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1 Introduction

The purpose of this paper is to present a refinement of a result of Nussbaum
[13, Theorem 3.1] that says: if X is the positive cone in Rn and f : X → X,
with f(0) = 0, is order-preserving and nonexpansive with respect to a strictly
monotone norm, then there exists an integer p ≥ 1 such that for each x ∈ X
the sequence of iterates (fkp(x))k converges to a periodic point of f . Moreover
p is a divisor of the least common multiple of {1, . . . , n}. Later in [14] it has
been shown that the possible minimal periods of periodic points of these maps
are only periods of admissible arrays on n symbols. Further it was proved in
[15] that in case of the 1-norm: ‖x‖1 =

∑
i |xi|, the set of possible minimal

periods of periodic points is precisely the set of periods of admissible arrays on
n symbols. The question has been raised whether one can determine for other
strictly monotone norms the set of possible minimal periods.

In this paper we consider the case where the norm is besides strictly mono-
tone also strictly convex. For instance, classical p-norms, given by ‖x‖p =
(
∑

i |xi|p)1/p, where 1 < p < ∞, but not the 1-norm or the sup-norm. For
these norms we show that the minimal periods of periodic points are orders of
permutations on n letters. More precisely, we prove the following theorem.

Theorem 1.1. Suppose that X ⊂ Rn is a closed convex lattice with 0 ∈ X. If
f : X → X, with f(0) = 0, is order-preserving and nonexpansive with respect to
a strictly monotone and strictly convex norm, then there exists an integer p ≥ 1
such that

(i) for each x ∈ X the sequence (fkp(x))k converges to a periodic point of f
of minimal period q, where q is a divisor of p;

(ii) p is the order of a permutation on n letters.

Although Theorem 1.1 is a sharpening of a special case of Nussbaum’s result,
its proof will not depend on it. The proof of Theorem 1.1 is based on the
intuitive idea that the iterates of nonexpansive maps f : X → X, with f(0) = 0,
behave asymptotically like the composition of a nonexpansive projection and an
isometry on the range of the projection. Therefore to understand the asymptotic
behaviour of the iterates of f one has to study the iterates of the isometry on
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the range of the projection. In our case we will see that the range of the
nonexpansive projection is a closed convex lattice, and that the isometry is a
lattice homomorphism preserving convex combinations. These observations lie
at the core of the proof of Theorem 1.1.

Related results for nonexpansive maps f : X → X that are not necessarily
order-preserving, have been obtained for different domains X ⊂ Rn and different
norms on Rn. In particular, it is known that if X is a compact subset of Rn and
f : X → X is nonexpansive with respect to a norm that has a polyhedral unit
sphere, then for each x ∈ X there exists an integer p ≥ 1 such that (fkp(x))k

converges to a periodic point of f (see [1] and [18]). Moreover for each polyhedral
norm Martus [10] proved that there exists an upper bound for the minimal
periods of periodic points that only depends on the dimension of the ambient
space. Finding the optimal upper bound for a given polyhedral norm, however,
appears to be a difficult combinatorial geometric problem. Some partial results
can be found in [2], [5], [9], [11], and [12]. Similar results for maps f : Rn → Rn

that are nonexpansive with respect to a classical p-norm where 1 ≤ p < ∞ can
be found in [4], [6], [16], and [17].

The remainder of the paper consists of four sections. In Section 2 some basic
definitions are collected. Subsequently in Section 3 some results concerning
nonexpansive projections and their ranges are proved. In Section 4 several
results on isometries and lattice homomorphisms are given. Finally in Section
5 the results from Sections 3 and 4 are combined to prove Theorem 1.1.

2 Basic definitions

On Rn a partial ordering ≤ is defined by x ≤ y if xi ≤ yi for 1 ≤ i ≤ n.
We write x < y if x ≤ y and x 6= y. The positive cone in Rn is given by
Kn = {x ∈ Rn : x ≥ 0}. A map f : X → Rn, with X ⊂ Rn, is called
order-preserving if x ≤ y implies f(x) ≤ f(y) for all x, y ∈ X. We say that
f : X → Rn is positive if f(x) ≥ 0 for all x ∈ X with x ≥ 0.

