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1 Introduction

In the paper [1] it is proved that for a high-temperature Glauber dynamics started from a
low-temperature Gibbs measure, the Gibbs property can be lost in the course of time. As
long as the measure remains Gibbsian, we know that the empirical distribution satisfies
a large deviation principle with the relative entropy density as a rate function. As soon
as the Gibbs property is lost, we can a priori not even be sure of the existence of the
relative entropy density h(µ|νt), where νt is the measure at time t and µ any translation
invariant probability measure. In [9], Pfister introduced the notion of asymptotically
decoupled (AD) measures and proved a large deviation principle for this class. The AD
measures constitute a class which is broader than the Gibbs measures since renormalization
group transformations such as decimations, Kadanoff transformation, block spin averaging
preserve AD, but do not in general preserve the Gibbs property [2, 3]. In this paper we
obtain that for spin flip Glauber dynamics with local rates, the AD property is conserved
in the course of time, and hence for any t > 0 the random measures

Lt
Λ(σ) =

1
|Λ|
∑
x∈Λ

δτxσt (1.1)

satisfy the large deviation principle.
The plan of the paper is as follows: we start by defining AD probability measures, and

introduce the type of dynamics we study in section 2. Section 3 is devoted to the proof of
the conservation of the AD property.

2 Preliminaries

2.1 Configuration space, dynamics

We consider Ising spin systems on the lattice Zd, i.e., the configuration space is the compact
metric space Ω = {−1,+1}Zd

. The set of finite subsets of Zd is denoted by S and for any
Λ ∈ S, we define its boundary to be ∂Λ = {x ∈ Λ : ∃y ∈ Λc, |x − y| = 1}. The cube
[−n, n]d ∩ Zd ∈ S is denoted by Λn, for all n ∈ N. For A ⊂ Zd, we denote FA to be the
sigma-field generated by the functions {σ : x 7→ σ(x), x ∈ A}. We abbreviate FZd by F .
Functions f : Ω → R are called local (notation f ∈ L) if there exists some finite Λ ∈ S
such that f is FΛ-measurable. The minimal such Λ is called the dependence set of f and is
denoted by Df . Local functions are continuous and any continuous function is the uniform
limit of local functions. The set of continuous functions f : Ω → R is written C(Ω). For
x ∈ Zd, τx denotes translation over x, acting on elements of Ω by τxσ(y) = σ(y + x), on
functions via τxf(σ) = f(τxσ) and on measures via

∫
fdµ ◦ τx =

∫
τxfdµ. The set of all

probability measures on the Borel sigma-field of Ω is denoted by M+
1 and the translation

invariant elements are collected in the set denoted by M+
1,inv. For Λ ∈ S, we denote σΛ the

restriction of σ to Λ, and for µ ∈ M+
1 , µΛ is the distribution of σΛ when σ is distributed

according to µ. For all x ∈ Zd, σx denotes the spin configurations obtained from σ by
flipping the spin at x: σx(x) = −σ(x) and σx(y) = σ(y) if y 6= x. As a dynamics we
consider a Feller process with a generator of the type

Lf(σ) =
∑
x∈Zd

cx(σ)∇xf(σ) (2.1)

where for all x ∈ Zd, for all f ∈ F bounded, for all σ ∈ Ω

∇xf(σ) = f(σx)− f(σ).
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For the flip rates cx we make the following assumptions:

1. Nearest neighbor dependence: For all x ∈ Zd, cx is a local function such that

Dcx = {y : |y − x| ≤ 1}.

2. Strict positivity:

∃ε > 0,∀x ∈ Zd, 0 < ε = min
σ

cx(σ) < max
σ

cx(σ) < ∞.

3. Translation invariance:
∀x ∈ Zd, cx = τxc0.

The restriction to nearest neighbor dependence of the rates is for convenience only; it can
be replaced by finite range.

