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1 Introduction

The extreme value index 7 of a distribution function (d.f.) F on the real line determines
the weight of the right tail of F. Pickands (1975) introduced a simple estimator of 7,
which was investigated and improved upon by several authors. Here, all these variants
are united into a single family of estimators. A study of their joint asymptotic behavior
leads to simple estimation procedures with desirable properties: invariancy under changes
of the data in location and scale; efficiency w.r.t. the maximum likelihood estimator in
the generalized Pareto model for excesses over a high threshold; ability to cope with the
typical bias problems arising from slow convergence in the extreme value asymptotics.
The extreme value d.f. with shape parameter v € R is defined by

6. (@) exp{—(1 +~2)~'/7},  fory#0, 14~z >0,
xTr) =
! exp(—e™"), fory=0,z€R.

The d.f. F is said to belong to the domain of attraction of G, notation F' € D(G,), if the
suitably centered and normalized maximum of an independent sample from F' converges
weakly to G, that is, if there are sequences a,, > 0 and b, € R such that

lim F"(apx +b,) = G,(z), forxzeR. (1.1)

n—oo

The generalized Pareto distribution (GPD) with shape parameter v € R is defined by

@) 1— (14 )~ fory#0,2>0,1+~vx >0,
xT) =
e " fory=0,z > 0.

Let z, =sup{z € R: F(z) < 1} and for u € R such that F'(u) < 1 denote the excess d.f.
F,z)=P(X —u <z | X >u), for x > 0, where the random variable (r.v.) X has d.f. F.
The fundamental result of Pickands (1975) was that F' € D(G,) if and only if for u <
there exists o(u) > 0 such that

l%m Fy(o(uw)z) = Hy(x), forz >0. (1.2)
ulzy

Equation (1.2) suggests to model the unknown excess d.f. F;, by the parametric family
H,(-/o), where v € R and o > 0. The parameters v and ¢ can be estimated from the
excesses in a sample over the threshold u, and the fitted model H5(-/7) yields estimates for
such tail quantities as the probability of exceeding a level larger than the sample maximum
or the quantile corresponding to a return period longer than the time span covered by the
data.

Statistically, then, the problem is how to estimate the parameters v and 0. We restrict
our attention to the shape parameter 7, since it is the more crucial one as far as extrapo-
lation from the model is concerned: for v > 0 the tails of the GPD are of Pareto-type, for
v = 0 the GPD coincides with the exponential distribution, and for v < 0 the GPD has a
finite right endpoint.



Maximum likelihood estimation, considered by Smith (1987), has many advantages,
such as efficiency, invariancy under changes of the data in location and scale (imagine
converting temperature data from degrees centigrade to Fahrenheit), and extendability to
various regression models. Apart from the fact, however, that the estimates must be found
by numerical optimization, the method is rather sensitive to discrepancies between F}, and
the limiting GPD, which may occur if the rate of convergence in (1.2) is slow, examples
being such textbook distributions as the Normal and the Student-¢ with many degrees of
freedom.

Pickands (1975) already proposed a simple, location and scale invariant estimator of .
Denote by X;, < X;, <--- < X, , the ascending order statistics from an independent
sample of size n from F'. Pickands suggested to use

~Pick __ 1 lo ( XTL*IC‘FI,TL - Xn72k+1,n
n,k - l 2
0g

), for k=1,...,[n/4],

where |z is the largest integer not exceeding the real number z. Dekkers and de Haan
(1989) showed consistency and asymptotically normality for all 7. Unfortunately, the
estimator is quite volatile as a function of k, and its asymptotic variance is large. Ways
of improvement were therefore sought after and discovered by many authors, all of whom
realized somehow that the Pickands estimator is a linear combination of log-spacings of
order statistics, see Pereira (1994), Falk (1994), Alves (1995), Drees (1995), Yun (2000)
and Yun (2002).

The very same idea to form linear combinations of log-spacings of order statistics is
the starting point in this paper for a large family of estimators of the extreme value index.
Not only does this family include the Pickands estimator and all its variants, certain of
its members, hitherto unknown, are as efficient as the maximum likelihood estimator and,
moreover, can cope better with the case v < 0 and with departures of the excess distribution
F,, from the GPD family.

The generalized Pickands estimators make their appearance in Section 2. Section 3
focuses on weak consistency and asymptotic normality. Which members of the family to
choose is the topic of Section 4, where the matter is discussed from a theoretical perspective,
and of Section 5, where the theory is illustrated by a simulation study. All proofs are
deferred to Appendices A and B.

Xn72k+1,n - Xn74k+1,n

2 Description of the Estimators

What are the generalized Pickands estimators and how do they relate to previously known
variants of the Pickands estimator?
Let A be the collection of signed Borel measures A on the interval (0, 1] such that

A(0,1] = 0, /10g(1/t)|)\|(dt) < oo, and /log(l/t))\(dt) 1 (@21)

If not mentioned explicitly, the domain of integration is always understood to be (0, 1]. For
t € [0,1] abbreviate A(t) = A((0,¢]). Recall that X;, < X5, <--- < X, , are the order
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statistics of an independent sample from F. Let [2] denote the smallest integer at least
as large as x € R, and, for convenience, set log(0) := 0.

Definition 2.1 For k =1,...,n—1, 0 < ¢ < 1, and A € A, the generalized Pickands
estimator A, x(c, \) is given by

:Y\n,k(C, )\) = /log(Xn_LCﬁk”,n - n—ftk],n))\(dt)

The generalized Pickands estimator is a linear combination of log-spacings of order
statistics, the spacings being determined by ¢ and k, and the weights by A. In particular,
since [tk] = j if and only if (j — 1)/k < t < j/k, we have

Tnk(C, A) = Z{/\(j//f) =M = 1)/k)}log(Xn—ejjn — Xn—jn)-

Example 2.2 Let ¢, denote the point-measure giving mass 1 to x. For 0 < ¢ < 1,
0<wv<1,and AV := (g, —&,)/logv, we find

N 1 an lck],n — Xn—k? n
7n,k(ca )‘(U)) - lOg < 7 ’ ‘ (2.2)
log v Xn—|c[ok]n — Xn—[vk],n

We recover Yun’s (2001) estimator, special cases of which are the ones of Pickands (1975)
[c = v = 1/2], Pereira (1994) and Alves (1995) [¢ = v], and Yun (2000) [1/4 < ¢ < 1 and
v = (4c)71].

