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1 Introduction

This paper concerns one-complemented subspaces of Minkowski spaces, that
is to say subspaces of Rn that are the range of a projection of norm one. A
classic result of Kakutani [9] says that if X is real Banach space of dimension
at least three, then X is Euclidean if and only if every subspace of X is
one-complemented. This implies that the one-complemented subspaces of
a Banach space that is not Euclidean are somehow special. The special
nature of these subspaces is manifested in the following result (compare
Bohnenblust [4] and Lindenstauss and Tzafriri [10, Theorem 2.a.4]). If Rn

is equipped with an lp-norm, where 1 < p < ∞ and p 6= 2, then a subspace
is one-complemented if and only if it is the linear span of a family of vectors
with mutually disjoint supports. With this result in mind it is natural to
ask for which norms on Rn the one-complemented subspaces are spanned by
vectors with mutually disjoint supports.

This question has been examined in general Banach spaces. It is known,
for instance, to have a positive answer for Lp-spaces, where 1 ≤ p < ∞ and
p 6= 2 (see Ando [1], Bernau and Lacey [3], Douglas [7], and Tzafriri [17]),
and for some natural generalizations of Lp-spaces such as Lorenz sequence
spaces and Orlicz sequence spaces (see Randrianantoanina [12, 13, 14, 16]
and Jamison, Kamińska and Lewicki [8]). On the other hand there exist one-
complemented subspaces of R3 that do not admit such a basis if the norm is
the `∞-norm (see [6]). An extensive overview of many of these results and
related problems is given in [15].

The purpose of this paper is to extend some of the ideas used by Lin-
denstrauss and Tzafriri in the proof of Theorem 2.a.4 in [10]. This theorem
asserts that a subspace of an lp-sequence space, where 1 < p < ∞ and
p 6= 2, is one-complemented if and only if it is spanned by a set of vectors
with mutually disjoint supports. The extension allows us to introduce a
class of norms on Rn and show that for these norms each one-complemented
subspace has a basis of vectors with mutually disjoint supports. The class
of norms include, among others, positive linear combinations of lp-norms,
where 1 < p < ∞ and p 6= 2, and their duals.

Besides the introduction the paper contains six sections. In Section 2
several definitions and basic facts are collected. Subsequently we introduce
in Section 3 a class of norms on Rn, denoted by N n, and show that for
these norms each one-complemented subspace is spanned by vectors with
mutually disjoint supports. To decide whether a norm belongs to N n one
has to verify several properties of its dual norm. As the dual norm is often
not at hand this can be difficult. Therefore we examine in Sections 4 and
5 simpler conditions for a norm to be in N n. In Section 6 the results are
applied to sums of `p-norms. The final section contains a proof of a technical
lemma, which is used in Section 5.

1



2 Basic definitions and facts

Vectors in Rn will sometimes be viewed as functions from {1, . . . , n} to R.
Accordingly we write xy for the coordinate-wise product of x and y in Rn.
The support of x ∈ Rn is denoted by S(x) = {i : xi 6= 0}. Further we let
χ(x) denote the indicator of the support of x, so χ(x)i = 1 if i ∈ S(X), and
χ(x)i = 0 otherwise.

For simplicity, we say that a subspace R of Rn has a block basis if it is
the linear span of a set of vectors {v1, . . . , vk} in Rn, with mutually disjoint
supports, that is, the intersection of S(vi) with S(vj) is empty for all i and
j distinct. To verify that a subspace has a block basis one can use the
following simple observation.

Lemma 2.1. For a subspace R of Rn the following assertions are equivalent:

(i) R has a block basis;

(ii) for every x, y ∈ R there exists z ∈ R with S(z) = S(x) ∩ S(y);

(iii) for every x, y ∈ R one has that χ(x)y ∈ R.

Let ρ be a norm on Rn. We say that ρ is a Ck-norm if ρ is k times
continuously differentiable on Rn \ {0}. We restrict ourselves to strictly
convex norms, that is norms for which the unit sphere does not contain any
line-segments, or equivalently, ρ(x+y)/2 < 1 for every distinct x and y with
ρ(x) = ρ(y) = 1. The dual norm of ρ is denoted by ρ∗, so ρ∗(y) = sup{〈x, y〉 :
x ∈ Rn and ρ(x) ≤ 1} for all y ∈ Rn. Here 〈·, ·〉 is the standard inner
product on Rn. There exists a simple relation between the differentiability
of the norm and the geometry of its dual. A norm ρ on Rn is a C1-norm
if and only if its dual ρ∗ is strictly convex. Moreover ρ is a C1-norm if
and only if for each x ∈ Rn there exists a unique point x∗ ∈ Rn such that
ρ∗(x∗) = ρ(x) and 〈x, x∗〉 = ρ∗(x∗)ρ(x). The map Jρ : Rn → Rn given by
Jρ(x) = x∗ is called the (scaled) duality map of ρ. Throughout the text we
often write x∗ instead of Jρ(x). The duality map has the following basic
properties (see [2] or [11]).

Proposition 2.2. Let ρ be a C1-norm on Rn.