Further for x, y ∈ Rn we let x ∧ y denote the greatest lower bound of x and
y in Rn, so (x ∧ y)i = min{xi, yi} for 1 ≤ i ≤ n. Likewise, x ∨ y denotes the
least upper bound of x and y in Rn, so (x ∨ y)i = max{xi, yi} for 1 ≤ i ≤ n. A
subset V of Rn is called a lattice if x ∧ y ∈ V and x ∨ y ∈ V for all x, y ∈ V .

Let V ⊂ Rn and W ⊂ Rm be lattices. If f : V → W is such that f(x∧ y) =
f(x) ∧ f(y) and f(x ∨ y) = f(x) ∨ f(y) for all x, y ∈ V , then f is said to
be a lattice homomorphism. Note that every lattice homomorphism is order-
preserving, because x ≤ y implies x = x∧y, so that f(x) = f(x∧y) = f(x)∧f(y)
and hence f(x) ≤ f(y).

A norm ‖ · ‖ on Rn is called monotone if ‖x‖ ≤ ‖y‖ for all 0 ≤ x ≤ y. It is
said to be strictly monotone if 0 ≤ x < y implies ‖x‖ < ‖y‖. A norm ‖ · ‖ is
called strictly convex if its unit sphere contains no line segment. Equivalently,
‖x + y‖ = ‖x‖ + ‖y‖ and y 6= 0 implies x = (‖x‖/‖y‖)y. We remark that
if a norm ‖ · ‖ on Rn is strictly convex and monotone, then it is also strictly
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monotone. Indeed 0 ≤ x < y implies

‖x‖ ≤ ‖1/2(x + y)‖ ≤ 1/2(‖x‖+ ‖y‖) ≤ ‖y‖. (1)

Therefore if ‖x‖ = ‖y‖, then (1) and the fact that ‖ · ‖ is strictly convex give
x = (‖x‖/‖y‖)y and hence x = y.

A map f : X → Rn, with X ⊂ Rn, is called nonexpansive with respect to
‖ · ‖ if

‖f(x)− f(y)‖ ≤ ‖x− y‖ for all x, y ∈ X. (2)

In particular, if equality holds in (2) for all x, y ∈ X, then f is said to be an
isometry. A point x ∈ X is called a periodic point of f : X → X if there exists
an integer p ≥ 1 such that fp(x) = x. The smallest such p is said to be the
minimal period of x.

3 Nonexpansive projections and their ranges

A (possibly nonlinear) map r : X → X is called a projection if r2(x) = r(x)
for all x ∈ X. The following lemma, which explains the connection between
nonexpansive projections and the iterates of nonexpansive maps, is a nonlinear
generalisation of Lemma 3.1 in [7]. It uses the following notation. If Y ⊂ Rn is
nonempty and Rn is equipped with a norm ‖ · ‖, then d(x, Y ) = inf{‖x − y‖ :
y ∈ Y } for x ∈ Rn.

Lemma 3.1. Let ‖ · ‖ be a norm on Rn, and let X ⊂ Rn be a closed subset with
0 ∈ X. If f : X → X is nonexpansive (with respect to ‖ · ‖) and f(0) = 0, then
there exists a sequence of integers (ki)i with ki →∞ such that

r(x) = lim
i→∞

fki(x) (3)

exists for each x ∈ X, and the convergence is uniform on bounded subsets of X.
Moreover (ki)i can be chosen such that the map r : X → X is a nonexpansive
projection and such that the restriction of f to r(X) is a bijective isometry that
maps r(X) onto itself, and d(fk(x), r(X)) → 0 as k →∞, for each x ∈ X.

The proof of this lemma relies on the following consequence of the Arzela-
Ascoli theorem.

Lemma 3.2. Let ‖ ·‖ be a norm on Rn, and let X be a closed subset of Rn with
0 ∈ X. If f : X → X is nonexpansive and f(0) = 0, then every subsequence of
(fk)k has a convergent subsequence that converges uniformly on bounded subsets
to a continuous map g : X → X.

Proof of Lemma 3.2. For each N ∈ N let XN = X ∩ {x : ‖x‖ ≤ N}. Clearly
XN is a compact set containing the origin. As f is nonexpansive and f(0) = 0
we have that (fk

|XN
)k is a bounded equicontinuous family of maps. Thus we can

apply the Arzela-Ascoli theorem to see that (fk
|X1

)k has a uniformly convergent
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subsequence (fki

|X1
)i. Likewise (fki

|X2
)i has a uniformly convergent subsequence.