In [6] it is proved that there corresponds a semigroup S(t) on C(Ω) and a unique Feller
process to the generator L. We denote by Pσ its path space measure started at σ0 = σ,
and Eσ denotes the corresponding expectation. The semi group acts on functions: for all
t > 0, for all f ∈ C(Ω), for all σ ∈ Ω,

S(t)f(σ) = Eσ[f(σt].

For a probability measure ν on Ω, we define νS(t) by∫
f dνS(t) =

∫
S(t)f dν. (2.2)

2.2 Asymptotically decoupled measures

Definition 2.3 A probability measure ν ∈M+
1,inv is called asymptotically decoupled (AD)

if there exists sequences d(n), c(n) such that

lim
n→∞

c(n)
|Λn|

= 0, lim
n→∞

d(n)
n

= 0

and for all A ∈ FΛn, B ∈ Fc
Λn+d(n)

with ν(A)ν(B) 6= 0:

e−c(n) ≤ ν(A ∩B)
ν(A)ν(B)

≤ ec(n). (2.4)

Important examples of AD measures are Gibbs measures with a translation invariant
absolutely summable interaction [4]. In this case we can choose d(n) = 0 and c(n) =
◦(|Λn|), and in the case of finite range potentials c(n) = ◦(|∂Λn|). Examples of non-
Gibbsian AD measures are renormalization group transformations such as decimation,
block spin averaging and Kadanoff transformation of Gibbs measures [2, 3]. Indeed, it is
clear from the definition that if, for a finite set W , we consider a transformation

T : Ω → W Zd

such that Tσ(x) depends only on {σ(y) : y ∈ Bx} where for x 6= x′, Bx∩Bx′ = ∅ and such
that maxx |Bx| < R ∈ R+, then for ν AD, ν ◦ T is AD. The simplest example of such a
T is Tσ(x) = σ(kx) (decimation). Let us denote by A the set of all translation invariant
asymptotically decoupled probability measures. The following theorem is proved in [9].
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Theorem 2.5 For all ν ∈ A, we have the following:

1. For any µ ∈M+
1,inv, the relative entropy density

h(µ|ν) = lim
n→∞

1
|Λn|

∫
dµΛn log

dµΛn

dνΛn

(2.6)

exists.

2. For any f ∈ C(Ω), the pressure

Pν(f) = lim
n→∞

1
|Λn|

log
∫

exp(
∑

x∈Λn

τxf) dν (2.7)

exists.

3. Pν(·) and h(·|ν) are conjugate convex functions, i.e.,

h(µ|ν) = sup
f∈C(Ω)

(∫
f dµ− Pν(f)

)
Pν(f) = sup

µ∈M+
1,inv

(∫
f dµ− h(µ|ν)

)
(2.8)

4. Under ν, the empirical measures

Ln(σ) =
∑

x∈Λn

1
|Λn|

δτxσ (2.9)

satisfy the large deviation principle with rate function I(·) = h(·|ν), extended to M+
1

by putting I(µ) = ∞ for µ 6∈ M+
1,inv.

3 Result

In this section we prove

Theorem 3.1 Let ν ∈ A and let S(t) be the semi group of the generator (2.1), then
νS(t) ∈ A. In particular, for any t > 0, the random measures

Lt
n =

1
|Λn|

∑
x∈Λn

δτxσt

satisfy the large deviation principle with rate function h(·|νS(t)).

Proof. First notice that by the semi group property, it suffices to show that for some
t0 > 0, {νS(t) : ν ∈ A, t ≤ t0} ⊂ A. The t0 should depend only on the rates cx and not
on the initial measure ν ∈ A. Fix n ∈ N and choose ν ∈ A with corresponding c(n), d(n)
of Definition (2.3). We will prove that there exists t0 > 0, c1 > 0 depending only on the
rates such that for all A ∈ FΛn , B ∈ FΛc

n+d(n+4)+4
, and for all t ≤ t0:

e−c(n)e−c1|∂Λn| ≤ νS(t)(A ∩B)
νS(t)(A)νS(t)(B)