(i) The duality map Jρ : Rn → Rn satisfies Jρ(0) = 0 and

Jρ(x) = (ρ∇ρ)(x) = ρ(x)∇ρ(x) for all x ∈ R \ {0}. (1)

(ii) If ρ is strictly convex, then Jρ is a continuous bijection from Rn to Rn

with a continuous inverse. Moreover the inverse is Jρ∗ and

(ρ∗∇ρ∗)((ρ∇ρ)(x)) = x for all x ∈ Rn \ {0}. (2)
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We will mainly consider norms that have a second derivative as well. If ρ
is C2 on an open subset V of Rn, then its Hesse matrix at x ∈ V is denoted
by Hρ(x), so

Hρ(x)ij = (DiDjρ)(x).

A special role will be played by the derivative of the duality map. Observe
that if ρ is a C2-norm on an open subset V of Rn, then ρ∇ρ is C1 on V , and
hence by Lemma 2.2 we see that Jρ is C1 on V . We denote its derivative at
x by Gρ(x), so

Gρ(x) = D(ρ∇ρ)(x) = ∇ρ(x)∇ρ(x)> + ρ(x)Hρ(x) for all x ∈ V. (3)

Note that Gρ(x) is a symmetric matrix, as ρ is a C2 norm, and that Gρ(x) is
positive semi-definite, since ρ is a nonnegative convex function. By applying
the inverse function theorem and the chain rule to equation (2) one can
establish the following lemma.

Lemma 2.3. Let ρ be a strictly convex C1-norm on Rn. If ρ is C2 on an
open set V , then ρ∗ is C2 on Jρ(V ) if and only if detGρ(x) 6= 0 for all
x ∈ V . Moreover in that case one has that Gρ∗(x∗)Gρ(x) = I for all x ∈ V .

3 One-complemented subspaces

In this section we give an abstract theorem on one-complemented subspaces
of Rn. The ideas behind this theorem can be conveniently outlined by con-
sidering lp-norms. Let ρ be an lp-norm on Rn with p ≥ 2. Then both ρ and
ρ∗ are C2 on U = {x ∈ Rn : xi 6= 0 for all i}. Moreover, if p > 2 and x ∈ Rn

with xi = 0, then the i-th row and column of Gρ(x) are zero. If x ∈ U ,
then Lemma 2.3 yields that detGρ(x) 6= 0 and Gρ∗(x∗)Gρ(x) = I. By using
these observations it is not difficult to show that

lim
m→∞Gρ∗(u∗m)Gρ(x) = Diag(χ(x))

for x 6= 0 and (um)m a sequence in U with um → x. Further, if R
is a one-complemented subspace of Rn under ρ, then one can prove that
Gρ∗(u∗m)Gρ(x)y is in R whenever x, y ∈ R and um ∈ U ∩ R for all m. Now
if R contains a vector with full support, then for every x in R the set U ∩R
contains a sequence that converges to x, and hence we find that χ(x)y ∈ R
for all x, y ∈ R. If R does not contain a vector with full support the same
arguments can be used after a reduction of the dimension. It turns out that
the above ideas can be applied to more general norms on Rn than lp-norms.
Indeed we will see that the ideas also work for the following class of norms.

Definition 3.1. Let N n be the set of all strictly convex C2-norms ρ on
Rn such that ρ∗ is C2 on Jρ(U), where U = {x ∈ Rn : xi 6= 0 for all i}.
Moreover it is required that for every x 6= 0 and every sequence (um)m in U
with um → x one has that
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(a) Gρ(x)ij = 0 for every i 6∈ S(x) and 1 ≤ j ≤ n,

(b) Gρ∗(u∗m)ij converges for all i, j ∈ S(x) as m →∞ , and

(c) Gρ∗(u∗m)ij converges to 0 for every i ∈ S(x) and j 6∈ S(x) as m →∞.

It is not hard to verify that an lp-norm is in N n if p > 2. For more
general norms however, it can be rather difficult to verify the properties of
the dual norm. In Section 5 we will see how to partly overcome this problem.
We now state the main theorem of this section.

Theorem 3.2. If ρ is a norm in N n and R is a one-complemented subspace
of Rn under ρ, then R has a block basis.

The proof of the theorem is based on three lemmas, which will be dis-
cussed first.

Lemma 3.3. If ρ is a C1-norm on Rn, and R is a one-complemented sub-
space of Rn under ρ, then the following assertions are true:

(i) Jρ(R) is a linear subspace;

(ii) if ρ is C2 on an open set V , then Gρ(x)y ∈ Jρ(R) for every x ∈ V ∩R
and y ∈ R.

Proof. Let P : Rn → Rn be a projection of ρ-norm one and range R. Re-
mark that the transpose P> of P is a projection of ρ∗-norm one. Indeed
〈x, P>y〉 = 〈Px, y〉 ≤ ρ(Px)ρ∗(y) ≤ ρ(x)ρ∗(y), so that

ρ∗(P>y) = sup{〈x, P>y〉 : ρ(x) ≤ 1} ≤ ρ∗(y) for y ∈ Rn. (4)

To prove the first assertion we show that Jρ(R) is the range of P>. So let
x ∈ R and observe that

ρ(x)ρ∗(x∗) = 〈x, x∗〉 = 〈Px, x∗〉 = 〈x, P>x∗〉 ≤ ρ(x)ρ∗(P>x∗).

