maximum likelihood provides a

natural way to estimate the parameters. Estimators of tail quantities as in the introduction

are obtained by replacing the GPD G5 in (4), (5), (6), and (7) by a PGPD G, ; ;.

Some caution is needed for the estimation of p: for 6 = 0, the parameter p is not
identifiable, and for ¢ close to zero, the likelihood surface is typically rather flat along
p, reflecting the lack of information on p in a sample. To avoid numerical instabilities
in the estimation procedure, the search interval for p needs to be restricted in advance,
for instance to [—2,—0.2]. Alternatively, we consider the option of fixing the unknwon

parameter p to a value p, say, typically —0.5 or —1.

Case study (continued). We continue our analysis of Section 2 of the large insurance
claims, this time replacing the GPD by the PGPD. The modified W-plot (right panel of
Figure 1), consisting of the pairs

(— log (1 — Gy 5K — u)) ,—log(1 — j/253)) C forj=1,...,252,

illustrates the good PGPD fit to the conditional excess distribution at threshold u equal to
1.1 million euro. At the same u, a likelihood ratio test of the GPD versus the PGPD gives
a p-value of 0.037. The extra parameters in the new model cause the PGPD estimates
of v, xg001, and EXLp to oscillate more than the GPD-based ones (Figure 2), but the
threshold-dependent bias of the latter, reflected by a downward trend, has been removed.
Overall, the PGPD point estimates at the lowest threshold (largest k) seem acceptable.

4 Simulations

We performed a simulation study to compare the finite sample behaviour of the novel
PGPD-based and the classical GPD-based estimators for the extreme value index (%),
extreme quantiles (Z,) with p = 1/n, Expected Excess Losses (ﬁX\LR) and mean excesses
(mg) with R fixed at Q(1 — 1/n) = U(n). We restricted the search range for p to the
interval [—2, —0.2], and we also investigated the effect of fixing the parameter p to a value
p = —0.5 or —1, which may or may not be equal to the true value. We generated samples



v>0 e Burr(y,p,s) distribution 1 — F(x) = (1—|—x_”/7/ﬁ)1/p (x > 0) with
(7, p, B) = (0.5, —1,1), (0.5,—0.5,1), and (0.5, —0.25, 1)

e Student-¢ distribution with v = 4 degrees of freedom, so vy = 1/v = 0.25
and p = —2/v = —0.5
v=0 e standard normal distribution
e standard log-normal distribution

v <0 e Beta distribution with density B(a, 8) "tz }(1—-2)%~1 (0 < 2 < 1) with
a=5and f=4,s0y=—-1/f=—-025and p=—(a—1)/f=—1

Table 1: Distributions involved in the simulation study.

from the distributions listed in Table 1. The threshold u was set at the (k + 1)th largest
order statistic x,,_, for various k.

Figures 3 and 4 show the results for 100 simulated Burr(0.5, —0.25, 1) samples of size
500. Histograms (Figure 3) contrast the sampling distributions of 4 at k& = 200 for the
GPD model and the PGPD model. The improvement over the GPD approach is striking,
especially with respect to bias. The left panel of Figure 4 depicts the construction of the
95% profile likelihood confidence interval for v for one randomly chosen Burr(0.5,-0.25,1)
sample. Observe that the PGPD interval, although somewhat wider due to the extra
parameters to be estimated, is better located around the true value. The right panel shows
the increased empirical coverage probability of the PGPD confidence intervals.

In the subsequent figures, we present the results for all distributions mentioned above.
The left-hand panels show the medians and the right-hand panels show the empirical
root mean squared errors (RMSE) of the estimators as a function of k = 50,60, ..., 990,
computed from 100 samples of size 1000. In most cases, the PGPD based estimators have
the smaller bias, and the same is true for the minimal RMSE. A notable exception is the
Burr(0.5,-0.5,1) distribution: if v 4+ p = 0, then the GPD based estimators possess zero
asymptotic bias (Smith, 1987).
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A Computational aspects

For the PGPD with parameters v € R, 0 > 0, p < 0, and 6 > —1, we compute the
distribution function, the density and the quantile function in paragraph A.1, and the
log-likelihood with its derivatives in paragraph A.2.