≤ ec(n)ec1|∂Λn| (3.2)
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which clearly implies that νS(t) ∈ A for t ≤ t0. The idea is to “artificially decouple” A
and B by introducing in the process a “corridor” of independently flipping spins. This
requires a modification of the process in a region of the order of the boundary of Λn. Then
via a Girsanov’s formula and a cluster expansion we control the “price to pay” for this
modification. It is because of the cluster expansion technique used that we first have to
restrict to small t. Fix A ∈ FΛn and B ∈ FΛc

n+d(n+4)+4
and denote Rn = Λn+4 \ Λn, and

R′
n = Λn+d(n+4)+4\Λn+d(n+4). Notice that since d(n)/n → 0 as n →∞ the regions Rn, R′

n

satisfy |Rn ∪R′
n| = ◦(|Λn|). Introduce the following “decoupled generator”:

Ln =
∑

x∈Λn

cx∇x +
∑

x∈Rn∪ R′
n

∇x +
∑

x∈Zd\(Λn∪Rn∪R′
n)

cx∇x. (3.3)

In the process with generator Ln, the spins in R′
n ∪ Rn flip on the event times of inde-

pendent rate one Poisson processes. By the nearest neighbor character of the flip rates
cx, this implies that under the path space measure Pn

σ, the random variables {σs(x) : x ∈
Λc

n+d(n+4)+4, 0 ≤ s ≤ t} and {σs(x) : x ∈ Λn, 0 ≤ s ≤ t} are independent. Moreover,
again by the nearest neighbor character of the rates, for A ∈ FΛn , Sn(t)(1A) ∈ FΛn+4 and
for B ∈ FΛc

n+4+d(n+4)
, Sn(t)(1B) is FΛc

n+d(n)
measurable. Therefore we have∫

Sn(t)(1A1B)dν =
∫

Sn(t)(1A)Sn(t)(1B)dν (3.4)

and

e−c(n) ≤
∫

Sn(t)(1A)Sn(t)(1B)dν∫
Sn(t)(1A)dν

∫
Sn(t)(1B)dν

≤ ec(n). (3.5)

Notice that we used here a consequence of (2.4), namely that for any non-negative f ∈ FΛn ,
g ∈ FΛc

n+d(n)
,

e−c(n) ≤
∫

(fg)dν∫
fdν

∫
gdν

≤ ec(n).

This follows immediately from the definition (2.4) together with the fact that such f, g
can be approximated in L1(ν) by linear combinations of indicator functions with positive
coefficients. In order to prove (3.2), it is sufficient to have the existence of t0 > 0, ξ(n) =
O(|∂Λn|) such that all t ≤ t0,

e−ξ(n) ≤ inf
C∈F

νS(t)(1C)
νSn(t)(1C)

≤ sup
C∈F

νS(t)(1C)
νSn(t)(1C)

≤ eξ(n) (3.6)

i.e., the measures νSn(t) and νS(t) are absolutely continuous with a density that is uni-
formly bounded from below by e−ξ(n) and from above by eξ(n). This can be expected from
the fact that we modified our process only in a corridor, i.e. the generator Ln differs from
L in the region Rn∪R′

n only. To obtain (3.6), it is in turn sufficient to check it on cylinder
events and to prove that

e−ξ(n) ≤ Eη (I(ηt(x) = σ(x), ∀x ∈ ΛN ))
En

η (I(ηt(x) = σ(x), ∀x ∈ ΛN ))
≤ eξ(n) (3.7)

where this inequality holds for all σ, η,N with the same ξ. In order to obtain (3.7), we
approximate by finite volume processes. For M ∈ N, introduce the generator

LM =
∑

x∈Λc
M

∇x +
∑

x∈ΛM

cx∇x. (3.8)
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Since the rates cx are nearest neighbor, LM generates a process on ΩM+1 = {−1,+1}ΛM+1

and by the Trotter-Kurtz theorem ([6], chp 1) for the associated semi group SM (t) we
have SM (t)f −→ S(t)f uniformly on compacts as M goes to infinity. Similarly, the finite
volume approximation of LM is introduced by

