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1 Introduction

Many applied sciences require handling events with low probability but large, often disas-
trous impact. Extreme events form a central issue in financial risk management, premium
calculations in reinsurance, the construction of dams and drainage systems, metal fatigue,
and many more areas. Of particular interest is the way in which extreme events interact:
an unusually stormy day at a particular site may well be followed by another one at the
same or a neighboring site; a large drop in a stock index may trigger similar negative move-
ments in the next time period for the same or other financial time series. If extreme-value
statistics is already complicated by the fact that about the events it wants to describe there
are by definition few observations, even more challenging to model and to make inference
on are the possible connections between different extreme events. Which, then, are the
principles underlying these dependencies between extremes?

The issue will be treated in a rather abstract setting, whose build-up is conveniently
commenced at a concept from classical extreme-value theory. A stationary sequence
of random variables {Xn : n ≥ 1} is said to have extremal index θ ∈ [0, 1] if for
every τ > 0 there exist numbers {un : n ≥ 1} such that n Pr (Xn > un) → τ and
Pr (maxi=1,...,n Xi ≤ un) → exp(−τθ) as n →∞ (Leadbetter 1983). The extremal index θ
quantifies the strength of the dependence between the threshold exceedances {Xi > un},
with θ = 1 corresponding to asymptotic independence and θ ↓ 0 to increasing dependence,
showing itself in a tendency for large observations to occur in clusters. Under certain mix-
ing conditions on the {Xn}, the extremal index arises in at least three other ways: as the
reciprocal of the mean size of a cluster of threshold exceedances; as the probability that a
threshold exceedance is not followed in the near future by another one; and as the shape
parameter in the limit distribution of the inter-exceedance times. All these characteriza-
tions motivate different estimators of the extremal index and of properties of clusters of
extremes. Together with the tail of the marginal distribution of the Xn, they provide a
fairly complete picture of the probabilistic structure of extreme events in the time series.

The concept of extremal index has been generalized to multivariate stationary time
series {Xn = (X

(1)
n , . . . , X

(d)
n ) : n ≥ 1}. Let order relations in Rd be taken component-

wise and define Mn = max{Xn : i = 1, . . . , n}. Consider multivariate thresholds un =

(u
(1)
n , . . . , u

(d)
n ) ∈ Rd for which n Pr(X

(i)
n > u

(i)
n ) → τ (i) ∈ [0,∞) as n →∞. If both limits

n Pr (X1 6≤ un) → λ ∈ (0,∞) and Pr (Mn ≤ un) → exp(−µ) > 0

exist, then the multivariate extremal index is defined by θ(τ ) = µ/λ. As the notation
suggests, the extremal index depends on τ = (τ (1), . . . , τ (d)) and thus on the threshold
sequence {un}, although under certain mixing conditions θ(τ ) = θ(cτ ) for c > 0. Theory
and practice are much less developed than in the univariate case, see Nandagopalan (1994)
and Smith and Weissman (1996).

Some reflection on the definition of the (multivariate) extremal index leads to the
observation that the order structure on Rd is not essential and that it is in fact possible
to start from a stationary sequence {Xn : n ≥ 1} of random variables in an arbitrary
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measurable space (S,S). The thresholds are replaced by measurable sets Bn ⊂ S which
are such that n Pr (X1 ∈ Bn) → τ > 0 as n → ∞. The process {Xn} is said to have
extremal index θ w.r.t. {Bn} if

Pr (∀i = 1, . . . , n : Xi 6∈ Bn) → exp(−τθ) as n →∞.

The special cases S = R and Bn = (un,∞) or, more generally, S = Rd and Bn = (−∞,un]c

lead back to the ordinary (multivariate) extremal index. The sets Bn can be thought of as
failure sets, which represent a collection of extreme states for the system represented by
the Xn. The extremal index θ describes the strength of dependence between the extreme
events {Xi ∈ Bn}.

At this stage, it is clear that even the Xi and the Bn can be disposed of, and that,
finally, the heart of the matter lies in the extreme events Ai,n = {Xi ∈ Bn}. In general,
then, we will work with a triangular array {Ai,n : n ≥ 1, i = 1, . . . , rn} of events on an
abstract probability space (which may vary with n) and for which every row satisfies a
certain stationarity condition. When interest is not in asymptotics but in finite-sample
statements, the focus will be on a single row A1, . . . , Ar.

The set-up and the notations in force are detailed in Section 2. In Section 3 we will
investigate how close Pr (

⋂r
i=1 Ac

i) and {Pr (
⋂s

i=1 Ac
i)}

r/s
are to each other, in terms of

finite-sample inequalities as well as asymptotically. This will be applied in Section 4 to
a comparison between two estimators of Pr(

⋂r
i=1 Ac

i) when the indicators Ii of the Ai

are observed. In Section 5 properties of the extremal index of a stationary sequence of
real-valued random variables will be shown to hold also for

θm = Pr

(
m⋂

i=2

Ac
i

∣∣∣∣∣A1

)
,

the conditional probability that an extreme event A1 is followed by a run of m − 1 non-
extreme events Ac

i . These properties will serve in Section 6 to show consistency of the
intervals estimator for the extremal index (Ferro and Segers 2002) in our general set-up.
Finally, in Section 7 the framework is extended to a double triangular array {(Ai,n, Bi,n) :
n ≥ 1, i = 1, . . . , rn}. The conditional probability

θA|B
m,n = Pr

(
m⋂

i=1

Ac
i,n

∣∣∣∣∣
m⋃

i=1

Bi,n

)

of no A-event in a block with a B-event will be shown to be an informative coefficient of
dependence between the A-array and the B-array.

If classical extreme-value theory for dependent observations allows generalization to
such an abstract setting, then inference procedures are feasible in a wide range of situations
involving dependence between rare events. Whatever the set-up, the interactions between
extremes eventually obey a simple set of basic laws, readily comprehensible and exploitable.
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2 Block-stationary events

We describe the basic concepts and assumptions in the theory to be developed. Funda-
mental is the following notion of stationarity.

Definition 2.1 Events A1, . . . , Ar on a common probability space are block-stationary if
for every m = 1, . . . , r − 1 and j = 1, . . . , r −m we have

Pr

(
m⋃

i=1

Ai+j

)
= Pr

(
m⋃

i=1

Ai

)
.

Let A1, . . . , Ar be block-stationary events. The fundamental quantity of interest is
pm = Pr(

⋃m
i=1 Ai+j) for m = 1, . . . , r and j = 0, . . . , r − m, that is, the probability that

a block of length m witnesses an extreme event. Denote qm = 1 − pm and p = p1.
Check that for positive integers i and j with i + j ≤ r we have pi ≤ pi+j ≤ pi + pj and
qi+j ≤ qi ≤ qi+j + pj.

Mixing conditions will be formulated in terms of

αs,l = max{

∣∣∣∣∣Pr

(
v⋂

i=u+1

Ac
i ∩

s+w⋂
j=s+v+1

Ac
j

)
− qv−uqw−v

∣∣∣∣∣ :

u ≥ 0, v − u ≥ l, w − v ≥ l, w + s ≤ r},

describing the force of dependence between two blocks of length at least l and separated
by a gap of size precisely s (put αs,l = 0 if 2l + s > r). Abbreviate αl = αl,l and
ᾱl = max{αs,l : s = l, . . . , r}.

Assuming without further notice that p > 0, we define for m = 1, . . . , r

θm = (pm − pm−1)/p

= Pr

(
m⋂

i=2

Ac
i+j

∣∣∣∣∣A1+j

)
= Pr

(
m−1⋂
i=1

Ac
i+j

∣∣∣∣∣Am+j

)
,

where j = 0, . . . , r − m and p0 = 0. In words, θm is equal to the probability that an
extreme event is not followed by another one in the next m−1 time points, and also to the
probability that an extreme event is not preceded by another one in the previous m − 1
time points.