Combining this inequality with equation (4) yields ρ∗(P>x∗) = ρ∗(x∗) and
〈x, x∗〉 = ρ(x)ρ∗(P>x∗). As ρ is a C1-norm this gives P>x∗ = x∗. Thus
Jρ(R) is a subset of the range of P>.

Now let R(P>) denote the range of P>. By duality we have that
Jρ∗(R(P>)) is contained in R. Now using (ii) in Proposition 2.2 we find
that R(P>) ⊂ Jρ(R), and hence Jρ(R) is the range of P>.

To prove the second assertion let x ∈ V ∩ R and y ∈ R. As Jρ(R) is a
linear subspace we see that

Gρ(x)y = lim
t→0

ρ(x + ty)∇ρ(x + ty)− ρ(x)∇ρ(x)
t

= lim
t→0

Jρ(x + ty)− Jρ(x)
t

is in Jρ(R), which completes the proof.
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We like to mention that the converse of the first assertion in the previous
lemma also holds (see Calvert [5]).

Lemma 3.4. Let ρ be a norm in N n and let x ∈ Rn with x 6= 0. If (um)m is
a sequence in U = {z ∈ Rn : zi 6= 0 for all i} such that um → x as m →∞,
then

lim
m→∞Gρ∗(u∗m)Gρ(x) = Diag(χ(x)). (5)

Proof. First let i, j ∈ S(x). By property (b) in Definition 3.1 we can define
numbers aij = limm→∞Gρ∗(u∗m)ij . From Lemma 2.3 it follows that

n∑

l=1

Gρ∗(u∗m)ilGρ(um)lj = δij for all m.

By letting m → ∞ in the previous equality, and using property (a) in
Definition 3.1 we deduce that

∑

l∈S(x)

ailGρ(x)lj = δij for all i, j ∈ S(x). (6)

Thus we obtain:

lim
m→∞(Gρ∗(u∗m)Gρ(x))ij = lim

m→∞
∑

l∈S(x)

Gρ∗(u∗m)ilGρ(x)lj

=
∑

l∈S(x)

ailGρ(x)lj = δij

for all i, j ∈ S(x).
Now let i ∈ S(x) and j 6∈ S(x). Remark that Gρ(x) is symmetric, as ρ

is a C2-norm. Exploiting this fact and property (a) shows that

Gρ∗(u∗m)ilGρ(x)lj = Gρ∗(u∗m)ilGρ(x)jl = 0 for all m.

Therefore limm→∞(Gρ∗(u∗m)Gρ(x))ij = 0 for i ∈ S(x) and j 6∈ S(x).
Finally, let i 6∈ S(x) and 1 ≤ j ≤ n. As ρ∗ is C2 on Jρ(U) the matrix

Gρ∗(u∗m) is symmetric for all m. Therefore we can use properties (a) and
(c) to obtain

lim
m→∞(Gρ∗(u∗m)Gρ(x))ij

= lim
m→∞

( ∑

l∈S(x)

Gρ∗(u∗m)liGρ(x)lj +
∑

l 6∈S(x)

Gρ∗(u∗m)ilGρ(x)lj

)
= 0. (7)

By collecting the pieces we find that limm→∞Gρ∗(u∗m)Gρ(x) = Diag(χ(x)).
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The following technical lemma is used to reduce the dimension in the
proof of Theorem 3.2.

Lemma 3.5. Let ρ be a norm on Rn and let 1 ≤ k ≤ n. Suppose η : Rk → R
is defined by η(x) = ρ(x̄) for all x ∈ Rk, where x̄i = xi for 1 ≤ i ≤ k, and
x̄i = 0 otherwise. If ρ ∈ N n, then η ∈ N k.

Proof. Since ρ is a strictly convex C2-norm on Rn it follows directly from
the definition of η that η is a strictly convex C2-norm on Rk. Moreover

Gη(x)ij = Gρ(x̄)ij for all 1 ≤ i, j ≤ k, and x ∈ Rk.

Let W = {x ∈ Rk : xi 6= 0 for all i}. To show that η∗ is C2 on Jη(W ) we
fix v ∈ W . By mixing sequences it follows from (b) in Definition 3.1 that if
1 ≤ i, j ≤ k, then Gρ∗(u∗m)ij converges to the same limit, say aij , for every
sequence (um)m in U = {x ∈ Rn : xi 6= 0 for all i} with um → v̄.

Let A(v) = (aij) and put B(v) = (Gρ(v̄)ij), where 1 ≤ i, j ≤ k. By
property (a) we know that Gρ(v̄)ij = 0 for all k < i ≤ n and 1 ≤ j ≤ n, and
hence A(v)B(v) = I by Lemma 3.4. This implies that detB(v) 6= 0. Now
remark that B(v) = Gη(v), so that we can apply Lemma 2.3 to see that η∗

is C2 on Jη(W ). Moreover

Gη∗(v∗) = Gη(v)−1 = B(v)−1 = A(v). (8)

We conclude the proof by verifying the properties (a), (b), and (c) for
η. Let x ∈ Rk and x 6= 0. Clearly Gη(x)ij = 0, if i 6∈ S(x) and 1 ≤ j ≤ k,
because Gη(x)ij = Gρ(x̄)ij = 0 if i 6∈ S(x̄) = S(x) and 1 ≤ j ≤ n.