Ln
M =

∑
x∈Rn∪R′

n

∇x +
∑

x∈ΛM\(Rn∪R′
n)

cx∇x +
∑

x∈Λc
M

∇x. (3.9)

Therefore, in order to obtain (3.7), we have to prove

e−ξ(n) ≤
EM

η (I(ηt(x) = σ(x), ∀x ∈ ΛN ))

En,M
η (I(ηt(x) = σ(x), ∀x ∈ ΛN ))

≤ eξ(n) (3.10)

where EM
η denotes expectation in the process with generator LM , En,M

η expectation in
the process with generator Ln

M and where the ξ of the inequality (3.10) does not depend
on η, σ,N and M > N > n. Finally introduce the generator of the independent spin flip
process:

Lo =
∑

x

∇x (3.11)

and Po
η, Eo

η for corresponding path space measure and expectation. By Girsanov’s for-
mula, the ratio in (3.10) can be rewritten as a quotient of expectations in the process of
independent spin flips, and we are led to show that

e−ξ(n) ≤
Eo

η

(
e
∑

x∈ΛM
Ψt

x
∏

x∈ΛN
I(ηt(x) = σ(x))

)
Eo

η

(
e
∑

x∈ΛM\(Rn∪R′
n) Ψt

x
∏

x∈ΛN
I(ηt(x) = σ(x))

) ≤ eξ(n) (3.12)

where ξ does not depend on σ, η and M and where

Ψt
x =

∫ t

0
log(cx(σs))dNx

s −
∫ t

0
(cx(σs)− 1)ds (3.13)

and Nx
s denotes the number of flips at x in the time interval [0, s]. Let us denote by

Po
M,t,η,σ the “bridge between η and σ”, i.e. the measure Po

η conditioned on the event
{ηt(x) = σ(x), ∀x ∈ ΛM}. We can rewrite the ratio of (3.12) as follows

Eo
M,t,η,σ

(
e
∑

x∈ΛM
Ψt

x

)
Eo

M,t,η,σ

(
e
∑

x∈ΛM\(Rn∪R′
n) Ψt

x

) . (3.14)

This expression has the form of the ratio of two ’abstract’ partition functions of different
volumes, i.e., a quotient of the form

ZΛM

ZΛM\Rn∪R′
n

. (3.15)

If for the logarithm of ZΛ we can write a convergent cluster expansion, then it is clear
that the ratio is of the order e|Rn∪R′

n|. The natural parameter which has to be chosen
small in order to ensure convergence of the cluster expansion will be the time t. However,
since we are working with a conditioned expectation Eo

M,t,η,σ, we cannot expect that the
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exponential e
∑

x Ψt
x is close to one as t tends to zero. Indeed for the lattice sites x ∈ ΛM

such that σ(x) 6= η(x), at least one jump took place in the conditioned measure Po
M,t,η,σ,

and the integral
∫

log(cx(σs))dNx
s equals log(cx(ηx)/cx(σ)) if precisely one jump of Nx

took place in the interval [0, t]. To remedy this problem, we will subtract from Ψt
x the

value it takes in the limit t → 0 in the conditioned measure Po
M,t,η,σ, which is

ϕx(η, σ) = log
cx(ηx)
cx(σ)

I(η(x) 6= σ(x)). (3.16)

By an expansion of the exponential function around zero, we will then prove that the
logarithm of the expectation

Eo
M,t,η,σ

(
e
∑

x(Ψt
x−ϕx)

)
(3.17)

can be given by a convergent cluster expansion for small t. In order to set up the expansion,
remind that the rates cx depend on σ(y) for |y − x| ≤ 1. Under the measure Po

M,t,η,σ, the
spins at different lattice sites evolve independently. Therefore, if x, y are more than one
lattice distant apart, the random variables Ψt

x and Ψt
y are independent. For a set A ∈ S,

we denote
Ā = {y ∈ Zd : d(y, A) ≤ 1}.