A.1 Distribution function, density, and quantile function

ForyeRand z € [, ={y > 0:1+~y > 0}, define

/’” dv { v~ og(L + ) if v #0,
0

Ky () = (12)

I+v x if v =0.
Recall the function ¢, , of equation (10). For = > 0, let
z=ux/o, and t=1t(z) =z+d¢,,(2). (13)

The support of the PGPD is the interval S = {x > 0 : 14 ¢ > 0}. The function ¢ is
strictly increasing, concave if § > 0, and convex if § < 0. The inverse function of ¢ is
denoted by ¢~ (to be computed numerically).

o Distribution function in v € S
Grops(x) =1 —exp{—K,(t)}
e Density function inx € S

(z) = { o™t (1 + dexp(ply(2))) exp {—(1 + 1)K, ()} if 1+72>0
9v,0.p,0 o texp{—(1+v)K,(t)} ify<0,2>1/]

e Quantile function in p € (0,1)



A.2 Log-likelihood and derivatives
For v € R and x > 0, define

z “L( — 1) if 4 #0,
H,(z) = /ewdv:{7 ( ) iy #
0

x if v =0;

z 2(e®(yr —1)+1) if 0,

@) = 5@ = [ ervan=q ] e e
oy 0 2?2 /2 if v=0.

Recall K, from equation (12), and for v € R and z € I, put
_ Y .
S I T,
v(x) By +(2) /0 (1 + yv)2 v

—%/2 if v =0.
The derivatives of ¢, ,(x) w.r.t. v and p are

gd) () = H: (K (7)) + KX (x) exp (v + p) Ky (2)) if 1+~2 >0,
oy (y+ ) SR

24 H:, (K, () if 1472 >0,
- T —
op " (v+p)2 iy <0,z>1/]
Recall z and ¢ from equation (13), and let
1+ exp{pK,(2)} if1+7yz>0,
v = and s =
1+t 0 if v <0,2>1/]yl.

For z € S, we have the following formulas.
e Log-likelihood
(=10, ,5(r) =—log(o) +1log(l+ds) — (1 +~v)K,(t)

o Derivative log-likelihood w.r.t. 7y

SpsK*(2) § 3, _
a—f ) s +765 — K, (t) — (1 +7) K (t) — 608_7%”’(2) if1+v2>0
v X _ .
— K, () — (L+7)K5(t) — dv(y +p) if v <0, 2> 1/[7]

e Deriwative log-likelihood w.r.t. o

1 0psz z
—— — —v(l+0 if 1 >0
36— o 0(1+55)(1+72)+UU( T0s) ifl+72
do 1
7 =4+ 2y if y<0,2>1/]y|
o o
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e Deriwative log-likelithood w.r.t. p

dsK,(z)
— ovH
—(= 1+6s THate

0
g —Svu(y + p)? if vy <0,2> 1/

(Ky(2)) ifl4+v2>0

e Derivative log-likelihood w.r.t. &

0 s
%' = 1vss ol
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Figure 6: Medians and RMSEs of 4 as function of k, based on 100 samples of size 1000 from
standard normal, standard lognormal and Beta(5,4) distribution.
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Figure 7: Medians and RMSEs of 2, as a function of k, based on 100 samples of size 1000
from a Burr(0.5,-1,1), Burr(0.5,-0.5,1), Burr(0.5,-0.25,1) and Student-t (v = 4) distribution.
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Figure 8: Medians and RMSEs of Z,, as function of k, based on 100 samples of size 1000 from
standard normal, standard lognormal and Beta(5,4) distribution.
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Figure 9: Medians and RMSEs of my as a function of k, based on 100 samples of size 1000
from a Burr(0.5,-1,1), Burr(0.5,-0.5,1), Burr(0.5,-0.25,1) and Student-t (v = 4) distribution.
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from standard normal, standard lognormal and Beta(5,4) distribution.
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Figure 11: Medians and RMSEs of E/X\LR as a function of &, based on 100 samples of size 1000
from a Burr(0.5,-1,1), Burr(0.5,-0.5,1), Burr(0.5,-0.25,1) and Student-t (v = 4) distribution.
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Figure 12: Medians and RMSEs of E/ﬁR as function of k, based on 100 samples of size 1000
from standard normal, standard lognormal and Beta(5,4) distribution.
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