Example 2.3 More generally, let again 0 < v < 1 and let p be a probability measure on
(0,1] such that [log(1/t)u(dt) < oo. Define A*#) € A by

[ e = [LOZIED, ),

v

for bounded measurable functions f : (0,1] — R. We have

~ 1 Xn—le tkl),m — Xn—]'tk] n
n )\(’U,}L) — / l I_ |— ) ) dt
! ,k(c7 ) IOg’U o8 Xn—\_c]’vtk]],n - Xn—]'vtk],n M( ),

which is a mixture of the 7, x(c, \")) of (2.2) over different values of k, encompassing the
refined Pickands estimators of Drees (1995) and hence also Falk’s (1994) convex combina-
tions of Pickands estimators.

We can also form mixtures of the 7, x(c, A) over ¢, with A possibly varying with ¢. The
mixture is controlled by a measure v, about which we assume the following.

Condition 2.4 Let 0 < ¢; < ¢ < 1. The signed measure v on [c1, 3] X (0, 1] admits the
desintegration v(d(c,t)) = p(de)Ae(dt), where p is a probability measure on [c1, ca] and the
measures . € \ for ¢ € [c1, ¢a] are such that f[q o] f(o 1 log(1/t)|Ael(dt)pu(de) < oc.
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For such v, the estimator

Vnks (V) :/[ » ]log(an\_c(tk]J,n_ n—[tk] )V (d(c, 1)) :/[ Fng(C; Ac)p(de)  (2.3)
Cc1,C2| X 0,1 c

1,c2]

is a p-mixture of the estimators 7, x(c, Ac). If 11 degenerates at some ¢ € (0,1), we recover
the special case 7, x(c, A).

3 Large Sample Properties

3.1 Weak Consistency

The mixture 7,4, () of (2.3) is, without side conditions, a weakly consistent estimator
of the extreme value index 7. Let ‘%’ denote convergence in probability. A sequence of
integers {k,}>2, is called intermediate if 1 < k, < n—1, k, — o0, and k,/n — 0 as
n — 0.

Theorem 3.1 Let F € D(G,) for some real v and let v be as in Condition 2.4. For every
intermediate sequence k, we have ¥y, (V) L~ as n — .

3.2 Second-Order Conditions

Before we can treat the results on asymptotic normality in the next paragraph, we need a
small digression on second-order theory. The tail quantile function U of the d.f. F'is given
by
Ulz) = infly e R: F(y) >1—1/z}, forxz>1,
10, for0 <z <1.

The extreme value condition F' € D(G,) is equivalent to the existence of a positive,
measurable function a defined on a neighborhood of infinity such that for all y > 0

im ZE9) —U@) g =L (3.1)

2o af) o]

to be read as log(y) in case v = 0 (de Haan, 1984). The convergence in (3.1) takes place
locally uniformly in y € (0, 00) and the auxiliary function a is necessarily regularly varying
with index v, notation a € R, that is,

lim )

=y’, fory>0. 3.2
e R (3:2)

which also holds locally uniformly in y € (0, 00), see Bingham et al. (1987), Theorem 1.5.2.

It will turn out in Section 4 that optimal performance within the generalized Pickands
family requires that ¢ = ¢, T 1 as n — oo, for which we need to enforce (1.1) to density
convergence. Moreover, we need to quantify the speed of convergence by imposing a precise
rate. The following second-order regular variation condition on the tail quantile density
captures these two features in one stroke.



Condition 3.2 For some xy > 1 the tail quantile function U is absolutely continuous on
[z9, 00) with density w. There are vy € R, p <0,d € R, and A € R, with lim,_,., A(z) =0
such that, denoting a(z) = zu(x), we have

lim log a(zy) — loga(z) — vylogy
A A)

= dh,(y), fory>O0. (3.3)

Remark 3.3 Condition 3.2 implies that a(x) = x u(x) is regularly varying with index 7,
which, in turn, is necessary and sufficient for (1.1) to be strengthened to locally uniform
convergence of densities, see Pickands (1986), Theorem 4.1.

Remark 3.4 Condition 3.2 actually imposes a rate of convergence in (3.1). Define

h(y;z) = W for y > 0, v > wy, (3.4)
1

H,,(y) = /ly W by (w)dw = ; (

yrtr—1 oy —1
Pty gl

) , fory>0. (3.5)

with the appropriate limits in case v =0, p =0, or v+ p = 0. Condition 3.2 now implies

i MUys ) = ha(y)
200 A(x)

=dH, ,(y), fory>0. (3.6)

The latter fits within the framework of second-order generalized variation of second order
(de Haan and Stadtmiiller, 1996) and appears already in Pereira (1994) and Drees (1995).

The pace at which the intermediate sequence k,, tends to infinity should be in accordance
with the rate of convergence in the extreme value condition as quantified by the rate
function A.

Condition 3.5 Let A and d be as in condition 3.2. The intermediate sequence k,, satisfies
e case d # 0: lim,,_ ki/ZA(n/kn) exists;
o case d=0: sup,s, ki/zA(n/kn) < 0.

In both cases, we denote r := lim,,_, dki/zA(n/kn).

3.3 Asymptotic Normality

First, we mention a useful approximation to the joint distribution of the upper order
statistics of a sample. Let &, ¢ > 1, be independent standard exponential r.v. with partial

sums .
J
S;=Y & forj=12,... (3.7)

=1



Recall that X,_;, < --- < X, are the £ 4 1 largest observations of an independent
sample from a d.f. F' with tail quantile function U. For any intermediate sequence k,, we
have

1€ (Xuzjn)imo) = £ ((U/Sj1))kmg)|| = Olka/n), n — oo, (3.8)

where L (-) denotes the law of a random vector and ||- — -|| is the variational distance of
two distributions (Theorem 5.4.3 of Reiss, 1989).
Recall the class A in (2.1). For 0 < ¢ <1 and A € A, let

g6 ) = [ 108{U 1/ S(ei0) = Uln/ Sy A, 3.9)

with j = [tk,] and S; as in (3.7). Abbreviate ‘with probability 1’ to ‘wpl’. Recall the
function H, , defined in (3.5). For 0 < ¢ < 1, let the difference operator A, act on functions
f:(0,1] — R through

A f(t) == f(et) — f(t), for0<t<1.