The set-up for asymptotic results will be a triangular array {Ai,n : n ≥ 1, i = 1, . . . , rn}
for which every row A1,n, . . . , Arn,n consists of block-stationary events on a common proba-
bility space, which may vary with n. The probabilities of interest are pm,n = Pr(

⋃m
i=1 Ai+j,n)

for m = 1, . . . , rn and j = 0, . . . , rn − m, together with qm,n = 1 − pm,n and pn = p1,n.
The corresponding mixing coefficients are αs,l,n, αl,n = αl,l,n, and ᾱl,n = max{αs,l,n : s =
l, . . . , rn}. Assuming that pn > 0, we also set θm,n = (pm,n − pm−1,n)/pn for m = 1, . . . , rn,
where p0,n = 0. Finally, all asymptotic statements are for n →∞.
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Remark 2.2 The condition that the events A1, . . . , Ar are block-stationary is weaker than
the assumption that the vector of indicator variables Ii = I(Ai) is strictly stationary. As an
example, let {Yn : n ∈ Z} be independent random variables with Pr(Yn ≤ y) = exp(−1/y)
for y > 0, and let ai, i ≥ 0, be non-negative numbers such that ai ≥ ai+1 for all i ≥ 0 and∑

i≥0 ai = 1. Define the moving-maximum process ξn = max{aiYn−i : i ≥ 0}, for n ≥ 1.
The process {ξn} is stationary with block-maximum distribution Pr (maxi=1,...,n ξi ≤ x) =
exp{−[(n − 1)a0 + 1]/x}, for x > 0. Now let {ξ′n} be another such moving-maximum
process, independent of {ξn}, and with parameters a′i, i ≥ 0, where again a′i ≥ a′i+1 ≥ 0
for i ≥ 0 and

∑
i≥0 a′i = 1. Define (X1, X2, X3, X4, . . .) = (ξ1, ξ

′
1, ξ2, ξ

′
2, . . .). If a0 = a′0 but

ai 6= a′i for some i ≥ 1, then the process {Xn} is not stationary. Nevertheless, for all u > 0
the events An = {Xn > u} are block-stationary, although the sequence In = I(An) is not
stationary.

Remark 2.3 The mixing coefficients αs,l were introduced by O’Brien (1987) and lead to
mixing conditions that are slightly weaker than Leadbetter’s (1974) popular condition D.

3 Big and small blocks

A simple but crucial observation for independent and identically distributed real-valued
random variables {Xn : n ≥ 1} is that the distribution of the sample maximum Mn =
maxi=1,...,n Xi satisfies Pr (Mn ≤ x) = {Pr (X1 ≤ x)}n. Although this is no longer true in
the presence of dependence, certain mixing conditions still guarantee that Pr (Mr ≤ x) is
close to {Pr (Mm ≤ x)}r/m for suitable r and m. This is important in so far it implies that
for a broad class of stationary sequences the only non-trivial weak limits of scaled and nor-
malized sample maxima are the extreme-value distributions, whose range of applicability
is thereby greatly enlarged (Leadbetter et al. 1983). The argument can be extended to the
multivariate case (Hsing 1989).

A natural question, then, is whether in general the probability qr of no extreme event in
a block of size r can be approximated by the probability q

r/m
m of no extreme event in r/m

independent smaller blocks of size m. Finite-sample inequalities in Subsection 3.1 lead to
asymptotic results in Subsection 3.2.

3.1 Inequalities

Let A1, . . . , Ar be block-stationary events (Definition 2.1) and employ the notations of

Section 2. Two lemmas will prepare the ground for inequalities for qr − q
r/m
m in case m is

small compared to r (Theorem 3.4) and inequalities for qr − q
r/s
s in case s can be of the

same order as r (Theorem 3.5). By convention, we set the sum over the empty set equal
to zero and the product over the empty set equal to one.

Lemma 3.1 Let a1, b1, . . . , ak, bk ∈ {0, . . . , r} and assume that there exists a positive in-
teger l such that bi − ai ≥ l for all i = 1, . . . , k and ai+1 − bi = l for all i = 1, . . . , k − 1.
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We have

−(αl + pl)
k∑

i=2

k∏
j=i+1

qbj−aj
≤ qbk−a1 −

k∏
i=1

qbi−ai
≤ αl

k∑
i=2

k∏
j=i+1

qbj−aj
.

Proof. We proceed by induction on k. For k = 1, there is nothing to prove. Let k ≥ 2.
We have

Pr

(
bk−1⋂

i=a1+1

Ac
i ∩

bk⋂
i=ak+1

Ac
i

)
− Pr

 ak⋃
i=bk−1+1

Ai


≤ Pr

(
bk⋂

i=a1+1

Ac
i

)
= qbk−a1 ≤ Pr

(
bk−1⋂

i=a1+1

Ac
i ∩

bk⋂
i=ak+1

Ac
i

)
.

Moreover, ∣∣∣∣∣Pr

(
bk−1⋂

i=a1+1

Ac
i ∩

bk⋂
i=ak+1

Ac
i

)
− qbk−1−a1qbk−ak

∣∣∣∣∣ ≤ αl.

Together, we find

qbk−1−a1qbk−ak
− αl − pl ≤ qbk−a1 ≤ qbk−1−a1qbk−ak

+ αl.

Apply the induction hypothesis on qbk−1−a1 to conclude the proof. �

For a real number x, we denote by bxc the largest integer not larger than x, and by
dxe the smallest integer not smaller than x.

Lemma 3.2 Let l and m be positive integers such that l ≤ m ≤ r. For every k =
1, . . . , b(r + l)/(m + l)c, we have

qr ≤ qk
m + αl

1− qk−1
m

1− qm

.

If also 2l + m ≤ r, then for k = d(r + l)/(m + l)e, we have

qr ≥ qk
m − (αl + pl)

1− qk−1
m

1− qm

.

Proof. Let k = 1, . . . , b(r + l)/(m + l)c and set ai = (i − 1)(m + l) and bi = ai + m
for i = 1, . . . , k. The integers a1, b1, . . . , ak, bk satisfy the conditions of Lemma 3.1; in
particular bk = km + (k − 1)l ≤ r. Hence

−(αl + pl)
k∑

i=2

qk−i
m ≤ qkm+(k−1)l − qk

m ≤ αl

k∑
i=2

qk−i
m .
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Now we have
∑k

i=2 qk−i
m = (1 − qk−1

m )/(1 − qm). Since qr ≤ qkm+(k−1)l, the upper bound
follows.

Next, suppose that 2l + m ≤ r. Apply Lemma 3.1 on a1 = 0, b1 = m, a2 = m + l, and
b = r to find

qr ≥ qmqr−m−l − (αl + pl).

Let k = d(r + l)/(m + l)e. Since r −m− l ≤ (k − 1)(m + l)− l ≤ r, we have

qr−m−l ≥ q(k−1)(m+l)−l ≥ qk−1
m − (αl + pl)

1− qk−2
m

1− qm

.

Substitute the lower bound for qr−m−l into the lower bound for qr to conclude the proof.
�

Remark 3.3 For 0 < x < 1 and a ≥ 1 or a = 0, we have

1− xa

1− x
≤ min(a, 1/(1− x)).

Hence, (1− qk−1
m )/(1− qm) ≤ min(k − 1, 1/pm) in Lemma 3.2.

Theorem 3.4 For positive integers l and m such that l ≤ m ≤ r, we have

qr ≤ qr/m
m + αl

1− q
r/m
m

1− qm

+
l

m
+

m

r
.

If also 2l + m ≤ r, then

qr ≥ qr/m
m − (αl + pl)

1− q
r/m
m

1− qm

− l

m
− m

r
.

Proof. Lemma 3.2 with k = b(r + l)/(m + l)c gives

qr ≤ qk
m + αl

1− qk−1
m

1− qm

.

If 0 ≤ x ≤ 1, a > 0, and b > 0, then |xa − xb| ≤ max(1 − a/b, 1 − b/a). Hence, since
(r + l)/(m + l)− 1 ≤ k ≤ (r + l)/(m + l) ≤ r/m, we have

qk
m − qr/m

m ≤ 1−mk/r ≤ l/m + m/r,

leading to the stated upper bound for qr.
Next, suppose 2l + m ≤ r, and set k = d(r + l)/(m + l)e. By Lemma 3.2, we have

qr ≥ qk
m − (αl + pl)

1− qk−1
m

1− qm

.

Now, by the same inequality as before, we have

|qk
m − qr/m

m | ≤ max(1−mk/r, 1− r/(mk)).

Since (r + l)/(m+ l) ≤ k < (r + l)/(m+ l)+1, we have 1−mk/r ≤ l/m and 1− r/(mk) ≤
(l + m)/r, so that max(1 −mk/r, 1 − r/(mk)) ≤ l/m + m/r. As k − 1 ≤ r/m, the proof
is complete. �
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Theorem 3.5 For positive integers l, m, and s such that l ≤ m, m + 2l ≤ s, and s ≤ r,
we have ∣∣qr − qr/s

s

∣∣ ≤ r

m
(2αl + pl) + 4

m

s
.

Proof. Let k = b(s + l)/(m + l)c. By Lemma 3.2, we have

qs ≤ qk
m + (k − 1)αl.

Since {min(x + y, 1)}a ≤ xa + ay for 0 ≤ x ≤ 1, y ≥ 0, and a ≥ 1, we have

qr/s
s ≤ qkr/s

m +
r

s
(k − 1)αl.