Let (wm)m be a sequence in W such that wm → x, where x 6= 0. Then
we know from property (b) for ρ that Gρ∗((wm, ε, . . . , ε)∗)ij converges to
A(wm)ij , as ε → 0 for each m ≥ 1 and 1 ≤ i, j ≤ k. It follows from (8) that
Gη∗(w∗m)ij = A(wm)ij for all 1 ≤ i, j ≤ k and m ≥ 1. Thus for each m ≥ 1
there exists εm > 0 such that

|Gρ∗((wm, εm, . . . , εm)∗)ij −Gη∗(w∗m)ij | < 1/m for all 1 ≤ i, j ≤ k.

Combining this inequality with (b) and (c) for ρ gives that Gη∗(w∗m)ij con-
verges for each i, j ∈ S(x), and Gη∗(w∗m)ij converges to 0 for all i ∈ S(x)
and j 6∈ S(x).

By applying the previous lemmas we can now prove Theorem 3.2.

Proof of Theorem 3.2. Let R be a one-complemented subspace of Rn under
ρ. Then there exists a projection P : Rn → Rn of ρ-norm one and range
R. Let I = {i : xi 6= 0 for some x ∈ R}. By relabelling we may assume
that I = {1, . . . , k} for a certain 1 ≤ k ≤ n. Define η : Rk → R by
η(x) = ρ(x̄), where x̄i = xi for 1 ≤ i ≤ k, and x̄i = 0 otherwise. Further
let S = {x ∈ Rk : x̄ ∈ R}. It is easy to see that S is a one-complemented
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subspace of Rk under η. Indeed define Q : Rk → Rk by (Qx)i = (Px̄)i for
1 ≤ i ≤ k and x ∈ Rk. Observe that Qx = Px̄, as (Px̄)i = 0 for all i > k.
Therefore Qx = x if and only if Px̄ = x̄, so that S is the the set of fixed
points of Q. Moreover (Q(Qx))i = (PPx̄)i = (Px̄)i = (Qx)i for 1 ≤ i ≤ k,
and η(Qx) = ρ(Px̄) ≤ ρ(x̄) = η(x) for x ∈ Rk. Thus we conclude that Q is
a projection of η-norm at most one and range S.

Now let x, y ∈ S. By taking a suitable linear combination of elements of
R we can find a vector in R with support {1, . . . , k}. Therefore S contains
a vector with all its entries nonzero. Thus, we can find a sequence (wm)m

in the intersection of S with W = {z ∈ Rk : zi 6= 0 for all 1 ≤ i ≤ k}
such that wm → x as m → ∞. We know by Lemma 3.5 that η ∈ N k, and
hence Gη(x)y ∈ Jη(S) by Lemma 3.3. Applying Lemma 3.3 again for η∗

and recalling that Jη∗ is the inverse of Jη gives Gη∗(w∗m)Gη(x)y ∈ S for all
m. Consequently Lemma 3.4 yields that

lim
m→∞Gη∗(w∗m)Gη(x)y = χ(x)y ∈ S.

Using Lemma 2.1 we find that S has a block basis, and from this we conclude
that R has a block basis as well.

If ρ is a Riesz norm the assertion in Theorem 3.2 is also true if the
conditions are satisfied by ρ∗ instead of ρ. Recall that a norm ρ on Rn is a
Riesz norm if ρ(x) ≤ ρ(y) for all x, y ∈ Rn with |x| ≤ |y|. The proof of the
corollary uses the fact that the dual norm of a Riesz norm is again a Riesz
norm.

Corollary 3.6. If ρ is a Riesz norm on Rn and ρ∗ ∈ N n, then every one-
complemented subspace of Rn under ρ has a block basis.

Proof. Let P : Rn → Rn be a projection of ρ-norm one and range R. Then
P> : Rn → Rn is a projection with ρ∗-norm one and range Jρ(R). From
Theorem 3.2 it follows that Jρ(R) has a block basis.

Now let x, y ∈ R. We will show that there exists z ∈ R such that
S(z) = S(x)∩S(y). As Jρ(R) has a block basis we know by Lemma 2.1 that
there exists w ∈ Jρ(R) such that S(w) = S(x∗) ∩ S(y∗). Put z = Jρ∗(w)
and remark that z ∈ R. Now it suffices to prove that S(v) = S(v∗) for all
v ∈ Rn. So let v ∈ Rn. Put u = sgn(v)|v∗|, where sgn(v)i = 1 if vi > 0,
sgn(v)i = −1 if vi < 0, and sgn(v)i = 0 otherwise. Since ρ is a Riesz norm,
so is ρ∗, and hence ρ∗(u) ≤ ρ∗(v∗). This implies that

〈v, u〉 = 〈|v|, |v∗|〉 ≥ 〈v, v∗〉 = ρ(v)ρ∗(v∗) ≥ ρ(v)ρ∗(u).