Theorem 3.6 Assume Conditions 3.2 and 3.5. Let A C A be such that for some 0 < € <
1/2 the integral [t=Y/2=¢|\|(dt) is uniformly bounded over A'. Let 0 < ¢y < ¢, < 1 be such
that k(1 — ¢,) — oo for some 0 < n < /(24 4¢). On a suitable probability space, there
exist r.v. {Sj,7 > 1} as in (3.7) and a standard Wiener process W such that wpl

sup
co<c<en, AEA!

ki/2{;7n,kn (Ca )‘) - 7} - Zn(ca s )‘) - TB(Ca Y P )‘)‘ - 07

as n — 0o, where

Zn(c,7,\) = /ﬂAC{;vzl/lgfn(t)})\(dt),
t'AH, ,(1/t)

hy(1/c)

and W, (t) = —k;1/2W(knt) is a standard Wiener process as well.

B(e,v,p,A) = / A(dt).

Observe that for a standard Wiener process W, numbers 0 < ¢ < 1, v € R, and a measure
A € A such that [¢7/27¢|)\|(dt) < oo for some & > 0, the r.v.

Z(e,,\) = / Mc{};(vl/lcv)v(t)}x(dt)

is mean-zero normally distributed with variance

o(e, 7, \) = / / Gor (5, )M (ds) A (dE),



where

. S’YAC{S—’Y—IW(S)}t’YAC{t—'y—IW(t)}
Tt = F hy(1/c) 7y (1/0) (3.10)
- Eaﬂ%aﬁaﬁc”+ﬁ“ﬂsAﬂ—sA0ﬂ—wm)Aq

Theorem 3.6 and Reiss’s approximation (3.8) lead to asymptotic normality of the general-
ized Pickands estimators. Let the ‘=" denote convergence in distribution.

Corollary 3.7 Assume Conditions 3.2 and 3.5. If 0 < ¢ < 1 and if A € A is such that
[t12=2|)\|(dt) < oo for some &, then

ket {An g (¢, A) =7} = N(rB(c, v, p, A),v(c, 7, \).

Corollary 3.7 can be extended to asymptotic normality of the vector (ki/2 Ve, (Ciy Ai) —
vH,, with asymptotic covariance matrix computable from Theorem 3.6. In the same way,
we can obtain asymptotic normality for the mixture 7, (), with v as in Condition 2.4
being such that for some & > 0 we have [ . [ t7272 I\ | (dt) pu(de) < oo. We skip
the details, however, since well performing estimation procedures can be based upon the
n.kn(C, A) alone.

4 Optimal members and adaptive procedures

Which member to choose within the huge family of generalized Pickands estimators?
We will determine the measure \., that minimizes the asymptotic variance v(c, 7y, A) of
Vnkn(C, A), and we will also determine the measure \.,, that minimizes the asymptotic
variance under the constraint that the asymptotic bias vanishes, that is, B(c,~, p,\) = 0.
In both cases, it is optimal to let ¢ = ¢, T 1. The measures A., and A.,, depend on
the unknown parameters v and p, which in practice have to be replaced by consistent
estimators.

Let Ay be the linear space of all signed Borel measures on the interval (0, 1] such that
A(0,1] = 0 and [ ¢ Y27%|\|(dt) < oo for some e > 0. For 0 < ¢ <1, > —1/2, and p <0,
define the signed measure A5 , on (0, 1] through its ‘distribution function’

-1

.

5,0, = (1— ATV T O fort € [, ) and j = 1,2, ...
i=0
N (0+p)j
_ (]_—C+)t_pm 1f6+p7£0,
(1 — clHoypi=r if 6+ p=0.

The positive part of the measure A? ; is absolutely continuous w.r.t. Lebesgue measure,
while its negative part puts point masses at each ¢/ for j =0,1,2,...

7



Theorem 4.1 Let 0 <c <1,y € R\ {-1/2}, and p < 0. Set § = |y +1/2| — 1/2.

(i) The measure A, = N5, minimizes v(c,v,A) over X € AN Ao, and the minimal value
18

( 2 14+7)2
(A=)
w, f0r7>—1/2 and’y#(),
Vie,7) = { (1—0¢)? _
C(lOg 0)2, fOT’ fy - 07
\ 72, for v < —1/2.

(i) The measure

1—p)? 1—p)(1 -2

( pr) Ny — (1-p) p(Z p) X,
minimizes v(c, v, A) over X € AN Ay under the constraint B(c,~,p,\) = 0, and the
minimal value is V(c,7v,p) = (1 —1/p)*V(c,).

)‘c,%p =

For a fixed value of v # —1/2, the function V' (¢, ) is decreasing in ¢, and the minimal
asymptotic variance is

(]' + 7)27 fOI" Y Z _1/27

V() = V(L) =lmV(e) = { P (4.

Similarly, lim.j; V(¢, 7, p) = (1—1/p)?V (1, ) is the optimal asymptotic variance for asymp-
totically unbiased estimation. The case v = —1/2 is an exception, because formally taking
the limit as v — —1/2 results in a measure A _;/» for which [¢71/2|\. _;|(dt) = oo, so
that Z(c, —=1/2, A¢,_1/2) is not defined.

The problem that the optimal A., and A., , depend on the unknown ~ and p is solved
by substituting them with weakly consistent estimators. Since, however, the second-order
parameter p is difficult to estimate, we restrict the remainder of this Section to the un-
constrained adaptive estimator 7, (c, A.5), where 7 is some initial estimate for v. The
simulation study of Section 5 will illustrate the finite-sample properties of the constrained
adaptive estimator ¥, x(c, A\c55), where p < 0 is fixed and may or may not be equal to the
true p.

Theorem 4.2 Assume Conditions 3.2 and 3.5 with v # —1/2 and r = 0. Let 0 < ¢ <
Yy +1/2|A1/2,0 <n<e/(2+4e), and 0 < ¢y < ¢, < 1 such that k(1 — ¢,) — o0 as
n — oco. On the probability space of Theorem 3.6, if 7, L v, then

‘kiﬂ{%,kn (Cm )\cnﬁn) - 7} - Zn(cm Y, )‘cnﬁ)‘ & 07
and Z,(Cn, Y, Aepy) ~ N(0,V(cn,7)).

Corollary 4.3 Under the assumptions of Theorem 4.2 and with ¢, — ¢ € (0, 1] we have
for each weakly consistent estimator 7, =7, ((anj,n);?io) of v

kTIL/Q{?n,kn (Cn7 )\Cn,in) - 7} = N(07 V(C, 7))



The transition from the special version 7, , (Theorem 4.2) to the estimator 7, , is ac-
complished by Reiss’s approximation (3.8).