Let j = d(r + l)/(m + l)e. By Lemma 3.2, we also have

qr ≥ qj
m − (j − 1)(αl + pl).

All in all, we find

qr − qr/s
s ≥ qj

m − qkr/s
m −

(r

s
(k − 1) + (j − 1)

)
αl − (j − 1)pl.

Now if j ≤ kr/s, then qj
m − q

kr/s
m ≥ 0, while if j > kr/s, then

qj
m − qkr/s

m ≥ kr

js
− 1 ≥ (s−m)r

(r + 2l + m)s
− 1 ≥ −4

m

s
.

Further, j − 1 < (r + l)/(m + l) < r/m, and (r/s)(k − 1) < r/m.

The proof of the upper bound for qr − q
r/s
s is analogous, and based on the inequality

{max(x− y, 0)}a ≥ xa − ay for 0 ≤ x ≤ 1, y ≥ 0, and a ≥ 1. �

3.2 Asymptotic results

For every n ≥ 1 let A1,n, . . . , Arn,n be block-stationary events, and use the notations of

Section 2. Theorem 3.7 compares qrn,n with q
sn/rn
sn,n .

Lemma 3.6 Let 1 ≤ ln ≤ mn ≤ rn be integers with ln = o(mn).

(i) Let 0 < λn → 0. If pmn,n = O(λn) and αln,n = o(λn), then pln,n = o(λn).

(ii) If 0 < pmn,n → 0 and αln,n = o(pmn,n), then pln,n = o(pmn,n).

Proof. (i) Let k be a positive integer. If n is large enough so that k ≤ b(mn + ln)/(2ln)c,
then we have by Lemma 3.2,

1− pmn,n ≤ (1− pln,n)k + (k − 1)αln,n ≤ exp(−pln,nk) + (k − 1)αln,n.
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If n is also large enough so that pmn,n + (k − 1)αln,n < 1, then

pln,n ≤ −1

k
log{1− pmn,n − (k − 1)αln,n}.

Hence we have

lim sup
n→∞

pln,n/λn ≤
1

k
lim sup

n→∞
pmn,n/λn.

Let k →∞ to see that pln,n/λn → 0.
(ii) Take λn = pmn,n in (i). �

Theorem 3.7 For positive integers ln and sn such that

ln = o(sn), sn ≤ rn, and αln,n = o(max(sn/rn, psn,n)),

we have
qrn,n = qrn/sn

sn,n + o(1).

If additionally lim infn→∞ sn/rn > 0, then also

qsn/rn
rn,n = qsn,n + o(1).

Proof. Without loss of generality, we can restrict n to a subsequence along which
(rn/sn)psn,n → c ∈ [0,∞].

If c = ∞, then q
rn/sn
sn,n → 0. Set kn = b(rn + ln)/(sn + ln)c. By Lemma 3.2, we have

qrn ≤ qkn
sn,n + αln,n/psn,n → 0,

since kn ∼ rn/sn.
Next, suppose c < ∞. Since in this case αln,n = o(sn/rn), we can find positive integers

mn such that
ln = o(mn), mn = o(sn), and αln,n = o(mn/rn).

Again, without loss of generality, we can restrict n to a further subsequence such that
(rn/mn)pmn → d ∈ [0,∞].

Suppose first that d < ∞. By Lemma 3.6(i), we have (rn/mn)pln,n → 0. But then

|qrn,n − q
rn/sn
sn,n | → 0 by Theorem 3.5.

Suppose next that d = ∞. Let jn = b(rn + ln)/(mn + ln)c. Since jn ∼ rn/mn, we have
by Lemma 3.2,

qrn,n ≤ (1− pmn,n)jn + (jn − 1)αln,n → 0.

Next, let kn = b(sn + ln)/(mn + ln)c. By Lemma 3.2, we have

qrn/sn
sn,n ≤ min{(1− pmn,n)kn + (kn − 1)αln,n, 1}rn/sn .

If a ≥ 1, 0 ≤ x ≤ 1, and y ≥ 0, then min(x + y, 1)a ≤ xa + ay. Hence

qrn/sn
sn,n ≤ (1− pmn,n)knrn/sn + (rn/sn)(kn − 1)αln,n.
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Since kn ∼ sn/mn, we obtain q
rn/sn
sn,n → 0.

The second statement of the Theorem follows from

qsn,n = {max(qrn,n + o(1), 0)}sn/rn

and the uniform continuity of the map (x, a) 7→ xa on (x, a) ∈ [0, 2]×[ε, 1], where 0 < ε ≤ 1.
�

4 Application: disjoint or sliding blocks?

Estimation of the distribution of the maximum of a block of consecutive variables lies
at the heart of the method of annual maxima (Gumbel 1958) and the blocks estimator
for the extremal index (Hsing 1991; Smith and Weissman 1994). In each case a sample
of observations is partitioned into blocks to yield a sample of block maxima, from which
the unknown distribution can be estimated. An alternative to disjoint blocks is to slide
a window of the appropriate size through the sample. The resulting sample of sliding-
block maxima is much larger than the one from disjoint blocks; however, block maxima of
overlapping windows are dependent, even in case of independent observations. This raises
the question which are the more efficient: disjoint or sliding blocks?

The problem can be solved in our general framework. For every n, let A1,n, . . . , An,n

be block-stationary events on a common probability space (which may vary with n). For
k = 1, . . . , n and j = 0, . . . , k−1, let Ij,k,n be the indicator function of the event

⋂k
i=j+1 Ac

i,n.
Abbreviate Ik,n = I0,k,n for k = 1, . . . , n. Observe that qr,n = E(Ir,n) = E(Ij,j+r,n), for
r = 1, . . . , n and j = 0, . . . , n− r. We can express the familiar mixing coefficients by

αs,l,n = max{|Cov (Iu,v,n, Is+v,s+w,n) | :
u ≥ 0, v − u ≥ l, w − v ≥ l, w + s ≤ n}.

Put ᾱl,n = maxs=l,...,n αs,l,n. Two unbiased estimators of qr,n are

q̂r,n =
1

bn/rc

bn/rc∑
i=1

I(i−1)r,ir,n and q̃r,n =
1

n− r + 1

n−r∑
i=0

Ii,i+r,n,

composed of disjoint blocks and sliding blocks respectively. By Theorem 4.1 below and the
inequality 2x{(log x)−1(x− 1)− x} < x(1− x) for 0 < x < 1, the sliding-blocks estimator
is more efficient than the disjoint-blocks estimator in case qr,n is bounded away from 0 and
1.

Theorem 4.1 If the positive integers ln and rn are such that

ln = o(rn), rn = o(n), and ᾱln,n = o(rn/n),

then

(n/rn)Var (q̂rn,n) = qrn,n(1− qrn,n) + o(1),

(n/rn)Var (q̃rn,n) = 2qrn,n

(
qrn,n − 1

log(qrn,n)
− qrn,n

)
+ o(1).
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Proof. We give the proof only for the sliding-blocks estimator, which is the more difficult
part. We have

Var (q̃rn,n) =
1

(n− rn + 1)2

n−rn∑
i=0

n−rn∑
j=0

Cov (Ii,i+rn,n, Ij,j+rn,n)

Since

Cov (Ii,i+rn,n, Ij,j+rn,n) = qrn+|i−j|,n − q2
rn,n if |i− j| ≤ rn,

|Cov (Ii,i+rn,n, Ij,j+rn,n) | ≤ ᾱln,n if |i− j| ≥ rn + ln,

we have

Var (q̃rn,n) =
qrn,n(1− qrn,n)

n− rn + 1
+

2

(n− rn + 1)2

rn∑
h=1

(n− rn + 1− h)(qrn+h,n − q2
rn,n)

+ O(ln/n) + O(ᾱln,n)

=
2

n− rn + 1

rn∑
h=1

(qrn+h,n − q2
rn,n) + O(r2

n/n
2) + O(ln/n) + O(ᾱln,n).

We obtain

(n/rn)Var (q̃rn,n) =
2

rn

rn∑
h=1

(qrn+h,n − q2
rn,n) + o(1)

= 2

∫ 1

0

(qrn+drnxe,n − q2
rn,n) dx + o(1).

By Theorem 3.7, we have qrn+drnxe,n = q
1+drnxe/rn
rn,n + o(1) = q1+x

rn,n + o(1) for x ≥ 0. Apply
the dominated convergence theorem to complete the proof. �

5 After an extreme event

The extremal index θ of a stationary sequence {Xn : n ≥ 1} of real-valued random variables
determines the dependence between extreme events in the sequence in a number of different
ways. The results to follow are nothing but generalizations of these facts, under minimal
conditions, to the naked framework of block-stationary events.