Therefore v∗ = u and hence S(v∗) is contained in S(v). The other inclusion
is obtained by using duality, and this completes the proof.

7



4 A matrix lemma

To apply Theorem 3.2 one needs to know whether ρ satisfies the properties
in Definition 3.1. A major difficulty is to verify the properties for the dual
of ρ. For instance, if ρ is a positive linear combination of `p-norms, then it
is not clear what the dual of ρ is, and hence there is no direct way to verify
the properties. It is therefore useful to find assumptions for ρ that yield the
properties for ρ∗. In this section a matrix lemma is presented that will help
to formulate such conditions for ρ. This lemma belongs to the field of matrix
theory and is more or less independent of the main issue of the paper.

Before we give the lemma it is convenient to introduce the following
technical definition.

Definition 4.1. A sequence of n × n matrices (A(m))m, where A(m) =
(a(m)ij), is said to behave well relative to S ⊂ {1, . . . , n} if

1. (a(m)ij)i,j∈S converges to an invertible matrix,

2. a(m)ii 6= 0 for all i 6∈ S and m large,

3. a(m)ij/a(m)ii → 0 as m →∞ for all i 6∈ S and j 6= i,

4. a(m)ij → 0 as m →∞ for all i ∈ S and j 6∈ S.

The matrix lemma can now be stated as follows.

Lemma 4.2. Let (A(m))m and (B(m))m be two sequences of n×n matrices,
and let S ⊂ {1, . . . , n}. If B(m)A(m) = I for all m, then (A(m))m behaves
well relative to S if and only if (B(m)>)m behaves well relative to S. In that
case b(m)iia(m)ii → 1 for all i 6∈ S and limm→∞(B(m)A(m))i,j∈S = I.

Proof. As A(m)>B(m)> = (B(m)A(m))> = I it suffices to prove one im-
plication of the equivalence. So suppose that (A(m))m behaves well relative
to S. Without loss of generality we may assume that S = {1, . . . , k}. Next
we divide the matrices in blocks in the following manner:

A(m) =
(

A11(m) A12(m)
A21(m) A22(m)

)
and B(m) =

(
B11(m) B12(m)
B21(m) B22(m)

)
,

where A11(m) and B11(m) are k × k matrices, and A22(m) and B22(m) are
(n− k)× (n− k) matrices. Define for each m ≥ 1 the matrix

C(m) =
(

A11(m) 0
0 C22(m)

)
,

where C22(m) = Diag(a(m)(n−k)(n−k), . . . , a(m)nn). From property 1 in
Definition 4.1 it follows that A = limm→∞A11(m) is invertible. Therefore
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A11(m) is invertible for all m sufficiently large, and hence A11(m)−1 → A−1

as m →∞. Consequently A11(m)−1 is bounded. Since

C(m)−1(A(m)− C(m))

=
(

0 A(m)−1
11 A12(m)

C22(m)−1A21(m) C(m)−1
22 (A22(m)− C22(m))

)
(9)

and (A(m))m behaves well relative to S we deduce that (C(m)−1(A(m) −
C(m)))ij → 0 as m →∞ for all 1 ≤ i, j ≤ n. Indeed A12(m) → 0 by 4, the
n− k bottom rows converge to 0 by 3. Thus ‖I −C(m)−1A(m)‖ < 1 for all
m sufficiently large, so that C(m)−1A(m) is invertible and

‖I−A(m)−1C(m)‖ = ‖
∞∑

i=1

(I−C(m)−1A(m))i‖ ≤ ‖I − C(m)−1A(m)‖
1− ‖I − C(m)−1A(m)‖ .

As the right-hand side converges to 0 as m →∞, and B(m)A(m) = I for all
m, we find that ‖I − B(m)C(m)‖ → 0. From this we obtain the following
four relations as m →∞:

B11(m)A11(m) → I, B22(m)C22(m) → I,

B12(m)C22(m) → 0, B21(m)A11(m) → 0.

The first relation implies that B11(m) → A−1, and hence (B(m)>ij)i,j∈S

converges to an invertible matrix. Moreover b(m)iia(m)ii → 1 for all i 6∈ S
by the second relation, so that b(m)ii 6= 0 for all m large.

Recall that (A11(m)−1)m is bounded. Therefore it follows from the last
relation that B21(m) = B21(m)A11(m)A11(m)−1 → 0, and thus b(m)ij → 0
for all i 6∈ S and j ∈ S. Hence (B(m)>)m satisfies property 4 in Definition
4.1.

To prove property 3 in Definition 4.1 remark that b(m)ija(m)jj → 0 for
all i, j 6∈ S and i 6= j by the second relation. As b(m)jja(m)jj → 1 for all
j 6∈ S we see that b(m)ij/b(m)jj → 0 for all i, j 6∈ S and i 6= j. Furthermore
it follows from the third relation that b(m)ija(m)jj → 0 for i ∈ S and
j 6∈ S, and hence we find that b(m)ij/b(m)jj → 0 for i ∈ S and j 6∈ S.
Thus (B(m)>)m satisfies property 3 in Definition 4.1, and hence (B(m)>)m

behaves well relative to S.