For v < —1/2, we have V(c,v) = V() = 72, that is, the choice of ¢ is asymptotically
irrelevant. For 7 > —1/2, we need to let ¢, T 1 to obtain the minimal variance V(vy) =
(1 + )% However, for ¢ relatively far away from 1, the asymptotic variance V'(c, ) is for
practical purposes undistinguishable from the optimal one: for instance, for v < 2 we have
V(0.75,~) < 104V (7).

Remark 4.4 Drees (1998) developed a general theory for estimators of  that are loca-
tion and scale invariant and that can be written as Hadamard differentiable, continuous
functionals of the empirical tail quantile function. Although the functional corresponding
to the two-stage generalized Pickands estimators of Corollary 4.3 is not Hadamard differ-
entiable, the similarity with Theorem 4.1 and Example 4.2 of Drees (1998) is striking: the
asymptotic variances V() and (1—1/p)?V (y) are the minimal ones found by Drees (1998),
so that it is reasonable to conjecture that his results are valid for in fact a larger class of
estimators — see by the way the Remark after his Theorem 3.2.

Remark 4.5 How does the asymptotic variance of the estimator 7,4, (¢, Ac,) compare
with the ones of other estimators? The maximum likelihood estimator for v in the GPD-
model (Smith, 1987) has asymptotic variance V() = (1 +v)? if v > —1/2. Drees’s (1995)
adaptive procedure based on mixtures of ordinary Pickands estimators has asymptotic
variance 27! (log 2) 2V (1/2,v) = 1.04 V(1/2, 7). Finally, the moment estimator of Dekkers,
Einmahl and de Haan (1989) is not invariant w.r.t. changes in location of the data. For
v > 0 its asymptotic variance is 1 + 72, which is smaller than V(vy); for v < 0 it is a
complicated expression which is appreciably larger than V().

Remark 4.6 An alternative to minimizing the asymptotic variance, with or without the
constraint of zero asymptotic bias, would be minimizing the asymptotic mean square error.
Such an approach is difficult to implement in practice, however, since the corresponding
tuning parameters will not only depend on p but also on the second-order rate function A,
which is difficult to estimate.

5 Simulations

A simulation study served to compare the following three estimators: (a) the unconstrained
adaptive generalized Pickands estimator 7, (¢, Ac7) at ¢ = 0.75 and with initial estimate
7 = Ynk(€ Aco); (b) the constrained adaptive generalized Pickands estimator 7, x(c, Ac75)
at ¢ = 0.75 and p = —1, and with initial estimate 7 = 7, x(c, Ac05); (c) the maximum
likelihood estimator in the GPD model fitted to the excesses over the k + 1 largest order
statistic.

The distributions involved in the experiments (Table 1) were chosen to cover a wide
range of possibilities for (v, p). Observe that for the GPD we have p = —oo, that, is
Condition 3.2 holds for every p < 0. From each of the distributions, 500 samples of size



Table 1: Distributions used in simulation study.

Distribution ¥ 1)
v>0 e GPDwithy=05ando=1 v —00
Fréchet F(z) = exp(—2~%), x > 0, with a =4 1/ -1
Burr F(z) = 1 — (z=?/7 + 1)Y/P, 2 > 0, with (v,p) € v P
{(0.5,—-1),(0.25,—-0.5)}
e Student-t with v € {10,20} degrees of freedom /v =2/v
v=0 e Exponential F(z)=1—e"", >0 0 —00
e Gumbel F(z) =exp(—e™®), 2z € R 0 -1
e Logistic F(z) =1—-2/(14+¢€%),2>0 0 -1
o Weibull F(z) =1 —exp(—z"), z > 0, with 7 = 0.5 0 0
e Normal 0 0
e Lognormal 0 0
v<0 e GPDwithy=—-05ando=1 v —00
e Extreme Value Weibull F(z) = exp(—|z|*), z < 0, with —1/a -1
a=4

e Beta, density (B(a,3)) 'z (1 —z)~1 0 <2 <1, with —1/8 —1/8
() € {(2,2), (5,5)}

e Reversed Burr F(z) = 1 — (Jz|7?/7 + 1)¥/?, 2 < 0, with 0% p
v € {-0.5,-0.25} and p = —0.5

n = 500 were generated and the estimates were computed at k£ = 20,30,...,250. The
median absolute errors of the estimates in case of distributions with v > 0, v = 0, and
v < 0 are shown in Figures 1, 2, and 3 respectively (at the back of the paper).

For p far away from zero (fast convergence of the excess distribution to the GPD) the
unconstrained Pickands estimator performed better than the constrained one, while for p
close to zero (slow convergence) the opposite was true. The unconstrained Pickands esti-
mator performed in almost all cases at least as well as the maximum likelihood estimator.

Nearly always did the constrained Pickands estimator attain its best performance at the
largest k considered, corresponding here to as much as 50% of the sample size. Moreover,
its behavior as a function of k was remarkably stable, particularly for large k, which is good
news for the practitioner, whose concerns which threshold to choose might thus become
less urgent.

A Proofs

We provide the technical arguments to the results of the paper. For the proof of Theo-
rem 3.6, consult Appendix B.

Theorem 3.1 is an immediate consequence of Reiss’s approximation (3.8) and the fol-
lowing property.
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Proposition A.1 Let F' € D(G,) and let v be as in condition 2.4. For every intermediate
sequence ky, and every sequence {s;};>1 of positive numbers such that im;_,. s;/j =1, we
have

lim / ]/( ]10g{U(”/3Lc[tkn]J+1) — U/ stk 1401) FAc(dt) p(dc) = 1. (1.1)
C1,C2 0,1

n—oo

Proof. By assumption \.(0,1] = 0 and [ log(1/t)A\.(dt) =1 for every ¢ € [c1, c2]. Abbre-
viate j = [tk,] and let 7, be the double integral on the left-hand side of (1.1). For a as in

(3.1), we have
= [ s (Pt ) s
/cl al / 0.1) < n/i(ffﬁ)) (n/sg.i{)s jﬂ)) Ac(dt)p(de).  (1.2)

Since limy, o Sk, 141/kn =t for 0 < ¢ <1 and lim;j_. 5|¢jj41/5j41 = ¢ for ¢ € [y, ¢o], the
integrands of both integrals converge to zero due to the local uniformity in (3.1) and (3.2).
It remains to bound them by integrable functions uniformly over n. Let

0<zy= lnfS]/j <sups]/j =2, < 00.