Let us first recall some properties of the extremal index. Denote the marginal distri-
bution function of the Xn by F , and for n ≥ 1 let the thresholds un ∈ R be such that
lim sup n[1− F (un)] < ∞. Denote

θm,n = Pr

(
max

i=2,...,m
Xi ≤ un

∣∣∣∣X1 > un

)
,

the conditional probability that a threshold exceedance is followed by a run of non-
exceedances. O’Brien (1987) proved that if m ≡ mn → ∞ and mn = o(n), then, under
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certain mixing conditions, Pr (Mn ≤ un) = {F (un)}nθmn,n + o(1). Hence, the extremal
index arises as the limit of θmn,n.

Another characterization of the extremal index is in terms of Sm,n =
∑m

i=1 I(Xi >
un), the number of threshold exceedances in a block of size m. If m ≡ mn = o(n) and
lim sup n[1− F (un)] < ∞, then Pr (Smn,n > 0) ≤ mn[1− F (un)] → 0. In case Sm,n > 0 all
the exceedances in the block are thought of as one single cluster. If mn →∞, then under
certain mixing conditions the expected cluster size satisfies E[Smn,n | Smn,n > 0] → 1/θ
(Leadbetter 1983). In words, the extremal index is the reciprocal of the mean cluster size
of threshold exceedances.

Finally, Ferro and Segers (2002) linked the extremal index with the inter-exceedance

times T (un)
d
= min{i ≥ 1 : Xi+1 > un} conditionally on X1 > un. They showed that, again

under certain mixing conditions,

Pr{[1− F (un)]T (un) > x | X1 > un} → θ exp(−xθ), for x > 0,

that is, the normalized inter-exceedance times [1 − F (un)]T (un) converge to a mixture
between a point mass at zero and the exponential distribution.

The proper reformulations of these properties in terms of the threshold exceedances
{Xi > un} will be shown to remain true in the general setting of row-wise block-stationary
events Ai,n. The asymptotic results of Subsection 5.2 are founded on the finite-sample
inequalities of Subsection 5.1 and culminate in the Characterization Theorem of Subsec-
tion 5.3.

5.1 Inequalities

Let A1, . . . , Ar be block-stationary events (Definition 2.1) and recall the notations of Sec-
tion 2.

Theorem 5.1 For m = 1, . . . , r, we have

mpθm ≤ pm.

If, additionally, 2m < r and l = 1, . . . , min(m, r − 2m), then also

pm ≤ mpθm + p2
m + pl + αl.

Proof. Since θi ≥ θi+1 for all i = 1, . . . , r − 1, we have

pm =
m∑

i=1

(pi − pi−1) =
m∑

i=1

pθi ≥ mpθm.

For the upper bound, observe that

pm = Pr

(
m⋃

i=1

Ai ∩
2m+l⋂

i=m+1

Ac
i

)
+ Pr

(
m⋃

i=1

Ai ∩
2m+l⋃

i=m+1

Ai

)
.

11



On the one hand, we have

Pr

(
m⋃

i=1

Ai ∩
2m+l⋂

i=m+1

Ac
i

)
=

m∑
i=1

Pr

(
Ai ∩

2m+l⋂
j=i+1

Ac
j

)
=

m∑
i=1

pθ2m+l−i+1 ≤ mpθm,

while on the other hand, as Pr (Ac ∩B)−Pr (Ac) Pr (B) = Pr (A) Pr (B)− Pr (A ∩B) for
general events A and B, we have

Pr

(
m⋃

i=1

Ai ∩
2m+l⋃

i=m+1

Ai

)
≤ Pr

(
m⋃

i=1

Ai ∩
2m+l⋃

i=m+l+1

Ai

)
+ pl ≤ p2

m + αl + pl.

�

Theorem 5.2 For positive integers l and m such that l ≤ m ≤ r, we have

qr ≤ (1− θmp)r + αl
1− q

r/m
m

1− qm

+
l

m
+

m

r
.

If additionally 2m + l ≤ r, then

qr ≥ exp(−rθmp)− 2r

m
(αl + pl)−

r

m
p2

m − l

m
− 2

m

r
.

Proof. By Theorem 3.4, we have

qr ≤ qr/m
m + αl

1− q
r/m
m

1− qm

+
l

m
+

m

r
.

By the first inequality of Theorem 5.1, we have qm ≤ 1−mpθm. Since (1 + x)a ≤ 1 + ax
for x ≥ −1 and 0 < a ≤ 1, we obtain

qr/m
m ≤ (1−mpθm)r/m ≤ (1− θmp)r,

which gives the stated upper bound for qr.
Secondly, we have by Theorem 3.4,

qr ≥ qr/m
m − r

m
(αl + pl)−

l

m
− m

r
.

The second inequality of Theorem 5.1 implies

qr/m
m = (1− pm)r/m ≥ {max(1−mpθm − p2

m − pl − αl, 0)}r/m.

Since {max(1− x, 0)}a ≥ exp(−ax)− 1/a for x ≥ 0 and a > 0, we have

qr/m
m ≥ exp{−rpθm − (r/m)(p2

m + pl + αl)} −m/r.

Since also exp(−x− y) ≥ exp(−x)− y for x ≥ 0 and y ≥ 0, we get

qr/m
m ≥ exp(−rpθm)− (r/m)(p2

m + pl + αl)−m/r.

Substitute this inequality in the lower bound for qr to conclude the proof. �
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Theorem 5.3 For positive integers l and m such that l ≤ m and 2m + l ≤ r, and for
s = m + l, . . . , r −m, we have

−(mp)−1αl − (mp)−1pl ≤ θs − θmqs

≤ 3(mp)−1ᾱl + 2pm + (1 + (mp)−1)pl.

Proof. For t = m + 1, . . . , r, we have

Pr

(
m⋃

i=1

Ai ∩
t⋂

i=m+1

Ac
i

)
=

m∑
k=1

Pr

(
Ak ∩

t⋃
i=k+1

Ac
i

)
=

m∑
k=1

pθt−k+1,

so that

mpθt ≤ Pr

(
m⋃

i=1

Ai ∩
t⋂

i=m+1

Ac
i

)
≤ mpθt−m.

Hence for s = m + 1, . . . , r −m, we have

Pr

(
m⋃

i=1

Ai ∩
s+m⋂

i=m+1

Ac
i

)
≤ mpθs ≤ Pr

(
m⋃

i=1

Ai ∩
s⋂

i=m+1

Ac
i

)
.

Now

0 ≤ Pr

(
m⋃

i=1

Ai ∩
s⋂

i=m+1

Ac
i

)
− Pr

(
m⋃

i=1

Ai ∩
s+m⋂

i=m+1

Ac
i

)

≤ Pr

(
m⋃

i=1

Ai ∩
s+m⋃

i=s+1

Ai

)
≤ p2

m + αs−m,l.

Moreover,

0 ≤ Pr

(
m⋃

i=1

Ai ∩
s+m⋂

i=m+l+1

Ac
i

)
− Pr

(
m⋃

i=1

Ai ∩
s+m⋂

i=m+1

Ac
i

)
≤ Pr

(
m+l⋃

i=m+1

Ai

)
= pl

and, if s ≥ m + l, ∣∣∣∣∣Pr

(
m⋃

i=1

Ai ∩
s+m⋂

i=m+l+1

Ac
i

)
− pmqs−l

∣∣∣∣∣ ≤ αl.

Together, we obtain

pmqs−l − αl − pl ≤ mpθs ≤ pmqs−l + αl + p2
m + αs−m,l.

If s−m ≥ l, then αs−m,l ≤ ᾱl. Theorem 5.1 now implies

mpθmqs−l − αl − pl ≤ mpθs ≤ mpθmqs−l + 3ᾱl + 2p2
m + pl.

Since qs ≤ qs−l ≤ qs + pl, we obtain

mpθmqs − αl − pl ≤ mpθs ≤ mpθmqs + 3ᾱl + 2p2
m + (1 + mp)pl.

Divide by mp and use pm ≤ mp to conclude the proof. �
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5.2 Asymptotic results

For every n ≥ 1, let the events A1,n, . . . , Arn,n be block-stationary. Recall the notations of
the Introduction, in particular

θm,n = Pr

(
m⋂

i=2

Ac
i,n

∣∣∣∣∣A1,n

)
= (pm,n − pm−1,n)/pn, for m = 2, . . . , rn.

Consecutively treated in this paragraph are extremes in small blocks, extremes in large
blocks, and inter-arrival times between extreme events.