To conclude this section we remark that if both (A(m))m and (B(m))m

are sequences of symmetric matrices, and B(m)A(m) = I for each m ≥ 1,
then (A(m))m behaves well relative to S if and only if (B(m))m behaves
well relative to S.

5 Sufficient conditions to be in N n

The main objective of this section is to give conditions for a norm ρ to be in
N n that can be verified without any knowledge of its dual norm. In fact, we
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define another class of norms, and show that this class is contained in N n.
Let N n

0 be the collection of strictly convex C1-norms ρ on Rn such that ρ is
a Riesz norm, ρ is C2 on U = {x ∈ Rn : xi 6= 0 for all i}, and detGρ(x) 6= 0
for all x ∈ U .

Definition 5.1. A norm ρ ∈ N n
0 is said to be in N n

1 if for every x ∈ Rn\{0}
and every sequence (um)m in U , with um → x, the sequence (Gρ(um))m

behaves well relative to S(x), and Gρ(x)ii → 0 for all i 6∈ S(x). It is said
to be in N n

2 if for every x ∈ Rn \ {0} and every sequence (um)m in U ,
with um → x, the sequence (Gρ(um))m behaves well relative to S(x), and
Gρ(x)ii →∞ for all i 6∈ S(x).

We will see that N n
1 is contained in N n. Before we discuss this inclusion

we first show that N n
1 is dual to N n

2 .

Lemma 5.2. A norm ρ belongs to N n
1 if and only if ρ∗ belongs to N n

2 .

Proof. Let ρ be in N n
0 . Then we know from general theory that ρ∗ is

a strictly convex C1-norm on Rn, and that ρ∗ is a Riesz norm. Since
detGρ(x) 6= 0 for all x ∈ U , Lemma 2.3 implies that ρ∗ is a C2 func-
tion on Jρ(U). As ρ∗ is a Riesz norm Jρ(U) = U , and hence ρ∗ is C2 on
U .

Further Gρ∗(u∗)Gρ(u) = I for all u ∈ U by Lemma 2.3. This implies that
Gρ∗(u) is invertible for all u ∈ U , as Jρ(U) = U . Therefore detGρ∗(u) 6= 0
for all u ∈ U . Thus ρ∗ ∈ N n

0 , and by duality we conclude that ρ ∈ N n
0 if

and only if ρ∗ ∈ N n
0 .

Now let ρ ∈ N n
1 . From the previous paragraph it follows that ρ∗ ∈ N n

0 .
Let y ∈ Rn\{0} and (vm)m be a sequence in U with vm → y. Let x = J−1

ρ (y)
and for each m ≥ 1 let um = J−1

ρ (vm). Clearly (um)m in U and um → x.
Furthermore S(x) = S(y), since ρ is a Riesz norm. By Lemma 2.3 we have
that Gρ∗(vm)Gρ(um) = I for all m ≥ 1. Remark that both Gρ∗(vm) and
Gρ(um) are symmetric for all m ≥ 1. Therefore Lemma 4.2 implies that
(Gρ∗(vm))m behaves well relative to S(x) = S(y). Moreover

Gρ∗(vm)iiGρ(um)ii → 1 for all i 6∈ S(y). (10)

To infer that Gρ∗(vm)ii →∞ for all i 6∈ S(y) remark that Gρ(um) is invert-
ible for all m ≥ 1. Combining this with the fact that Gρ(um) is positive
semi-definite implies that Gρ(um) is positive definite for all m ≥ 1. There-
fore Gρ(um)ii > 0 for all i 6∈ S(x) and m ≥ 1. Now (10) and the fact that
Gρ(um)ii → 0 for i 6∈ S(X) yields that G∗

ρ(vm)ii →∞ for all i 6∈ S(y). Thus
we find that ρ∗ ∈ N n

2 . The other implication can be proved in a similar
fashion.

Next we show that every norm in N n
1 belongs to N n. The greater part

of the proof of this inclusion consists of showing that a norm in N n
1 is a

C2-norm. To establish this fact some arguments from analysis are required.
For the reader’s convenience we prove this fact separately in Section 7.
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Lemma 5.3. Every norm in N n
1 is a C2-norm.

Using this lemma we now show that every norm in N n
1 is in N n.

Proposition 5.4. Every norm in N n
1 belongs to N n.

Proof. Let ρ ∈ N n
1 . It follows from Lemma 5.3 that ρ is a C2-norm. Hence

Gρ(x) is continuous. Furthermore Lemma 5.2 implies that ρ∗ ∈ N n
2 , so that

ρ∗ is C2 on U = {x ∈ Rn : xi 6= 0 for all i}. Now let x 6= 0 and (um)m

be a sequence in U with um → x. From property 3 in Definition 4.1 it
follows that Gρ(um)ij → 0 for all i 6∈ S(x) and j 6= i, because Gρ(um)ii → 0
if i 6∈ S(x). Thus Gρ(x)ij = limm→∞Gρ(um)ij = 0 for all i 6∈ S(x) and
1 ≤ j ≤ n. This proves the first property in Definition 3.1.