By repeating this argument we obtain a sequence of successive subsequences of
(fk)k such that the N -th subsequence converges uniformly on XN .

Clearly any two limit maps coincide on the set where they are both defined.
By a diagonal argument we find a subsequence (fmi)i and a map g : X → Rn

such that (fmi)i converges uniformly to g on XN for each N ∈ N. As X is
closed g(x) ∈ X, so that g maps X into X.

Let us now prove lemma 3.1.

Proof of Lemma 3.1. From the previous lemma we know that there exists a
subsequence (fmi)i that converges uniformly on bounded subsets of X. By
passing to a subsequence, if necessary, we may assume that mi+1 − mi → ∞
as i → ∞. If we apply the previous lemma again to (fmi+1−mi)i we find a
subsequence (fmij+1−mij )j that converges uniformly on bounded subsets of X.
Now define

r(x) = lim
j→∞

fmij+1−mij (x) for x ∈ X. (4)

Obviously r is nonexpansive and r(X) ⊂ X.
Before we prove the other assertions we make some auxiliary observations.

Let N > 0 and define XN = X ∩ {x : ‖x‖ ≤ N}. Remark that (fk(XN ))k is a
decreasing sequence of compact sets. Define

YN = ∩kfk(XN ) and Y = ∪N>0YN .

Claim 1. If (xi)i is a sequence in XN , (ki)i is a sequence in N with ki → ∞,
and z is such that (fki(xi))i → z as i →∞, then z ∈ YN .

Indeed, for each m ∈ N we have that fki(xi) ∈ fm(XN ) for i sufficiently
large, and hence z ∈ fm(XN ). Therefore z ∈ ∩mfm(XN ) = YN .

Claim 2. If (ki)i is sequence in N such that ki → ∞ and (fki

|XN
)i converges

uniformly on XN to a map g, then g(XN ) = YN .
To prove the claim note that g(XN ) ⊂ YN by Claim 1. Now let y ∈ YN .

Then there exists a sequence (xl)l in XN with y = f l(xl) for all l ∈ N. Since XN

is compact, the sequence (xki)i has a convergent subsequence given by (xkij )j

with limit u ∈ XN and

‖fkij (xkij )− g(u)‖ ≤ ‖fkij (xkij )− g(xkij )‖+ ‖g(xkij )− g(u)‖ → 0

as i →∞, by uniform convergence. Hence y = g(u) and thus g(XN ) ⊃ YN .
Next we show that f(Y ) = Y . It suffices to show that f(YN ) = YN for all

N > 0, because ∪N>0f(YN ) = f(∪N>0YN ). As (fk(XN ))k is decreasing, we
find that f(YN ) = f(∩kfk(XN )) ⊂ ∩kfk+1(XN ) = YN . Conversely let y ∈ YN .
Then there exists a sequence (xk)k in XN with y = fk(xk) = f(fk−1(xk))k for
all k ≥ 1. The sequence (fk−1(xk))k has a convergent subsequence in XN and
according to Claim 1 its limit z is in YN . As f is continuous this shows that
y = f(z), and hence YN ⊂ f(YN ).
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In order prove that r is a projection onto Y we first note that Claim 1 implies
that r(x) ∈ YN for all x ∈ XN , so that r(X) ⊂ Y . To show that r(y) = y for all
y ∈ Y we let y ∈ Y . Take N > 0 such that y ∈ YN . Recall that we have chosen
(mi)i such that (fmi)i is uniformly convergent on XN . Let g be its limit. By
Claim 2 there exists x ∈ XN with g(x) = y. Consider the equality

fmij+1(x) = fmij+1−mij (fmij (x)) for j ≥ 1.

Clearly the left hand side converges to g(x). As fmi(x) ∈ XN for each i, and
(fmij+1−mij )j converges uniformly to r on XN , the right hand side converges
to r(g(x)). Therefore r(y) = y and hence r is a projection of X onto Y .

To see that f is an isometry on Y we observe that by the definition of r and
the nonexpansiveness of f the following inequalities are true for all x, y ∈ Y :

‖x− y‖ = ‖r(x)− r(y)‖ = lim
j→∞

‖fmij+1−mij (x)− fmij+1−mij (y)‖
≤ ‖f(x)− f(y)‖ ≤ ‖x− y‖.