Small blocks

Theorem 5.4 Let ln and mn be positive integers with 2mn + ln ≤ rn and assume that
ln = o(mn) and pmn,n → 0.

(i) If αln = o(mnpn), then θmn,n = (mnpn)−1pmn,n + o(1).

(ii) If αln,n = o(pmn,n), then θmn,n ∼ (mnpn)−1pmn,n.

Proof. (i) By Theorem 5.1, we have

(mnpn)−1
(
pmn,n − p2

mn,n − pln,n − αln,n

)
≤ θmn,n ≤ (mnpn)−1pmn,n.

Since pmn,n ≤ mnpn and pln,n ≤ lnpn, statement (i) follows.
(ii) We can also write the previously displayed inequalities as

pmn,n

mnpn

(
1− pmn,n −

pln,n

pmn,n

− αln,n

pmn,n

)
≤ θmn,n ≤ (mnpn)−1pmn,n.

By Lemma 3.6(ii), we have pln,n = o(pmn,n), hence (ii) follows. �

Remark 5.5 Theorem 5.4 has the following interpretation. For i = 1, . . . , rn, let Ii,n be
the indicator of the event Ai,n, and for m = 1, . . . , rn, let Sm,n =

∑m
i=1 Ii,n be the number

of extreme events that occurred in a block of size m. Then E(Sm,n | Sm,n > 0) = mpn/pm,n

for m = 1, . . . , r, so that under the conditions of Theorem 5.4(i), we may write

θmn,n = [E(Smn,n | Smn,n > 0)]−1 + o(1).

Under the conditions of Theorem 5.4(ii), we also have

E(Smn,n | Smn,n > 0) = θ−1
mn,n + o(1).

Theorem 5.6 Let ln, mn, and Mn be positive integers such that ln ≤ mn ≤ Mn and
2Mn + ln ≤ rn. If

ln = o(mn), αln,n = o(mnpn), pMn,n → 0, and Mnpn = O(1),

then
θmn,n =

pmn,n

mnpn

+ o(1) =
pMn,n

Mnpn

+ o(1) = θMn,n + o(1).
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Proof. By Theorem 5.4, we have immediately that

θmn,n =
pmn,n

mnpn

+ o(1) and θMn,n =
pMn,n

Mnpn

+ o(1).

So it is enough to show that the two right-hand sides of these equations are equal.
Suppose first that mn = o(Mn). On the one hand, we have

pMn,n ≤ pmndMn/mne,n ≤ dMn/mnepmn,n = (Mn/mn)pmn,n[1 + o(1)],

and thus (Mnpn)−1pMn,n ≤ (mnpn)−1pmn,n+o(1). On the other hand, we have by Lemma 3.2,
with kn = b(Mn + ln)/(mn + ln)c,

1− pMn,n − (kn − 1)αln,n ≤ (1− pmn,n)kn ≤ exp(−knpmn,n).

Since kn ≤ Mn/mn = O(1/(mnpn)), we can take logarithms of both sides of the displayed
equation. We find

knpmn,n ≤ − log{1− pMn,n − (kn − 1)αln,n},

and hence
(Mn/mn)pmn,n ≤ (pMn,n + knαln,n)[1 + o(1)].

Since kn/Mn ∼ 1/mn, we find (mnpn)−1pmn,n ≤ (Mnpn)−1pMn,n + o(1).
Next consider the general case mn ≤ Mn. We can find positive integers m′

n such that
ln = o(m′

n) and αln,n = o(m′
npn). By the previous argument, we have

pm′
n,n

m′
npn

=
pmn,n

mnpn

+ o(1) =
pMn,n

Mnpn

+ o(1).

�

Big blocks

Theorem 5.7 Let ln and mn be positive integers. If

ln = o(mn), mn = o(rn), and αln,n = o(max(mn/rn), pmn,n),

then
qrn,n ≤ (1− θmn,npn)rn + o(1) = exp(−rnθmn,npn) + o(1).

If additionally pmn,n → 0, then

qrn,n = (1− θmn,npn)rn + o(1) = exp(−rnθmn,npn) + o(1)

= (1− pn)rnθmn,n + o(1).
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Proof. By the first inequality of Theorem 5.2, we immediately have

qrn,n ≤ (1− θmn,npn)rn + o(1).

Since 0 ≤ exp(−ax)− (1− x)a ≤ 1/a for 0 ≤ x ≤ 1 and a > 0, we also have

(1− θmn,npn)rn = exp(−rnθmn,npn) + O(1/rn).

Next suppose pmn,n → 0. As also pn ≤ pmn,n → 0, we have

(1− pn)rnθmn,n = exp(−rnθmn,npn) + o(1),

since supa≥0 | exp(−ax)−(1−x)a| → 0 as 0 < x → 0. So we only need to prove that qrn,n ≥
exp(−rnθmn,npn) + o(1). Without loss of generality, we may restrict n to a subsequence
along which (rn/mn)pmn,n converges to some c ∈ [0,∞].

If c < ∞, then (rn/mn)pln,n → 0 by Lemma 3.6(i). The second inequality of Theo-
rem 5.2 now finishes the job.

If c = ∞, then mn/rn = o(pmn,n), so that αln,n = o(pmn,n). By Theorem 5.4, we have

rnθmn,npn ∼ (rn/mn)pmn,n →∞,

so that exp(−rnθmn,npn) → 0. �

Remark 5.8 Without the extra condition pmn,n → 0, the second statement of Theorem 5.7
is not true. Consider for example independent events with pn → 0, rn ∼ p−3

n , and mn ∼ p−2
n :

we have qrn,n = (1− pn)rn → 0, but rnθmn,npn ∼ p−2
n (1− pn)mn−1 → 0.

The condition pmn,n → 0 is implied by each of the following ones: (i) mnpn → 0, (ii)
lim supn→∞ rnpn < ∞, and (iii) lim infn→∞ qrn,n > 0. Regarding (i), just observe that
pmn,n ≤ mnpn. Since mn = o(rn), (ii) implies (i). And since qrn,n = (1− pmn,n)rn/mn + o(1)
by Theorem 3.7, also condition (iii) is sufficient.

Inter-arrival times between extreme events

Theorem 5.9 Let ln and mn be positive integers such that 2mn + ln ≤ rn. If

ln = o(mn), mnpn → 0, and ᾱln,n = o(mnpn),

then
max{|θs,n − θmn,nqs,n| : s = mn + ln, . . . , rn −mn} → 0.

Proof. By Theorem 5.3, we have

max{|θs,n − θmn,nqs,n| : s = mn + ln, . . . , rn −mn}
≤ 3(mnpn)−1ᾱln,n + 2pmn,n + (1 + (mnpn)−1)pln,n.

Since pmn,n ≤ mnpn, Lemma 3.6 implies pln,n = o(mnpn). The Theorem follows. �
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Theorem 5.10 Suppose that L = lim infn→∞ rnpn > 0, and let ln and mn be positive
integers such that

ln = o(mn), mnpn → 0, ᾱln,n = o(mnpn).

For every 0 < x < L, we have

θdx/pne,n = θmn,n exp(−xθmn,n) + o(1).

Proof. Define sn = dx/pne. Since x > 0, we have mn = o(sn), and since x < L, we have
sn ≤ rn − mn. Theorem 5.9 implies that θsn,n = θmn,nqsn,n + o(1). By Theorem 5.7, we
have qsn,n = exp(−snθmn,npn) + o(1). Since snpn → x, the proof is complete. �

Remark 5.11 For i = 1, . . . , rn, let Ii,n be the indicator of the event Ai,n. Define the
random variable

Tn = min{i ≥ 1 : Ii+1,n = 1} conditionally on I1,n = 1.

That is, conditionally on the occurrence of an extreme event on time i = 1, the random
variable Tn is the waiting time until the next extreme event. The distribution of Tn is

Pr(Tn ≥ s | A1) = Pr

(
s−1⋂
i=1

Ac
i+1

∣∣∣∣∣A1

)
= θs,n.

Under the conditions of Theorem 5.10, we have

Pr(pnTn ≥ x) = θmn,n exp(−xθmn,n) + o(1), for x > 0.

Hence the normalized inter-arrival time between extreme events (pnTn) is approximately
distributed according to the mixture distribution

(1− θ)ε0 + θExp(θ),

where θ = θmn,n, ε0 is the point mass at zero, and Exp(θ) is the exponential distribution
with mean 1/θ.

5.3 Characterization Theorem

The different roles of the θm,n in the previous Subsection can be united into a single
Characterization Theorem. For sequences an and bn of positive numbers, we write an � bn

if
0 < lim inf

n→∞
an/bn ≤ lim sup

n→∞
an/bn < ∞.