To establish the second property remark that u∗m ∈ U for all m and
u∗m → x∗, so that 1 in Definition 4.1 gives that (Gρ∗(u∗m))i,j∈S(x∗) converges
to an invertible matrix. Since S(x) = S(x∗) this implies that (Gρ∗(u∗m))ij

converges for all i, j ∈ S(x). The third property is an immediate consequence
of property 4 in Definition 4.1 for Gρ∗(u∗m), and this completes the proof.

A combination of Theorem 3.2, Corollary 3.6, and Proposition 5.4 yields
the following corollary.

Corollary 5.5. If R is a one-complemented subspace in Rn under ρ, and ρ
is in N n

1 or N n
2 , then R has a block basis.

6 Sums of `p-norms

In this section the previous results are applied to positive linear combinations
of `p-norms. In particular the following theorem is proved.

Theorem 6.1. Let α1, . . . , αr > 0 and let p1, . . . , pr ∈ (1,∞). Suppose that
η(x) =

∑r
k=1 αkρk(x) for all x ∈ Rn, where ρk is the `p-norm on Rn with

p = pk. If min{p1, . . . , pr} 6= 2, then every one-complemented subspace of
Rn under η has a block basis. Moreover η ∈ N n

1 if min{p1, . . . , pr} > 2, and
η ∈ N n

2 if min{p1, . . . , pr} < 2.

Proof. By Corollary 5.5 it suffices to show the second assertion. Remark that
ρk ∈ N n

0 for 1 ≤ k ≤ r. Indeed, for an `p-norm η on Rn with 1 < p < ∞ it
is clear that η is a strictly convex C ! norm, and η is C2 on U . Moreover η
is Riesz, so that Jη(U) = U . As η∗ is again an `p-norm with 1 < p < ∞, we
can apply Lemma 2.3 to see that detGρk

(u) 6= 0 for all u ∈ U .
Thus to prove that η ∈ N n

0 it suffices to show that if ρ, γ ∈ N n
0 , then

ρ + γ ∈ N n
0 . Clearly ρ + γ is a C1-norm, and C2 on U . Further it is

straightforward to verify that ρ + γ is a strictly convex Riesz norm. To see
that detGρ+γ(u) 6= 0 for all u ∈ U observe that

Gρ+γ(u) = Gρ(u) + Gγ(u) + Hργ(u) for all u ∈ U. (11)
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The matrices Gρ(u) and Gγ(u) are positive semi-definite and invertible for
each u ∈ U , and hence both positive definite. As ρ and γ are both non-
negative convex functions, the matrix Hργ(u) is positive semi-definite for
u ∈ U . Therefore Gρ+γ(u) is positive definite, and thus detGρ+γ(u) 6= 0 for
all u ∈ U , which proves that ρ + γ ∈ N n

0 .
Now let x 6= 0 and let (um)m be a sequence in U such that um → x.

Further let S denote S(x). We show that if ρ and γ are norms in N n
0 such

that the matrices (Gρ(um))i,j∈S and (Gγ(um))i,j∈S converge to an invertible
matrix, then (Gρ+γ(um))i,j∈S converges to an invertible matrix. Since ∇ρ
and ∇γ are continuous, and

Gρ(u) = ∇ρ(u)∇ρ(u)> + ρ(u)Hρ(u)

and
Gγ(u) = ∇γ(u)∇γ(u)> + γ(u)Hγ(u) for all u ∈ U,

it follows that (Hρ(um))i,j∈S and (Hγ(um))i,j∈S are convergent. As

Hργ(u) = ∇ρ(u)∇γ(u)> +∇γ(u)∇ρ(u)> + ρ(u)Hγ(u) + γ(u)Hρ(u)

for all u ∈ U , this implies that (Hργ(um))i,j∈S converges. Remark that
for each m ≥ 1 the matrix Hργ(um) is positive semi-definite, and therefore
(Hργ(um))i,j∈S converges to a positive semi-definite matrix. Thus it follows
from (11) that (Gρ+γ(um))i,j∈S converges to a positive definite matrix, and
hence its limit is invertible.

Now if ρ is an `p-norm with p ∈ (1,∞) and (um)m a sequence in U with
um → x, then (Gρ(um))i,j∈S(x) converges to an invertible matrix, and thus
we conclude that (Gη(um))m satisfies property 1 in Definition 4.1.