Finally we show that d(fk(x), Y ) → 0 as k →∞, for each x ∈ X. Let x ∈ XN

and ε > 0. Take M ∈ N such that

‖fmiM +1−miM (x)− r(x)‖ < ε.

This implies that for each k ≥ miM+1 −miM
,

d(fk(x), Y ) ≤ ‖fk(x)− fk−(miM +1−miM
)(r(x))‖

≤ ‖fmiM +1−miM (x)− r(x)‖ < ε,

and hence the proof of the lemma is complete.

Remark that if f : X → X is order-preserving, then the projection r in
Lemma 3.1 is by (3) order-preserving. If in addition the domain X ⊂ Rn is a
lattice and the norm is strictly monotone, then the range of r is a lattice. This
is an immediate consequence of the following observation.

Lemma 3.3. If X ⊂ Rn is a lattice, and f : X → Rn is order-preserving and
nonexpansive with respect to a strictly monotone norm, then {z ∈ X : f(z) = z}
is a lattice.

Proof. Suppose that x, y ∈ {z ∈ X : f(z) = z}. As f is order-preserving we have
that f(x∧y) ≤ f(x) and f(x∧y) ≤ f(y), and hence f(x∧y) ≤ f(x)∧f(y) = x∧y.
Seeking a contradiction we suppose that f(x∧y) < f(x)∧f(y). As ‖·‖ is strictly
monotone this yields

‖y − x ∧ y‖ ≥ ‖f(y)− f(x ∧ y)‖ > ‖f(y)− f(x) ∧ f(y)‖ = ‖y − x ∧ y‖,
which is a contradiction.

Similarly, f(x) ≤ f(x∨y) and f(y) ≤ f(x∨y), so that x∨y = f(x)∨f(y) ≤
f(x ∨ y). If equality does not hold, then

‖x ∨ y − y‖ ≥ ‖f(x ∨ y)− f(y)‖ > ‖f(x) ∨ f(y)− f(y)‖ = ‖x ∨ y − y‖,
which is again a contradiction.
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Consequently we have the following corollary.

Corollary 3.4. Let X be a lattice in Rn. If r : X → X is an order-preserving
projection and r is nonexpansive with respect to a strictly monotone norm, then
r(X) is a lattice.

We remark that the range of an order-preserving nonexpansive projection
on a lattice need not be a lattice if the norm is not strictly monotone.

It is not difficult to see, as the following lemma shows, that the range of a
nonexpansive projection is convex if the norm is strictly convex.

Lemma 3.5. Let X ⊂ Rn be a convex set. If r : X → X is a projection and r
is nonexpansive with respect to a strictly convex norm, then r(X) is convex.

Proof. Let x, y ∈ r(X) and 0 ≤ λ ≤ 1. Observe that z = λx + (1 − λ)y is the
unique element that satisfies ‖x−z‖ = (1−λ)‖x−y‖ and ‖y−z‖ = λ‖x−y‖, as
‖ · ‖ is strictly convex. Since r(x) = x, r(y) = y, and r is nonexpansive we have
that ‖x− r(z)‖ ≤ (1− λ)‖x− y‖ and ‖y − r(z)‖ ≤ λ‖x− y‖. Now the triangle
inequality yields that these inequalties are equalities, and hence r(z) = z.

The above observations concerning the ranges of the nonexpansive projec-
tions motivate the following two lemmas.

Lemma 3.6. If Y ⊂ Rn is a convex lattice and 0 ∈ Y , then the linear span of
Y is a lattice.