Theorem 5.12 (Characterization) Assume that rnpn � 1 and that αln,n → 0 for some
positive integer ln with ln = o(rn). Let θn be a sequence of non-negative numbers. The
statements (a)–(f) are equivalent:
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(a) There exist positive integers sn with sn ≤ rn and sn � rn such that qsn,n = exp(−snθnpn)+
o(1).

(b) For every sequence sn of positive integers with sn ≤ rn and sn � rn, we have qsn,n =
exp(−snθnpn) + o(1).

(c) There exist positive integers mn with ln = o(mn), mn = o(rn), and αln,n = o(mn/rn)
such that θmn,n = θn + o(1).

(d) For every sequence mn of positive integers with ln = o(mn), mn = o(rn), and αln,n =
o(mn/rn), we have θmn,n = θn + o(1).

(e) Same as (c), but with θmn,n replaced by (mnpn)−1pmn,n.

(f) Same as (d), but with θmn,n replaced by (mnpn)−1pmn,n.

Denote L = lim infn→∞ rnpn > 0. If, additionally, lim supn→∞ θn ≤ 1 and ᾱln,n → 0, then
the statements (a)–(f) are also equivalent to each of (g)–(i):

(g) There exists 0 < x ≤ 1 with x < L such that θdx/pne,n = θn exp(−xθn) + o(1).

(h) There exist 0 < x1 < x2 < L such that θdxi/pne,n = θn exp(−xiθn) + o(1) for i = 1, 2.

(i) For every 0 < x < L, we have θdx/pne,n = θn exp(−xθn) + o(1).

Proof. (a) implies (d). Take positive integers mn such that ln = o(mn), mn = o(rn)
and αln,n = o(mn/rn). Since mn/sn � mn/rn → 0 and pmn,n ≤ mnpn � mn/rn → 0, we
obtain by Theorem 5.7 that qsn,n = exp(−snθmn,npn) + o(1), and thus exp(−snθmn,npn) =
exp(−snθnpn) + o(1). Since snpn � rnpn � 1 and θmn,n ∈ [0, 1], we can take logarithms
and divide by snpn, finding θmn,n = θn + o(1).

(d) implies (c). Since ln = o(n) and αln,n → 0, we can construct a sequence mn

of positive integers such that ln = o(mn), mn = o(rn), and αln,n = o(mn/rn); choose
for instance mn such that mn/rn ∼ {max(ln/rn, αln,n)}1/2. By (d), we must also have
θmn,n = θn + o(1).

(c) implies (b). Take positive integers sn such that sn ≤ rn and sn � rn. We can apply
Theorem 5.7 to find

qsn,n = exp(−snθmn,npn) + o(1) = exp{−sn[θn + o(1)]pn}+ o(1) = exp(−snθnpn) + o(1),

where we used that snpn � 1.
(b) implies (a). Trivial.
(c) is equivalent to (e), and (d) is equivalent to (f). Since pmn,n ≤ mnpn � mn/rn → 0,

we can apply Theorem 5.4(i), obtaining θmn,n = (mnpn)−1pmn,n + o(1).
(d) implies (i). Take 0 < x < L. Since ln = o(rn) and ᾱln,n → 0, we can find a

sequence mn of positive integers such that ln = o(mn), mn = o(rn), and ᾱln,n = (mn/rn).
By Theorem 5.10 and by (d), we have

θdx/pne,n = θmn,n exp(−xθmn,n) + o(1)

= [θn + o(1)] exp{−x[θn + o(1)]}+ o(1) = θn exp(−xθn) + o(1).
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(i) implies (g) and (h). Trivial.
(g) implies (c). As before, we can find integers mn ≥ 1 such that ln = o(mn), mn =

o(rn), and αln,n ≤ ᾱln,n = o(mn/rn). By Theorem 5.10, we have

θmn,n exp(−xθmn,n) = θn exp(−xθn) + o(1).

Without loss of generality, we can restrict attention to subsequences along which θn →
θ ∈ [0, 1] and θmn,n → θ′ ∈ [0, 1]. Clearly θ exp(−xθ) = θ′ exp(−xθ′). Since the function
z 7→ z exp(−xz) is strictly increasing in z ∈ [0, 1/x], and since 1/x ≥ 1, we have θ = θ′.

(h) implies (c). There exist integers mn ≥ 1 with ln = o(mn), mn = o(rn), and
αln,n ≤ ᾱln,n = o(mn/rn) such that

θmn,n exp(−xiθmn,n) = θn exp(−xiθn) + o(1) for i = 1, 2.

If θn → θ ∈ [0, 1] and θmn,n → θ′ ∈ [0, 1] along some subsequence, then

θ exp(−xiθ) = θ′ exp(−xiθ
′), for i = 1, 2.

If θ = 0, then θ′ exp(−xiθ
′) = 0, and thus θ′ = 0 [in fact, here we only need one single

0 < x < L]. If θ > 0, then either (1) θ = θ′ or (2) θ 6= θ′ and (θ − θ′)−1 log(θ/θ′) = xi for
i = 1, 2. Since x1 < x2, the second case is impossible, and thus θ = θ′. �

6 Application: intervals estimator

Two popular estimators for the extremal index are the blocks and the runs estimator (Hsing
1991 and 1993). Both of them require the choice of a tuning parameter, which, unfortu-
nately, often has a grave impact on the final estimates. Ferro and Segers (2002) used the
asymptotic distribution of the random times between threshold exceedances to construct
the so-called intervals estimator, for which no such choice must be made. Consistency of
the estimator was demonstrated under the stringent condition that the sequence of random
variables is m-dependent. This assumption, however, is unnecessarily restrictive, as will
be shown next in our general setting.

In the finite-sample case, let A1, . . . , An be block-stationary events. Denote Ii = I(Ai),
the indicator of Ai, and let N =

∑n
i=1 Ii be the number of events occurred. Put S0 = 0,

SN+1 = n + 1, and in case N ≥ 1 let 1 ≤ S1 < · · · < SN ≤ n be the times at which events
occurred, that is, {i = 1, . . . , n : Ii = 1} = {S1, . . . , SN}. Denote the inter-arrival times by
Ti = Si+1 − Si, for i = 0, . . . , N .

The intervals estimator is based on the statistic

τ =
n∑

i=1

n∑
j=i

j∏
k=i

(1− Ik) =
N∑

t=0

1

2
(Tt − 1)Tt

with expectation

E(τ) =
n∑

i=1

n∑
j=i

Pr

(
j⋂

k=i

Ac
k

)
=

n∑
s=1

(n− s + 1)qs.
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If we, naively, plug in the approximation qs ≈ exp(−spθm), see Theorem 5.7, then we may
guess that E(τ) ≈ n/(pθm). Hence, given an estimator p̂ of p, we may estimate θm by
θ̂m = n/(p̂τ), a variant of the intervals estimator of Ferro and Segers (2002). A possible
candidate for p̂ is of course N/n.

The asymptotic theory to follow requires an upper bound for Var (τ). As usual, denote
ᾱl = max{αs,l : s = l, . . . , n}, with αs,l the mixing coefficients of Section 2.

Lemma 6.1 For integer 1 ≤ l ≤ n, we have

Var (τ) ≤ 2n
n∑

s=1

(s + 2l)sqs + n4ᾱl.

Proof. Denoting

A = {(i, j, u, v) ∈ {1, . . . , n}4 : i ≤ j, u ≤ v}

C(i, j, u, v) = Cov

(
j∏

k=i

(1− Ik),
v∏

w=u

(1− Iw)

)
, for (i, j, u, v) ∈ A,

we have Var (τ) =
∑

A C(i, j, u, v). Now for ν = 0, 1, . . . , 6, let Aν be the set of all
(i, j, u, v) ∈ A such that

case ν = 0 : i = u;
case ν = 1 : i < u ≤ j;
case ν = 2 : j < u ≤ j + l;
case ν = 3 : j + l < u;

case ν = 4 : u < i ≤ v;
case ν = 5 : v < i ≤ v + l;
case ν = 6 : v + l < i.

The sets A0, . . . , A6 form a partition of A, hence

Var (τ) =
6∑

ν=0

∑
Aν

C(i, j, u, v) =
∑
A0

C(i, j, u, v) + 2
3∑

ν=1

∑
Aν

C(i, j, u, v),

by symmetry. On A0, we have C(i, j, u, v) ≤ qmax(j,v)−i+1, hence

∑
A0

C(i, j, u, v) ≤
n∑

s=1

qs

∑
A0

1{max(j,v)−i+1=s} ≤ 2n
n∑

s=1

sqs.