The other three properties in Definition 4.1 can be verified straightfor-
wardly by using the following identity:

Gη(u) =
∑

k,l

αkαl∇ρk(u)∇ρl(u)> +
∑

k,l

αkαlρk(u)Hρl
(u) (12)

for u ∈ U , and remarking that for ρ an `p-norm:

(Diρ)(u) = sgn(ui)|ui|p−1‖u‖1−p
p , (13)

(DiDjρ)(u) = (1− p)sgn(ui)sgn(uj)|uiuj |p−1‖u‖1−2p
p , for i 6= j, (14)

and
(DiDiρ)(u) = (1− p)|ui|p−2‖u‖1−p

p (1− |ui|p‖u‖−p
p ). (15)

Thus we conclude that (Gη(um))m behaves well relative to S(x).
From (15) we see that Gρ(um)ii → 0 for all i 6∈ S(x), if ρ is an `p-norm

with p ∈ (2,∞). On the other hand, if p ∈ (1, 2), then Gρ(um)ii → ∞
for all i 6∈ S(x). Thus, η ∈ N n

1 if min{p1, . . . , pr} > 2, and η ∈ N n
2 if

min{p1, . . . , pr} < 2.
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Using similar ideas it can be shown that if ρ is a norm in N n
2 and γ is a

norm either in N n
1 or in N n

2 , then the sum ρ + γ is again in N n
2 . By using

this observation and the duality relation in Lemma 5.2 one can find many
other norms for which each one-complemented subspace has a block basis.
For instance, (‖ · ‖2

√
2 + ‖ · ‖π)∗ + ‖ · ‖37.

7 proof of Lemma 5.3

To prove Lemma 5.3 we use the following observation.

Lemma 7.1. Let g : Rn → Rn be a continuous map, and let U ⊂ Rn

be such that for each x, y ∈ Rn and every ε > 0 there exist x′, y′ ∈ U
with ‖x − x′‖ < ε, ‖y − y′‖ < ε, and the line-segment between x′ and
y′ contains at most finitely many points in Rn \ U . If g : Rn → Rn is
differentiable on U and there exists a continuous map B : Rn → L(Rn,Rn)
such that (Dg)(u) = B(u) for all u ∈ U , then g is C1 on Rn, and moreover
(Dg)(x) = B(x) for all x ∈ Rn.

Proof. The proof is based on the following claim.
Claim. For each x, h ∈ Rn we have that

g(x + h)− g(x) =
∫ 1

0
B(x + th)hdt. (16)

Indeed, if we assume the claim for a moment and we let x, h ∈ Rn, then

‖g(x + h)− g(x)−B(x)h‖
‖h‖ = 1

‖h‖‖
∫ 1
0 B(x + th)hdt− ∫ 1

0 B(x)hdt‖
≤ sup0≤t≤1 ‖B(x + th)−B(x)‖.

The right-hand side goes to 0 as h → 0, since B is continuous. Therefore g
is differentiable on Rn and (Dg)x = B(x) for each x ∈ Rn. Moreover, g is
C1 on Rn, since B is continuous.

To prove the claim we first assume that x+ th ∈ U for all t ∈ (0, 1). Put
r(t) = g(x + th) for t ∈ [0, 1]. Then r is differentiable in each t ∈ (0, 1), and
continuous on [0, 1]. This implies that r(1)− r(0) =

∫ 1
0 r′(t)dt, and hence

g(x + h)− g(x) =
∫ 1

0
B(x + th)hdt.

Now if the line-segment {x + th : 0 ≤ t ≤ 1} contains only finitely many
points in Rn \ U , then we can break it into finitely many pieces and apply
the previous observation for each piece. Therefore the equality (16) is also
true for this case.

Finally we consider the general case. From the assumptions it follows
that there exist (xn)n ∈ U and (hn)n ∈ Rn, with xn + hn ∈ U , such that
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xn → x, xn + hn → x + h, and for each n ≥ 1 the intersection of the
line-segment {xn + thn : 0 ≤ t ≤ 1} with Rn \ U is finite. We know that

g(xn + hn)− g(xn) =
∫ 1

0
B(xn + thn)hndt for each n ≥ 1.

Since g is continuous and B is uniformly continuous on compact sets, we
can take limits on both sides, and deduce that

g(x + h)− g(x) =
∫ 1

0
B(x + th)hdt.

This completes the proof of the claim.

Proof of Lemma 5.3. Let ρ be inN n
1 and let U = {x ∈ Rn : xi 6= 0 for all i}.

Clearly there exist for each x, y ∈ Rn and every ε > 0 points x′, y′ ∈ U such
that ‖x − x′‖ < ε, ‖y − y′‖ < ε, and the intersection of the line-segment
between x′ and y′ with Rn \U is finite. It follows from Proposition 2.2 that
Jρ : Rn → Rn is a continuous map. Since ρ is C2 on U , the map Jρ is
differentiable on U .

Now define B : Rn → L(Rn,Rn) by B(x) = (DJρ)x = Gρ(x) for each
x ∈ U , and B(x) = limm→∞Gρ(um) if x ∈ Rn \ U , where (um)m in U
with um → x. Remark that B is well-defined. Indeed ρ ∈ N n

1 implies
that for every x ∈ Rn and every sequence (um)m in U with um → x the
matrix (Gρ(um))i,j∈S(x) converges to an invertible matrix, Gρ(um)ij → 0 for
i ∈ S(x) and j 6∈ S(x), and Gρ(um)ij → 0 for i 6∈ S(x) and 1 ≤ j ≤ n.

The map B is continuous by construction, and hence Lemma 7.1 implies
that Jρ is C1 on Rn. Therefore Gρ is continuous on Rn, and hence ρ is C2

on Rn \ {0}, because ∇ρ(x) = Jρ(x)/ρ(x) for x 6= 0.
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