For every ¢ € (0,1] and every n, we have

Lo ke ke [th]+1_ 1
2x, S[thy]+1 Hkn—l +1 S[thn]+1 = tx,
Moreover, for € > 0, we can find n(e) such that for all n > n(¢) and all j = 1,...,k, the

Potter bounds

Y+e Y—€ ] Y+e Y—€
(1) () e e { () ()
Sj+1 Sj+1 a(n/kn) Sj+1 Sj+1

hold, see Bingham et al. (1987), Theorem 1.5.6. Together, we see that there are positive
constants A; and A, such that for all n > n(e) and all ¢ € (0, 1],

‘10g <%> ‘ < Ay + Ay log(1/4).

This is sufficient for the first term in (1.2). For the second term, the conditions on {s;},>1
and the monotonicity of U imply by virtue of the extreme value condition (3.1) that

()

lim sup sup
n—oo 0<t<1, cp<c<cy

11



Next, let us turn attention to the proof of Theorem 4.1. The optimal measures .,
and A., , are elegantly characterized by a functional equation, solving which allows actual
computation of the measures. The functional equation is derived in the Characterization
Lemma A.2.

First, some notation needs to be introduced or recalled. For 0 < ¢ < 1, v € R,
M A € Ay, s,t € (0,1], and a standard Wiener process W, define

Y —-v-1
Vi) = Ac{ht (1/CV)V(t)}’
gl
Ocy(st) = [Yer(s)Yer (8],

E
Z(erh) = / Y, o () \(dt),

DLN) = (Moo = E[Z(e, 3, N Z (e, 7, V)] = / / 0o (5, )N (ds)X ().

ML = JAl, = (A A2 = [VarZ(c, v, A)]/2

Observe that if A € AN Ag, then by Corollary 3.7,

b e, (¢, ) =7} = N (rB(e, 7, p,A), M)

So our task becomes: find A € AN A, that minimizes ||A||, and in case unbiased estimation
is desired, under the constraint B(c, vy, p, A\) = 0. For A € Ay, abbreviate \(¢) = \(0, t] with
t > 0, where A is trivially extended over (1, c0).

Lemma A.2 (Characterization) Let 0 <c <1,y €R, and p < 0.
(i) If X € Ay is such that fol M)t~ rdt = 1 and if for some o > 0 we have
(7 +THA(E) — Act) — cA(t/c) = at, for0<t <1, (1.3)
then X\ € A and | \||* = ¢ 1h A (1/e)a is minimal over AN Ay.

(i) If X € Ay is such that fol)\(t)t_ldt =1 and fol)\(t)t_p_ldt = 0, and if for some

ap > 0 and as € R we have
(77 +HA(E) — Aet) — eA(t/c) = ant + ant'™",  for0 <t <1, (1.4)

then A € A, B(c,7,p,A) =0, and ||\|* = ¢ 'h;%(1/c)ay is minimal over AN Ag
under the constraint B(c,, p,-) = 0.

Proof. Let A\ € Ag. By Fubini’s theorem, we find [log(1/t)A(dt) = fol A(t)t~'dt, so that
A € A if and only if the latter integral equals 1. And since

d ., 1
T A, (1/0)] = 17 hy (1), (1.5)

12



[use the functional equation pH, , + h, = h,,|, we have

B(c,v,p,)\):/W)\(dt) :%S{;)C)/O A(t)tld—fp.

Therefore, B(c,~, p,A\) = 0 if and only if the right-hand integral vanishes.
(i) Suppose that A € A is such that for some 3, € R and /5 > 0,

/%(s,t)A(ds) — By + frlog(1/t), for0<t<1. (1.6)

Then for all X' € AN Aq, we have (\, \') = [ ([ 0c,(s,t)A(ds)) N (dt) = Bi. In particular,
(AN =) =0, so that [|N]* = [|A|” + [N = A|* > ||Al” = 51, that is, A\ minimizes ||-||*
over A N Ag. Hence, it is enough to show that (1.3) implies (1.6). Put

1 . ds
) = Mds) = [ A&)E fort>o.
w(t) /Svt (ds) /m ()%, fort>0

By formula (3.10) for o.,(s,t), we see that

1
Oeq(s,t)A(ds) =
/ h3(1/c)
Use —t*(d/dt)w(t) = A(t) to see that under (1.3), the derivative of [ o.,(s,t)A(ds) equals
—f1/t with a = ¢7*'h2(1/c)By.
(i) Suppose next that A € A satisfies B(e,7,p,A) = 0 and is such that for some
50731 € R and 32 > 07

(™ + Dw(t) — ¢ Tw(et) — ¢ w(t/c)] .

/ Oery (5, )A(ds) = Bo + Bt AL H, ,(1/t)} + Bz log(1/t), for 0 <t < 1. (1.7)

Then for all X' € AN Ay for which B(c,v,p,\') = 0, we have (A, \') = 5. Therefore,
IAI” = B. is minimal over A N Ay under the constraint B(c,v,p,-) = 0. To obtain (1.7)
from (1.4), proceed in the same way as in step (i). This time, ay = **"h2(1/c)fs. O

Proof of Theorem 4.1. Use the following formulas to check that the proposed measures
ey and A., , satisfy the requirements of the characterization lemma A.2. For 0 < ¢ < 1,
d>—-1/2,p<0,and € < (1/2+0) A (1/2 — p), we have

1
dt 1
(& t_ — -

/1 A (8) . 1— o
o P (L= 2p)(1 - Ty

! dt 1
X (¢ =
| ol o)1 a7y
1 — Cl+5 1— P
2508 |(dt) = 1]: 1.8
/(0,1] i, l() 1 —clf2toe <1/2—<‘5—PJr >’ (18)
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if additionally § = |y + 1/2| — 1/2, then for 0 < ¢ < 1,
(€ + XS (t) = A5, (ct) — g (t/c) = (1 — ) (70 = Py e,
(]

Proof of Theorem 4.2. Let ¢ > 0 be small enough, to be determined later, and let
€9 > be arbitrary. We have

P (‘krlz/Q{?n,kn (Cna )‘cnﬁn) - f)/} - Zn(Cna Y, )‘cn,’y)‘ > 62) S Pn,l + Pn,2 + Pn,?n

where P, = P([7, — 7| > 1), and P,» and P, 3 are respectively equal to

P sup ‘krlzﬁ{?n,kn (% )\Cnf)’l) =7} = Zu(en, 7, ACn;’Y’) >e9/2),
[V —7I<e1

P ( sup |Zn(cna Y, )‘Cn,’y’) - Zn(cna 7, )‘Cn,’y)| > 62/2> .