On A1 as well, we have C(i, j, u, v) ≤ qmax(j,v)−i+1, hence

∑
A1

C(i, j, u, v) ≤
n∑

s=1

qs

∑
A1

1{max(j,v)−i+1=s} ≤ n
n∑

s=1

(s− 1)sqs.

On A2, we have C(i, j, u, v) ≤ qmax(j−i+1,v−u+1), so that

∑
A2

C(i, j, u, v) ≤
n∑

s=1

qs

∑
A2

1{max(j−i+1,v−u+1)=s} ≤ 2nl
n∑

s=1

sqs.
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Finally, on A3, we have C(i, j, u, v) ≤ ᾱl, and thus∑
A3

C(i, j, u, v) ≤ 1

2
n4ᾱl.

To conclude the proof, add the bounds on
∑

Aν
C(i, j, u, v). �

Next we consider the asymptotic case. For n ≥ 1, let A1,n, . . . , An,n be block-stationary
events, and for i = 1, . . . , n, let the random variable Ii,n be the indicator of the event Ai,n.
The statistic of interest is

τn =
n∑

i=1

n∑
j=i

j∏
k=i

(1− Ik,n).

Theorem 6.2 Let 1 ≤ ln ≤ mn ≤ n be integers. If

ln = o(mn), pmn,n → 0, mn = o(npmn,n), and αln,n = o(mn/n).

then
E(τn) ∼ mnn

pmn,n

∼ n

pnθmn,n

.

Proof. Since αln,n = o(pmn,n), we have, according to Theorem 5.4, θmn,n ∼ (mnpn)−1pmn,n,
which proves the second asymptotic equivalence.

We prove the first asymptotic equivalence by separately considering the lim sup and
the lim inf. By the upper bound in Lemma 3.2, we have

E(τn) ≤ mnn + n
n∑

s=mn+1

qs,n ≤ mnn + n
n∑

s=mn+1

qk
mn,n + n2αln,n/pmn,n,

where k = b(s + ln)/(mn + ln)c. The conditions imply

E(τn) ≤ n
n∑

s=mn+1

qk
mn,n + o(mnn/pmn,n).

Since k = b(s + ln)/(mn + ln)c > (s−mn)/(mn + ln), we have

k

s/mn

>
s−mn

s

mn

mn + ln
> 1− mn

s
− ln

mn

.

Take 0 < ε < 1. For n large enough so that mn/n < ε/2 and ln/mn < ε/2, we have
k/(s/mn) > 1− ε for s = d2mn/εe, . . . , n. Hence

E(τn) ≤ 2mnn/ε + n

n∑
s=d2mn/εe

q(1−ε)s/mn
mn,n + o(mnn/pmn,n)

≤ n
∞∑

s=0

q(1−ε)s/mn
mn,n + o(mnn/pmn,n) =

n

1− q
(1−ε)/mn
mn,n

+ o(mnn/pmn,n)

≤ mnn

(1− ε)pmn,n

+ o(mnn/pmn,n).
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Let ε ↓ 0 to find lim supn→∞ pmn,nE(τn)/(mnn) ≤ 1.
Next, we deal with the lim inf. Let 0 < ε < 1. For large enough n, we have

mn/(εpmn,n) < n. Set an = dmn/εe and bn = dmn/(εpmn,n)e. We have

E(τn) ≥
bn∑

s=an

(n− s + 1)qs,n ≥ (n− bn + 1)
bn∑

s=an

qs,n.

Set k = d(s + ln)/(mn + ln)e for s = an, . . . , bn. By Lemma 3.2, we have

E(τn) ≥ (n− bn + 1)
bn∑

s=an

{qk
mn,n − (αln,n + pln,n)/pmn,n}.

≥ (n− bn + 1)
bn∑

s=an

qk
mn,n −

nmn

εp2
mn,n

(αln,n + pln,n).

Since αmn,n = o(mn/n) and mn/n = o(pmn,n), we have αln,n = o(pmn,n), so that also
pln,n = o(pmn,n) according to Lemma 3.6(ii). Hence

E(τn) ≥ (n− bn + 1)
bn∑

s=an

qk
mn,n + o(mnn/pmn,n).

Now k = d(s + ln)/(mn + ln)e ≤ (s + 2ln + mn)/(mn + ln) ≤ (s + ln + mn)/mn, so that
k/(s/mn) ≤ 1 + 2mn/s ≤ 1 + 2ε for s ≥ an. Consequently,

E(τn) ≥ (n− bn + 1)
bn∑

s=an

q(1+2ε)s/mn
mn,n + o(mnn/pmn,n)

= (n− bn + 1)
q
(1+2ε)an/mn
mn,n − q

(1+2ε)(bn+1)/mn
mn,n

1− q
(1+2ε)/mn
mn,n

+ o(mnn/pmn,n).

Now we have

q(1+2ε)an/mn
mn,n → 1,

q(1+2ε)(bn+1)/mn
mn,n → exp{−(1 + 2ε)/ε},
1− q(1+2ε)/mn

mn,n ∼ (1 + 2ε)pmn,n/mn.

Hence lim infn→∞ pmn,nE(τn)/(mnn) ≥ [1 − exp{−(1 + 2ε)/ε}]/(1 + 2ε). Let ε ↓ 0 to
conclude the proof. �

Remark 6.3 The inequalities mnpnθmn,n ≤ pmn,n ≤ mnpn (see Theorem 5.1) yield simple
sufficient conditions for Theorem 6.2: first, mnpn → 0 implies pmn,n → 0; second, in the
typical case lim infn→∞ θmn,n > 0, the condition npn →∞ implies mn = o(npmn,n).
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Theorem 6.4 If ᾱln,n = o(m2
n/(n

2p2
mn,n)) in addition to the conditions of Theorem 6.2,

then Var (τn) = o(n2m2
n/p

2
mn,n), and hence

pnθmn,n

n
τn → 1 in L2.

In particular, if p̂n = pn{1 + op(1)}, then

θ̂n = n/(p̂nτn) = θmn,n{1 + op(1)}.

Proof. By assumption, we have n4ᾱln,n = o(n2m2
n/p

2
mn,n), so that by Lemma 6.1 it is

sufficient to show that
∑n

s=1(s + 2ln)sqs,n = o(nm2
n/p

2
mn,n). Now, for n large enough so

that 2ln ≤ mn, we have
n∑

s=1

(s + 2ln)sqs,n ≤ 2m2
n + 2

n∑
s=mn

s2qs,n.

Clearly, we may restrict attention to the second term on the right-hand side of this in-
equality. Set an = d2mn/pmne. Since mn = o(npmn,n), we have an ≤ n for large enough n.
So we can write

n∑
s=mn

s2qs,n ≤
an−1∑
s=mn

s2qs,n +
n∑

s=an

s2qs,n = In + IIn,

say. By Lemma 3.2, we have

In ≤
an−1∑
s=mn

s2

(
qb(s+l)/(m+l)c
m +

αln,n

pmn,n

)
≤

an−1∑
s=mn

s2qs/(4mn)
m + a3

n

αln,n

pmn,n

.

Since
∑∞

s=1 s2(1− ε)s = O(ε−3) as 0 < ε → 0, and since αln,n = o(mn/n), we have

In = O
((

1− q1/(4mn)
mn,n

)−3
)

+ O
(
m3

nαln,n/p
4
mn,n

)
= O(m3

n/p
3
mn,n) + o

(
m4

n/(np4
mn,n)

)
.

Moreover, mn = o(npmn,n), so that In = o(nm2
n/p

2
mn,n).

Next, we deal with IIn. By Lemma 3.2, we have

IIn ≤
n∑

s=an

s2

(
qb(s+ln)/(an+lnc
an,n +

αln,n

pan,n

)
≤

n∑
s=an

s2qs/(4an)
an,n + n3 αln,n

pan,n

.

Apply Lemma 3.2 again to find

qan,n ≤ qb(an+ln)/(mn+ln)c
mn,n +

αln,n

pmn,n

≤ qan/(4mn)
mn,n + o(1) → exp(−1/2).

Hence we can find a number 0 < δ < 1 such that qan,n ≤ 1− δ for all large enough n. We
obtain

IIn = O
(
[1− (1− δ)1/(4an)]−3

)
+ O(n3αln,n).

Since [1−(1−δ)1/4an ]−3 ∼ (4/δ)3a3
n = O(m3

n/p
3
n) and αln,n = o(m2

n/(n
2p2

mn,n)), we conclude
IIn = o(nm2

n/p
2
n). �

23



7 Multiple extreme events

In a multivariate time series there are different forms of dependence to consider, such as
the dependence between the marginals at a fixed time point and the dependence over time
in each of the marginal series. However, the exceptional events in each of the marginals
may also depend on one another in a more complicated way.