Two connected subsets A and B are called compatible if Ā ∩ B̄ = ∅ With this notation,
we write

Eo
M,t,η,σ

(
e
∑

x(Ψt
x−ϕx)

)
= Eo

M,t,η,σ

 ∏
x∈ΛM

(
(eΨt

x−ϕx − 1) + 1
)

= 1 +
∞∑

k=1

1
k!

∑
γ1,...,γk⊂ΛM

k∏
i=1

wt,η,σ(γi) (3.18)

where the sum over γi is over compatible collections of nearest neighbor connected subsets.
The polymer weights are given by

wt,η,σ(γ) = Eo
M,t,η,σ

(∏
x∈γ

(eΨt
x−ϕx − 1)

)
. (3.19)

In order to write down a convergent cluster expansion of the logarithm of the right hand
site of (3.18), we use the Kotecký-Preiss criterion, i.e., we have to prove an estimate of
the type

|wt,η,σ(γ)| ≤ e−ct|γ| (3.20)

where the constant ct does not depend on η, σ and where ct →∞ as t → 0. Indeed if that
estimate holds, then for t small enough the weights will beat the entropy and we can write

log Eo
M,t,η,σ

(
e
∑

x(Ψt
x−ϕx)

)
=
∑

Γ⊂ΛM

a(Γ)wt,η,σ(Γ) (3.21)

where the sum is over clusters, i.e., multi-indices of compatible polymers, see e.g., [5, 8, 10].
In order to obtain (3.20), remind that the rates cx are bounded away from zero and infinity,
and hence we can estimate

E[|eΨt
x−ϕx − 1|] ≤ E

[
(eBteANt

xI(Nt
x≥2) − 1)I(η(x) 6= σ(x)) + (eBteANt

x − 1)I(η(x) = σ(x))
]

(3.22)
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where we used that, by the choice of ϕx, the integral
∫ t
0 log cx(σs)dNx

s = ϕx if the Poisson
process Nx made exactly one jump in the time interval [0, t]. Arrived at this point, the
weight can be estimated as follows

|wt,η,σ(γ)|

≤
∏

x∈γ∩∆(η,σ)

E
(
I(Nx

t ∈ 2N + 1)(eBteANt
xI(Nt

x≥2) − 1)
)

E(I(Nx
t ∈ 2N + 1)

×
∏

x∈γ∩∆c(η,σ)

E
(
I(Nx

t ∈ 2N)(eBteANt
x − 1)

)
E(I(Nx

t ∈ 2N)
(3.23)

where E denotes expectation w.r.t. independent mean one Poisson processes, and where

∆(η, σ) = {x ∈ Zd : σ(x) 6= η(x)} (3.24)

i.e., the sites where the spin flipped an uneven number of times. A straightforward com-
putation using that Nx

t is Poisson gives

E
(
I(Nx

t ∈ 2N + 1)(eBteANt
xI(Nt

x≥2) − 1)
)

E(I(Nx
t ∈ 2N + 1))

≤
(

(eBt − 1)
t

sinh(t)
+

O(t3)
sinh(t)

)
(3.25)

and
E
(
I(Nx

t ∈ 2N)(eBteANt
x − 1)

)
E(I(Nx

t ∈ 2N))
≤ eBt cosh(teA)− cosh(t)

cosh(t)
. (3.26)

Since both expressions do not depend on σ, η and converge to zero as t → 0, we obtain
the estimate (3.20). This implies that we can write

EM
η (I(ηt(x) = σ(x), ∀x ∈ ΛN ))

En,M
η (I(ηt(x) = σ(x), ∀x ∈ ΛN ))

= exp

 ∑
Γ∩(Rn∪R′

n) 6=∅

a(Γ)wt,η,σ(Γ)

 ∏
x∈Rn∪R′n

eϕx

≤ exp
(
C|Rn ∪R′

n|
)

(3.27)

which concludes the proof of the theorem.
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