Iy —v|<e1

The term P, ; converges to zero by weak consistency of 7,,.
Regarding the term P, o, we want to apply Theorem 3.6 to the family

A= {AC,’Y' . cE [COv 1)7 |f)/ - 7| < 61}'
This is allowed if £; > 0 is small enough so that minj,_,<., |7 + 1/2| > ¢, for then (1.8)
implies

sup /t1/25|)\c,7/|(dt) < 0.

co<ce<l, |y —y|<e1
The term P, 3 remains. Define the signed Borel measure v, on (0,1] by
AT (1)}
Ve (dt) = ey (dt),
/f( )l/,%’)’( ) / h7(1/0) 77( )
for bounded measurable functions f : (0,1] — R. Observe that

Zuteorreo) = [ P P = [ Fa

Hence we have

| Zn(cn, s Acn,v’) — Zn(ny s >\Cn;’7)| < sup t71/2+E|Wn(t)| ’ /t1/25|’/c,%7’ - Vc,%7|(dt)-

0<t<1

By the equicontinuity property of Lemma A.3 below, we have P, 3 — 0 if ; | 0. O
Lemma A.3 ForO<c<1l,v€eR, v € R\{-1/2}, and e < |7/ +1/2| AN1/2, we have

lim sup /t_1/2_5|1/c,%7u — Ve | (dt) = 0.

Y=Y cp<e<l

The proof of Lemma A.3, although elementary, is long, involved and not very informa-
tive, so we omit it.

14



B Proof of Theorem 3.6

Let 0 < ¢ < 1and A € A, and abbreviate j = [tk,|. We have

t7 (an lejl,n — Xn—j,n)
a(n/ky)h(1/c)

Theorem B.1 below presents a strong approximation of the integrand in the previous equa-
tion by a Gaussian process, but with the order statistics X,,_; ,, replaced by the U(n/S;j11)
of Reiss’s approximation (3.8). Theorem 3.6 then follows as an immediate corollary to
Theorem B.1.

G (e ) =) = [ 10w ) o,

Theorem B.1 Assume conditions 3.2 and 3.5. Let 0 < e < 1/2 and let 0 < ¢y < ¢, < 1
be such that k(1 — ¢,) — o0 as n — oo for some 0 < n < /(2 + 4e). On a suitable
probability space, there exist r.v. S; (j > 1) as in (3.7) and a standard Wiener process W
such that wpl

sup |fa(t; 7)) — gults v, p,7)] — 0, as n— oo,

0<t<L1, cp<c<Zcp

where, abbreviating j = [tk,],

e — /2] U (/S ejj+1) = U(n/Sj)}

fn(t’ 77) kn l g ( a(n/kn)hyy(l/c) ) Y
_ AL WL (t) + 1 H, ,(1/1)}

gn(t7 07 ’77 p7 7") - h,fy(]_/C) )

and W, (t) = —k;1/2W(tkn) is also a standard Wiener process.

The so-called ‘Hungarian construction’ of Komlds et al. (1975, 1976) sets the stage
for the proof of Theorem B.1. On a suitable probability space, there exist independent
standard exponential r.v.’s §1, &, . . . and a standard Wiener process W such that the partial
sums S; = Y 7_, & satisfy wpl

max |S; —j — W (j)| = O(logk), k — oo. (2.1)

1<j<k
The increments of W are controlled by

sup [W(s)—W(t)| =0 ((logT)l/z) wpl, T — oo, (2.2)

s,t€[0,T7],|s—t|<1

(Csorgd and Horvéath, 1993, Theorem A.1.1), and by the reflection principle, the magnitude
of W is
sup |W(t)| = O ((klog k)l/Q) wpl, k — oo. (2.3)

te(0,k]
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Thanks to the strong law of large numbers (SLLN), we have wpl

0 <zy=1infS;/j <supS;/j <x, < 0.
=1 j>1

To study the function f, of interest, decompose it as
faltic,y) = kY21, + 11, + IIL, + IV,,),

where, with the convenient abbreviation j = [tk,],

a(n/Sii1) (Sj\”
1, ,
o anftn) \ h,
exp 1L, h(Sj+1/S\_ch+1;n/Sj+1)’
CRTE
th, \”
explll, = |
g <5j+1>
explV, ho (Sj1/5)ej) 41) :
hv(l/c)

consult (3.4) for the definition of A(y;x). The terms I, and II,, will lead to a deterministic
bias term, while the terms III,, and IV,, will lead to a mean-zero Gaussian term. Also, I,
and III, depend on ¢, while II,, and IV,, depend on ¢ and ¢. We will devote a proposition
to each of the terms separately.

Proposition B.2 For every € > 0, we have wpl,

sup t°|kY2L, (t) — rh,(1/t)] — 0.

0<t<1
Proof. Let m := sup,,, k}/QA(n/kn) < 00. We have

£k 2L (8) = rhy(1/6)] < Pu(t) + Qu(t) + Ra(t),

the \" (Sj1\ | L
no = (=) () |3
Qn(t) = mld[t* |h,(ky, /Sm) ho(1
R,(t) = |dk)/?A(n/k,) —r|th,(1

where

— dhy(kn/Sj1)|

(1)
/Fn)
/Dl
/1)

By the SLLN, we have tk,/S;+1 < (j +1)/Sj41 < 1/z for all 0 < ¢t < 1; moreover
kn/Sj+1 > j/Sj+1 > 1/(21’u) =:o. Hence for all 0 < ¢t < 1,

1 ™ (o) ~ )

P,(t) < mx,° SI>1p Yy °
y>yo
— 0, n— o0,
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by Lemma B.3 below.

Next, let 1/k, < t, <1 be such that ¢, | 0 and ¢,k, — oo as n — oo, and observe that
hy(kn/Sj41) — hy(1/t) = t7Ph,(tk,/Sj+1). By the Strong Law of Large Numbers, we have
uniformly in ¢, <t <1,

0tk /S 30)] — 0.