Example 7.1 Let {Yn : n ≥ 1} be independent and identically distributed random vari-

ables, and consider the stationary bivariate time series Xn = (X
(1)
n , X

(2)
n ) = (Yn, Yn+1), for

n ≥ 1. For each n the marginal variables X
(1)
n and X

(2)
n are independent, and each of the

marginal time series {X(i)
n : n ≥ 1} consists of independent random variables. Nevertheless,

the coordinate-wise maxima M
(i)
n = maxj=1,...,n X

(i)
j satisfy

Pr
(
M (1)

n ≤ u(1)
n , M (2)

n ≤ u(2)
n

)
= Pr

(
M (1)

n ≤ min(u(1)
n , u(2)

n )
)

+ o(1)

for any sequence {(u(1)
n , u

(2)
n )}, that is, M

(1)
n and M

(2)
n are completely dependent in the

limit.

For every n ≥ 1, let A1,n, . . . , Arn,n and B1,n, . . . , Brn,n be events on a common proba-
bility space (which may vary with n). Define Ci,n = Ai,n∪Bi,n for n ≥ 1 and i = 1, . . . , rn.
For Z = A, B, C, assume that the events Z1,n, . . . , Zrn,n are block-stationary, and put

pZ
m,n = Pr

(
m⋃

i=1

Zi,n

)
, pZ

n = pZ
1,n,

qZ
m,n = 1− pZ

m,n, θZ
m,n = Pr

(
m⋂

i=2

Zc
i,n

∣∣∣∣∣Z1,n

)
,

where m = 1, . . . , rn. Define the mixing coefficients

αs,l,n = max
Z=A,B,C

max{

∣∣∣∣∣Pr

(
v⋂

i=u+1

Zc
i,n ∩

s+w⋂
j=s+v+1

Zc
j,n

)
− qZ

v−u,nq
Z
w−v,n

∣∣∣∣∣ :

u ≥ 0, v − u ≥ l, w − v ≥ l, w + s ≤ rn},

with αs,l,n = 0 if 2l + s > rn. Abbreviate αl,n = αl,l,n.
We will investigate the dependence between the A-array and the B-array through the

quantity

θA|B
m,n = Pr

(
m⋂

i=1

Ac
i+j,n

∣∣∣∣∣
m⋃

i=1

Bi+j,n

)
= (pC

m,n − pA
m,n)/pB

m,n

where m = 1, . . . , rn and j = 0, . . . , rn − mn. Although θ
A|B
m,n and θ

B|A
m,n are not the same,

any statement on θ
A|B
m,n obviously corresponds to another one with the roles of A and B

interchanged.
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Theorem 7.2 For positive integers ln and mn such that

ln = o(mn), mn = o(rn), and αln,n = o(max(mn/rn, p
C
mn,n)),

we have

qC
rn,n = qA

rn,n

(
qB
rn,n

)θA|B
mn,n + o(1).

Proof. By Theorem 3.7 and since rn/mn →∞, we have

qC
rn,n =

(
qC
mn,n

)rn/mn
+ o(1) = exp{−(rn/mn)pC

mn,n}+ o(1)

= exp{−(rn/mn)(pA
mn,n + pB

mn,nθ
A|B
mn,n)}+ o(1).

Without loss of generality, we may assume that (rn/mn)pC
mn,n → λ ∈ [0,∞].

Assume first that λ < ∞. Then αln,n = o(mn/rn), so that by Theorem 3.7

qZ
rn,n = exp{−(rn/mn)pZ

mn,n}+ o(1), for Z = A, B.

Since lim inf qB
rn,n ≥ lim inf qC

rn,n = exp(−λ) > 0, we obtain

qC
rn,n = {qA

rn,n + o(1)}{qB
rn,n + o(1)}θ

A|B
mn,n + o(1) = qA

rn,n

(
qB
rn,n

)θA|B
mn,n + o(1).

Next, assume that λ = ∞. Then qC
rn,n → 0. Since pC

m,n = pA
m,n + pB

m,nθ
A|B
m,n , we can

without loss of generality restrict n to a further subsequence for which

lim inf pA
mn,n/p

C
mn,n > 0 or lim inf pB

mn,nθ
A|B
mn,n/p

C
mn,n > 0.

In the first case we have αln,n = o(pA
mn,n) and thus, by Theorem 3.7,

qA
rn,n = exp{−(rn/mn)pA

mn,n}+ o(1) → 0.

In the second case we have αln,n = o(pB
mn,n) and thus, by Theorem 3.7,

qB
rn,n = exp{−(rn/mn)pB

mn,n}+ o(1) → 0.

As pB
m,n ≤ pC

m,n, we have lim inf θ
A|B
mn,n > 0, and thus

(
qB
rn,n

)θA|B
mn,n → 0. �

The dependence coefficient θ
A|B
m,n is related to the indices θZ

m,n for Z = A, B, C.

Theorem 7.3 Let ln and mn be positive integers with 2mn + ln ≤ rn. If

ln = o(mn), pC
mn,n → 0, and αln,n = o(mnp

C
n ),

then
pA

n θA
mn,n + pB

n θB
mn,nθ

A|B
mn,n = pC

n

[
θC

mn,n + o(1)
]
.
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Proof. By Theorem 5.4, we have

θC
mn,n =

pC
mn,n

mnpC
n

+ o(1) =
pA

mn,n

mnpC
n

+
pB

mn,n

mnpC
n

θA|B
mn,n + o(1).

Without loss of generality, we can restrict n to a subsequence along which pA
n /pC

n → λ ∈
[0, 1] and pB

n /pC
n → µ ∈ [0, 1]. If λ = 0, then

pA
mn,n

mnpC
n

≤ pA
n

pC
n

→ 0,

while if λ > 0, then αln,n = o(mnp
A
n ) and thus, by Theorem 5.4,

pA
mn,n = mnp

A
n{θA

mn,n + o(1)}.

The arguments for the B-term are analogous. �

The value of θ
A|B
m,n is approximately the same for a range of values of m.

Theorem 7.4 Let ln, mn, and Mn be positive integers such that ln ≤ mn ≤ Mn and
2Mn + ln ≤ rn. If

ln = o(mn), αln,n = o(mnp
C
n ), pC

Mn,n → 0, Mnp
C
n = O(1),

and lim inf pB
n θB

Mn,n/p
C
n > 0, then

θA|B
mn,n =

(
pC

n θC
mn,n − pA

n θA
mn,n

)
/pB

n θB
mn,n + o(1)

=
(
pC

n θC
Mn,n − pA

n θA
Mn,n

)
/pB

n θB
Mn,n + o(1) = θ

A|B
Mn,n + o(1).

Proof. By Theorem 7.3, we have

θA|B
mn,n =

pC
n

[
θC

mn,n + o(1)
]
− pA

n θA
mn,n

pB
n θB

mn,n

,

θ
A|B
Mn,n =

pC
n

[
θC

Mn,n + o(1)
]
− pA

n θA
Mn,n

pB
n θB

Mn,n

.

Since lim inf pB
n θB

mn,n/p
C
n > 0, we have lim inf pB

n /pC
n > 0 and lim inf θB

mn,n > 0. Therefore
αln,n = o(mnp

B
n ) and thus, by Theorem 5.6,

θB
mn,n = θB

Mn,n + o(1) and θC
mn,n = θC

Mn,n + o(1).

Hence, for subsequences along which pA
n /pC

n → 0, we have

θA|B
mn,n =

pC
n θC

mn,n

pB
n θB

mn,n

+ o(1) =
pC

n θC
Mn,n

pB
n θB

Mn,n

+ o(1) = θ
A|B
Mn,n.

On the other hand, for subsequences along which lim inf pA
n /pC

n > 0, we have, by Theo-
rem 5.6, θA

mn,n = θA
Mn,n + o(1), leading to the stated expression. �
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Remark 7.5 The previous results suggest three ways to estimate the dependence coeffi-
cient θ

A|B
m,n when observing the indicator variables I(Ai,n) and I(Bi,n) for i = 1, . . . , n: (1)

estimate pZ
m,n for Z = A, B, C and use the definition; (2) estimate qZ

r,n for Z = A, B, C and
use Theorem 7.2; (3) estimate pZ

n θZ
m,n for Z = A, B, C and use Theorem 7.4. In (1) and

(2) one could employ the disjoint-blocks estimator of Section 4, while in (3) the intervals

estimator of Section 6 for the extremal indices θZ
m,n would lead to an estimator of θ

A|B
m,n for

which no block length needs to be chosen. The properties of these estimators remain open
for further research.
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