Proof. Let R = {αx−βy : α, β ≥ 0 and x, y ∈ Y }. We claim that R is the linear
span of Y . To prove the claim it suffices to show that R is a linear subspace,
since Y ⊂ R ⊂ span Y . Clearly x ∈ R implies that λx ∈ R for all λ ∈ R.
Further if x1, x2 ∈ R, then there exist α1, α2, β1, β2 ≥ 0 and u1, u2, v1, v2 ∈ Y
such that x1 = α1u1 − β1v1 and x2 = α2u2 − β2v2. Now put y = 0 if α1 = 0
and α2 = 0, and

y = (
α1

α1 + α2
)u1 + (

α2

α1 + α2
)u2

otherwise. Likewise let z = 0 if β1 = 0 and β2 = 0, and

z = (
β1

β1 + β2
)v1 + (

β2

β1 + β2
)v2

otherwise. As Y is convex and 0 ∈ Y we have that y, z ∈ Y . Therefore

x1 + x2 = α1u1 + α2u2 − β1v1 − β2v2 = (α1 + α2)y − (β1 + β2)z,

is a member of R.
To prove that R is a lattice we show that x ∨ 0 ∈ R for all x ∈ R. This is

sufficient as y ∨ z = y + (z − y) ∨ 0 and y ∧ z = −(−y ∨ −z). So let x ∈ R.
Then x = αu − βv for some α, β ≥ 0 and u, v ∈ Y . Take M > α, β and put
a = αu/M and b = βv/M . As 0 ∈ Y we have that a and b are both in Y . This
implies that a ∨ b ∈ Y , because Y is a lattice. Therefore

x ∨ 0 = M(a− b) ∨ 0 = M((a− b) ∨ 0) = M(a ∨ b− b) = M(a ∨ b)−Mb

is in R, and this proves the lemma.
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Subspaces of Rn that are lattices have a so-called positive block basis. A
basis {v1, . . . , vk} for a subspace V of Rn is said to be a block basis if |vi|∧|vj | = 0
for all i 6= j. If moreover v1 ≥ 0, . . . , vk ≥ 0 it is called a positive block basis.

Lemma 3.7 (Section 2.a [8]). A subspace of Rn is a lattice if and only if it
has a positive block basis.

4 Isometries and lattice homomorphisms

There exists a relation between order-preserving isometries and lattice homo-
morphisms as the following proposition shows.

Proposition 4.1. Let Y ⊂ Rn be a lattice with 0 ∈ Y . If f : Y → Y , with
f(0) = 0, is order-preserving and f is an isometry with respect to a monotone
norm, then f is a lattice homomorphism.

Proof. The proof is based on two claims.

Claim 1. For each x, y ∈ Y there exists a sequence of integers (ki)i with ki →∞
such that

‖fki(x)− x‖ → 0, ‖fki(y)− y‖ → 0,

‖fki(x ∧ y)− x ∧ y‖ → 0, and ‖fki(x ∨ y)− x ∨ y‖ → 0.

Indeed since f is an isometry and f(0) = 0, the set {fk(z) : k ≥ 0} is
bounded for each z ∈ Y , so that its closure is compact. Therefore we can find
x′, y′, u, and v in the closure of Y , and a sequence (mi)i with mi+1 −mi →∞
such that

‖fmi(x)− x′‖ → 0, ‖fmi(y)− y′‖ → 0,

‖fmi(x ∧ y)− u‖ → 0, and ‖fmi(x ∨ y)− v‖ → 0.

Now put ki = mi+1 −mi for i ≥ 1, and observe that as f is an isometry:

‖fki(x)− x‖ = ‖fmi+1(x)− fmi(x)‖ ≤ ‖fmi+1(x)− x′‖+ ‖fmi(x)− x′‖
for all i ≥ 1. Therefore ‖fki(x) − x‖ → 0 as i → ∞. The same argument can
be used for y, x ∧ y and x ∨ y, and this proves the claim.

The second claim asserts the following.
Claim 2. (‖fk(x)∧ fk(y)− fk(x∧ y)‖)k and (‖fk(x∨ y)− fk(x)∨ fk(y)‖)k are
increasing sequences for each x, y ∈ Y .

Because f is order-preserving

fk(x) ∧ fk(y)− fk(x ∧ y) = f(fk−1(x)) ∧ f(fk−1(y))− f(fk−1(x ∧ y))
≥ f(fk−1(x) ∧ fk−1(y))− f(fk−1(x ∧ y)) ≥ 0

and likewise

fk(x ∨ y)− fk(x) ∨ fk(y) = f(fk−1(x ∨ y))− f(fk−1(x)) ∨ f(fk−1(y))
≥ f(fk−1(x ∨ y))− f(fk−1(x) ∨ fk−1(y)) ≥ 0,
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for all k ≥ 1. Since f is an isometry and ‖ · ‖ is monotone we find that