For1/k, <t <t,, theratio tk,/S;;1 is bounded away from 0 and oo, while ¢°77 < ¢777 — 0.
For 0 < t < 1/k,, we have j = [tk,]| =1 and

- (thn)®
7P|y (thn/ S2)| = = |ho(1/52) = hy(1/thkn)| — 0
uniformly. This deals with the term @, ().
Finally, since supg;<; t°h,(1/t) < o0, also R,(t) — 0 uniformly in ¢. O

Lemma B.3 Fora and A as in (3.3), we have for all ¢ > 0 and all yo > 0,

A(lx) log (;f;%) - dhp(y)‘ = 0.

Proof. For every y; > yo, we have as © — oo,

lim supy™°
T=0y>yo

loga(ry) —loga(r) — ylogy
A(r)

By Theorem 3.1.3 of Bingham et al. (
enough such that, with ¢(x) = 27 7a(z

— dh,(y), uniformly in y € [yo, 1]

1987), there exist positive constants K and x; large

)

log {(zy) — log £(x)
Alz)

< Ky?, forz >z, y>1.

Hence for y > y; > 1 and x > x;, we have

| 1 a(zy) - -
¢ 1 —dh < Ky =% + dy=°h,(y).
7™ |ty o () — o] < 4t
Since h,(y) < ho(y) = logy, the result is obtained by letting y; — oc. O

Proposition B.4 For every e > 0 and 0 < ¢y < 1, we have wpl,

hy(1/¢)

Proof. Suppose that d # 0; the proof for d = 0 is simpler. We have, abbreviating
j - Hkn—‘ and S(]a C) = Sj+1/SLch+17

WL = iAo (i)

= P, Qu(t)- Rult,c)

H, (1
sup % |kY2IL, (1) — rt P 70(1/0) — 0.

0<t<1,co<c<1
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say. By assumption, lim, .., P, = r. Next we claim that

Qul(t) = t7P+175/%5,(1),
_ H,,(5(j,0))
Faltie) = h,(S(j;¢)) +enlhro,
H,,(5(j,0)) _ H,,(1/c)
hy(S(j,c)) hy(1/c)
where 0,(t), €,(t,¢) and n,(t,c) converge to 0 as n — oo uniformly in 0 < ¢ < 1 and
cp <c< 1. Since p<0and 1l <y— H,,(y)/h,(y) is increasing and converges to 0 as
y | 1, this claim is sufficient to prove the proposition.

First, let 0 < ¢; < 1. Since by the Strong Law of Large Numbers k,/S;+1 — 1/t

uniformly in ¢; < ¢ <1, the Uniform Convergence Theorem applied to A € R, gives

A(n/Sj41)/A(n/k,) — t7° as n — oo, uniformly in ¢; <t < 1.

Also, ky,/S;+1 > 1/(tx,) for all n and all 0 < ¢ < 1, and hence by Potter’s Theorem, there
exist a constant C' > 0 and an integer ngy such that

A(n/S;1)/A(n/k,) < Ct=*=/* forall n > ngand 0 < t < 1.

+ 7 2, (t, ),

Hence we have

limsup sup t/2|A(n/Sj11)/A(n/k,) —t7°] < sup t/2(Ctr=*/* 4-17°).

n—oo 0<t<1 0<t<ty
But p <0, so letting ¢; | 1 gives the claim for §, ().
The claim for €, (¢, ¢) follows directly from Lemma B.5 below and the fact that

1< inf  S(j,e) < sup  S(j,¢) < >

J=1, cp<ce<1 §>1, co<ce<L1

by the Strong Law of Large Numbers. And since S(j,¢) — 1/¢ as j — oo uniformly in
cp < ¢ <1, the claim for n,(t, ¢) follows easily. O

Lemma B.5 Under condition 3.2 and with h(y;x) as in (3.4), we have for every yo > 1,
1 h(y;x)> H,,(y)
——log <7 — d—22
A(z) hy(y) hy(y)
Proof. From (3.4), we have
y d y
o) = | alow) dw _ [ 1 AWy () + r(o, 0)] o,
1

a(z) w )y

as x — oo, uniformly in 1 <y < yo.

where 7(z,w) — 0 as & — oo uniformly in 1 < w < y,. But then

h’(?ﬁx) . H%p(y) .
) AW [d hy) oY)

where R(z,y) — 0 as £ — oo uniformly in 1 < y < yy. Since the function 1 < y —
H, ,(y)/h,(y) is increasing and converges to 0 as y | 1, we can take a Taylor expansion of
the logarithm around 1, proving the lemma. O
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Proposition B.6 For every € > 0, we have wpl,

0<t<1

kY2110, (1)

Wa(t)
U

Proof. Without loss of generality, we suppose that ¢ < 1/2. Rewrite the argument of the

supremum as
o (82 - 1tk

b () /2y [log 222 ) — =

Y

where j = [tk,]. Since k¢ — 0, it is now clearly sufficient to prove that wpl,

o (8222 - 02

T T

sup £U1/2+E

>0

< 00; (2.4)

let us do so. Since supy.,<; 2~ /**|W(z)| < oo, the supremum over 0 < z < 1 in (2.4) is
finite. Further, denoting Z; = S; — j — W (j), we have

S[al+1 , 2] +1 - N W (x) N W([z] +1)—W(x) N Zz141
T T T T T

W(x)

= 1+ —2 40 (z ' (logz)?), z— o0
T

by (2.1) and (2.2). Further, W(z)/z = O ((z'logz)/?) as x — oo by (2.3), and so a
Taylor expansion of the logarithm around 1 gives

log (SMH> = Wiz) +0 (a:_l logx) , T — 00.

T T

This completes the proof of (2.4) and thus of the proposition. O

Proposition B.7 Let 0 < e <1/2 and 0 < ¢y < ¢, < 1 be such that k(1 — ¢,) — oo as
n — oo for some 0 <n <¢e/(2+4e). Then wpl,

2RIV (8 ¢) —

sup
0<t<L1, cp<c<Zcp

melRa

Proof. Let 4n < v < 2¢/(1 + 2¢) and j, = [kY]. Since

‘—>0.