‖fk(x) ∧ fk(y)− fk(x ∧ y)‖ ≥ ‖f(fk−1(x) ∧ fk−1(y))− f(fk−1(x ∧ y))‖
= ‖fk−1(x) ∧ fk−1(y)− fk−1(x ∧ y)‖

and

‖fk(x ∨ y)− fk(x) ∨ fk(y)‖ ≥ ‖f(fk−1(x ∨ y))− f(fk−1(x) ∨ fk−1(y))‖
= ‖fk−1(x ∨ y)− fk−1(x) ∨ fk−1(y)‖,

for all k ≥ 1. This proves the second claim.
Now to prove the proposition let (ki)i be the sequence of Claim 1. Then

clearly

‖fki(x) ∧ fki(y)− fki(x ∧ y)‖ → 0 and ‖fki(x ∨ y)− fki(x) ∨ fki(y)‖ → 0

as i → ∞. Combining this with Claim 2 yields f(x) ∧ f(y) = f(x ∧ y) and
f(x) ∨ f(y) = f(x ∨ y).

The following lemma shows that an isometry on a convex set with a strictly
convex norm always preserves convex combinations. This fact has been observed
by Edelstein in [3, Proposition 3].

Lemma 4.2. If Y ⊂ Rn is convex and f : Y → Y is isometric with respect to
a strictly convex norm, then f(λx + (1 − λ)y) = λf(x) + (1 − λ)f(y) for each
x, y ∈ Y and 0 ≤ λ ≤ 1.

Proof. Let x, y ∈ Y and 0 ≤ λ ≤ 1. As ‖·‖ is strictly convex z = λx+(1−λ)y is
the unique element that satisfies ‖x−z‖ = (1−λ)‖x−y‖ and ‖y−z‖ = λ‖x−y‖.
Since f is an isometry on Y this implies that ‖f(x)−f(z)‖ = (1−λ)‖f(x)−f(y)‖
and ‖f(y) − f(z)‖ = λ‖f(x) − f(y)‖. As the norm is strictly convex there is
only one element f(z) that satisfies the two equalities simultaneously, namely
f(z) = λf(x) + (1− λ)f(y).

This lemma motivates the following result.

Lemma 4.3. Let ‖ · ‖ be a norm on Rn, and let Y ⊂ Rn be a convex set with
0 ∈ Y . If f : Y → Y is an isometry and f(λx+(1−λ)y) = λf(x)+ (1−λ)f(y)
for all x, y ∈ Y and 0 ≤ λ ≤ 1, then there exists a unique linear isometry
F : span Y → spanY that extends f . If in addition Y is a lattice and f is a
lattice homomorphism, then F is a lattice homomorphism.

Proof. It is straightforward to show that f : Y → Y has a unique linear exten-
sion F : span Y → span Y . To see that F is an isometry let z ∈ span Y . We
know from the proof of Lemma 3.6 that R = {αx− βy : α, β ≥ 0 and x, y ∈ Y }
equals span Y . Hence there exist α, β ≥ 0 and x, y ∈ Y such that z = αx− βy.
Let M > α, β and put a = αx/M and b = βy/M . As Y is convex and 0 ∈ Y
we know that a and b are both in Y , so that

‖F (z)‖ = M‖f(a)− f(b)‖ = M‖a− b‖ = ‖z‖.
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To prove the second assertion we assume in addition that Y is a lattice and
f : Y → Y is a lattice homomorphism. Let z ∈ spanY . Then in the above
notation we have that

z ∨ 0 = M((a− b) ∨ 0) = M(a ∨ b− b) = M(a ∨ b)−Mb.

As F is a linear extension of f , and f is a lattice homomorphism this implies
that

F (z ∨ 0) = Mf(a ∨ b)−Mf(b) = M(f(a) ∨ f(b)− f(b))
= M(f(a)− f(b)) ∨ 0 = F (z) ∨ 0.

Since F is linear, and u ∨ v = u + (v − u) ∨ 0 and u ∧ v = −(−u ∨ −v) for all
u, v ∈ Rn, the proof of the lemma is complete.

The iterative behaviour of linear isometric lattice homomorphisms is pre-
dicted by the following lemma.

Lemma 4.4. Let ‖ · ‖ be a norm on Rn and let V be a subspace of Rn that is
a lattice. If F : V → V is a linear isometry and F is a lattice homomorphism,
then there exists a basis for V such that the matrix representation of F with
respect to this basis is a permutation matrix.

Proof. According to Lemma 3.7 there exists a basis V = {v1, . . . , vk} for V with
vi ≥ 0 for all i, and vi ∧ vj = 0 for all i 6= j. Without loss of generality we may
assume that ‖vi‖ = 1 for all i. Observe that if x =

∑
i αiv

i, then x ≥ 0 if and
only if αi ≥ 0 for all i. Furthermore if y =

∑
i βiv

i, then x ∧ y = 0 if and only
if αiβi = 0 for all i.

Let A be the matrix representation of F with respect to the basis V. Then
the j-th column of A consists of the coordinates of F (vj) with respect to the
basis V. Since F is positive, each column of A is nonnegative, and hence A
is a nonnegative matrix. Further observe that for each i 6= j we have that
F (vi) ∧ F (vj) = F (vi ∧ vj) = F (0) = 0, as F is a lattice homomorphism.
Therefore the columns of A are disjoint, that is to say, each row of A has at
most one nonzero entry. As F is a linear isometry, we know that F and A are
invertible, so that each row contains exactly one nonzero entry and the nonzero
entries of two different rows cannot appear in the same column.

Now let aij be a nonzero entry of A. Then F (vj) = aijv
i. The map F is

an isometry and ‖vj‖ = ‖vi‖ = 1, so that |aij | = 1. As A is nonnegative we
conclude that A is a permutation matrix.

5 The proof of Theorem 1.1

By combining the results from the previous sections we now prove the main
theorem.
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Proof of Theorem 1.1. Let r be the nonexpansive projection in Lemma 3.1 and
let r(X) be its range. The proof is based on the following claim.

Claim. There exists an integer p ≥ 1 such that fp(ζ) = ζ for each ζ ∈ r(X),
and moreover p is the order of a permutation on n letters.

If we assume the claim for a moment we can complete the proof of the theorem
as follows. Let p be the integer of the claim and let x ∈ X. It suffices to show
that (fkp(x))k is convergent. As f is nonexpansive and f(0) = 0 the sequence
(fk(x))k is bounded. Therefore it has a convergent subsequence (fki(x))i, say
with limit η ∈ X. Remark that η ∈ r(X), as d(fk(x), r(X)) → 0 for k →∞ by
Lemma 3.1 and r(X) is closed. Thus, the claim yields that fp(η) = η.

Now note that there exists an integer j with 0 ≤ j < p such that ki ≡ j mod p
for infinitely many i. Hence there exists a sequence (ml)l, with ml → ∞, such
that (f j+mlp(x))l converges to η. As f is continuous we find that

lim
l→∞

fp+mlp(x) = fp−j(η). (5)

Put ξ = fp−j(η) and observe that ξ ∈ r(X), as f maps r(X) onto itself. Then
the claim implies that

‖fkp(x)− ξ‖ = ‖fkp(x)− fp(ξ)‖ ≤ ‖f (k−1)p(x)− ξ‖

for all k ≥ 1, and hence (‖fkp(x) − ξ‖)k is a decreasing sequence. Using (5)
yields that (fkp(x))k converges to ξ.

To complete the proof of the theorem we prove the claim. It follows from
Corollary 3.4 and Lemma 3.5 that r(X) is a convex lattice containing 0. There-
fore we can combine Lemma 3.1 and Proposition 4.1 to find that the restriction
of f to r(X) is an isometric lattice homomorphism. Moreover it follows from
Lemma 4.2 that the restriction of f to r(X) preserves convex combinations.

Now let V be the linear span of r(X) and let k ≤ n be the dimension of V .
It follows from Lemma 3.6 that V is a lattice. Furthermore by Lemma 4.3 f
can be extended to a linear isometric lattice homomorphism F : V → V . By
applying Lemma 4.4 we can find a basis {v1, . . . , vk} for V and a permutation
π on k letters such that

F (x) =
k∑

i=1

αiv
π(i), if x =

k∑

i=1

αiv
i. (6)

Now let p be the order of π and observe that (6) implies that F p(x) = x for all
x ∈ V . Since F is an extension of f the proof of the claim is complete.
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