Walet) _ Walt) _ o [W(tha) W (cth)
ct t " tk,, ctk, |’

our quantity of interest is bounded by the maximum of

sup 2RIV, (¢, o))

0<t§jn/kna co<c<cn
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(th)' 2 |[W(j+1)  W(lej] +1)

sup - . )
0<t<jn/kn, co<c<cn k;|h7(c)| J+1 LC]J +1
1 i+ 1 i+ 1
sup I{I;E(tk’n)l/2+s IVn(t, C) . |:W(.] + ) o W(LC]J + ):| ,
in/kn<t<1, co<c<en \hy(c)] | j+1 lej| +1
“ (thy)'/?te [W(j +1)  W(le]+ 1)] B {W(tkn) B W(ctkn)]
o<i<t, epcesen Kalhn (@] || 7+ 1 [cj] +1 thy cthy ||’

which we call R, 1, R,2, Ry3 and R, 4 respectively. Every term requires a different ap-
proach.
Let S(j,¢) = Sj+1/5|¢j)+1. First of all, we have

.1/2+¢
For <2 {max [log by (S (j,c>>|+|logh7(1/c>|}.

kr,  co<e<en (1555

Now on the one hand, sup{S(j,c) : j > 1, ¢¢ < ¢ < 1} < 0o, while on the other hand
S(j,¢) > 1+ &11/S; for all 0 < ¢ < 1. Hence as n — oo, the asymptotic equivalence
hy(x) ~x — 1 for z — 1 implies

yeesJn

max (1o (8G.0)| =0 (e [oe(ér1/)]).
<Jj<in J

However, by the Borel-Cantelli lemma, P(&; < j~2 or & > j infinitely often) = 0, and
hence wpl,

max [log(§;+1/j)| = O(log jn) = O(logky), n — oc.

_17 sJn

The same order of magnitude is found in

sup |logh,(1/c)| = O(]log(l —¢,)|) = O(logk,), n — .

co<c<cn
Together, we have wpl,
22 log ki, log k
g 0g kn
=0 (BB ) <0 () <0 ne

by the choice of v.
Secondly, the bound on the supremum of W given by (2.3) shows that wpl,

_  (5a(log ju)"*
R,o=0 <7k;(1 —ey ) n — 00.

However, since (1 — v) > ¢/(1 + 2¢), we have R, » — 0 by the choice of ¢,.
Thirdly, the term R, 3 is bounded by

e

sup 5! /2

J’Zjn,COSCSCn
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Since

(1—ca)%n” (1= o)k

log 7, vlogk, % e

our job for Iz, 3 will be accomplished if we can show that whenever 0 < ¢y < c; < 1is such
that (1 — c})2j/?/logj — oo as j — oo, then also wpl,

() 2 o

j+1 7]
Now, the function h, satisfies the functional equations

sup j1/2

cogcgc;-

hy(zy) = 2"hy(y) + hy(z) and 27h,(1/z) = —h,(z), forx,y > 0.
From these and from the fact that h,(x) < 0 for 0 < z < 1, it follows that

h(SG.e) . hy(eS3.0)
/) T T ]

Denote S; = j+ W (j)+ Z;. The properties of the Hungarian construction and the Wiener
process W as expressed by (2.1), (2.2), and (2.3) yield the first-order asymptotic expansion

cj+1) I+(G+1)"WH+D)+G+1)Z(G+1)
lej] +1 14 (leg] + 7' Wle] + 1) + (Lef] + D" 2(Les] + 1)
WiE+1)  W(lel+1)

= 14— — : + 0@ ogj), j— o0,

cS(j,e) =

uniformly in ¢y < ¢ <1 and wpl. The bound (2.3) and the Taylor expansion h,(1 + ) =
T+ O(2%) as © — 0 give
WiE+1)  W(el+1)

m(eSU0) = =50 ~ g +0(j " logj), j— oo,

uniformly in ¢y < ¢ < 1. Repeat the argument for log(1 + ) as z — 0 to get

op (15SG0) _ LG Wit 1] o (s )

hy(1/c) O L j+1 lej] +1 J(1 = ¢)?

uniformly in ¢y < ¢ < ¢;. The remainder term is o(j~'/?) by assumption.
Fourthly and finally, the term R, 4 is not larger than

[wwun WWMHﬂy{W@_WWm.

1
sup x1/2+5

kfb | h”y (Cn) | x>0, c€lco,1]

T CT

lz] +1 le[z]] +1

Again by assumption, £ |h,(c,)| — o0, so it remains to show that the supremum is finite
wpl. But the latter is readily reduced to the assertion

W(lelz]] +1) _ W(er)
le[z]] +1 cx

1/2+e < oo wpl, (2.5)

sup T
>0, cp<c<l1
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which we now prove. The supremum over 0 < x < 1 is finite since

sup 2”24 |W(z)] < oo wpl.
0<z<1

For x > 1, the triangle inequality gives

W(lelz]] +1) _ W(er)
le[z]] +1 cx

< [W(lelz]] + 1)

1 1

1
o £1] | el elel 1)) = Wiea)l.

Now the properties (2.2) and (2.3) of the sample paths of W entail as + — oo and as
always wpl

W(le[2] +1))| = O ((zlogz)'/?),

L
le[z]] +1  cx
(W(lez]] +1) = W(er)| = O((logz)"?),

= O0@™),

uniformly in ¢y < ¢ < 1. Assertion (2.5) follows. O

Proof of Theorem B.1. After the laborious estimates of the previous pages, the pieces
of the puzzle fall together. Collect the approximations of Propositions B.2, B.4, B.6, and
B.7 to get

sup Y3 | fu(te,y) — Ga(ti e, v, po7)] — 0 wpl,
0<t<1, co<c<cn

where

ﬁn(t;c,fy,p,r):r(hp(l/t)+t—PH7aﬂ(1/C)> ) |1 <Wncict) W:;(t)>.

(1)) ERRTNE

The functional relation
H, ,(zy) =2"""H, ,(y) + H, ,(z) + 27 h,(y)h,(z), forz,y >0

confirms g,, = ¢,. a
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Figure 1: Median absolute errors of unconstrained adaptive generalized Pickands estimator (— —),
constrained adaptive generalized Pickands estimator (—) and maximum likelihood estimator in GPD
model (— - —) for samples from GPD, Fréchet, and Student-t distributions.
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Figure 2: Median absolute errors of unconstrained adaptive generalized Pickands estimator (— —),
constrained adaptive generalized Pickands estimator (—) and maximum likelihood estimator in GPD
model (— - —) for samples from Exponential, Gumbel, Logistic, Weibull, Normal, and Lognormal
distribution.
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Figure 3: Median absolute errors of unconstrained adaptive generalized Pickands estimator (— —),
constrained adaptive generalized Pickands estimator (—) and maximum likelihood estimator in GPD
model (— - —) for samples from GPD, EV Weibull, Beta, and Reversed Burr distributions.



