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1. Introduction

Empirical research over the last decade has firmly established that data network models should
incorporate concepts like self-similarity, heavy tails and long-range dependence. Using an empirical
study done at Bellcore, Leland et al. [1994] were first to give evidence in the context of the LAN
traffic. Further discussions can be obtained from Erramilli et al. [1996], Resnick [1997, 2001],
Willinger et al. [1995]. These studies were mostly concerned with large time scale behavior of the
traffic at scales above a few hundred milliseconds. Recently, empirical studies have focussed on
traffic at scales of a few hundred milliseconds or lower. The WAN traffic at small time scales show
complicated multifractal behavior, as has been observed empirically in Mannersalo and Norros
[1997], Paxson and Floyd [1995], Riedi and Lévy Véhel [1997]. Also in a recent paper, Baccelli
and Hong [2002] observed multifractal behavior for traffic generated by the simulation of TCP-type
network traffic. These observations stimulated researchers to look for a model which could explain
both the microscopic as well as the macroscopic behaviors. In Feldman et al. [1998a], Feldmann
et al. [1998b], Gilbert et al. [1998, 1999], Kulkarni et al. [2001], Riedi and Willinger [2000], attempts
have been made to consider a conservative cascade model as the transmission schedule. A different
approach was taken in Maulik and Resnick [2002] where the M/G/∞ input model was considered.
The resulting multifractal behavior of the aggregated cumulative input traffic process at small time
scale is explained by the multifractality of the individual transmission schedules. This explanation
has recently been justified empirically by Baccelli and Hong [2002] for simulated traces of TCP
traffic. On the other hand, for large time scales, Maulik and Resnick [2002] obtained a stable Lévy
motion as a large time scale approximation.

Though the model proposed by Maulik and Resnick [2002] succeeded in integrating the empiri-
cally observed behaviors for the two time scales, the result for large time scales was not completely
satisfactory. The stable Lévy limit in that paper does not depend on the distributional behavior
of the individual transmission schedules. Also due to lack of empirical evidence for heavy tailed
traffic rates, a Gaussian limit would be desirable. Riedi and Willinger [2000] have argued in favor
of a Gaussian approximation in their work.

Mikosch et al. [2002] considered a family of M/G/∞ models with increasing input rate and
showed that the possible limits for large time scales depend on the growth of the input rate and
may be either fractional Brownian motion (fBm) or a stable Lévy motion. However, they considered
a deterministic linear transmission schedule, which is unrealistic and does not allow for multifractal
behavior at small time scales.

The current paper integrates the above strains of research. We propose a sequence of M/G/∞
models along the lines of Mikosch et al. [2002] with random transmission schedules. The models
incorporate multifractal behavior at the microscopic level. At the macroscopic level, for the slow
growth of the input rate, we get a stable Lévy limit, whereas the fast growth condition gives a
Gaussian limit, which depends on the self-similarity index of the individual transmission schedules.

This paper is arranged as follows: Section 2 gathers the notation used in this paper. Section 3
describes the family of models and discusses the critical input rates. In Sections 4 and 5, we collect
useful results needed for further analyses. In Section 6 and 7, we consider the slow and the fast
growth cases respectively.

2. Notation

We need to introduce the following notation for our discussion. For a non-decreasing function x,
we define its left continuous inverse as

(2.1) x←(t) = inf{u : x(u) > t}.
1
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For a non-negative random variable U , we denote its distribution function by FU , i.e., FU (u) =
P[U 6 u]. Let F̄U (u) = 1− FU (u). Then we define the function b̃U as

b̃U (T ) = inf
{

u : F̄U (u) 6
1
T

}
=
(

1
F̄U

)←
(T ).

Recall that a function φ is regularly varying of index α and is denoted by φ ∈ RVα (cf. Section
0.4 of Resnick [1987]), if for all u > 0,

lim
t→∞

φ(tu)
φ(t)

= uα.

We say that U has a tail of index αU > 0, if F̄U ∈ RV−αU . In such a case (cf. Proposition 0.8(v)
of Resnick [1987]), b̃U ∈ RVα−1

U
and also we have

(2.2) lim
T→∞

T P[U1 > b̃U (T )u] = u−αU .

Conversely, if (2.2) holds, then b̃U ∈ RVα−1
U

and F̄U ∈ RV−αU . In either case, we can choose a

strictly increasing, absolutely continuous function bU , such that b̃U ∼ bU , i.e.,

lim
T→∞

b̃U (T )
bU (T )

= 1

(cf. Proposition 0.8(vii) of Resnick [1987]). We can further say that

(2.3) lim
T→∞

T P[U1 > bU (T )u] = u−αU .

We call this function bU the quantile function of the non-negative random variable U .

3. The Model

For the purpose of obtaining both the Gaussian and stable limits, we consider a family of models
indexed by T ∈ R+, along the lines considered by Mikosch et al. [2002]. For the T -th model:

(1) We denote the time when k-th transmission begins by Γ(T )
k . The sequence

{
Γ(T )

k

}
is non-

negative and strictly increasing to ∞.
(2) The size of the file transmitted is Jk and we assume Jk > 0.
(3) The transmission schedule is denoted by Ak(·), where Ak(t) denotes the amount of data that

can be transmitted in time t after the kth transmission has begun. It is a non-decreasing
càdlàg function starting at 0 and increasing to ∞, which vanishes on the negative real axis.
It ensures that a file of any finite size can be transmitted in finite time.

The quantity of interest is the cumulative input traffic defined as

(3.1) X(T )(t) =
∞∑

k=1

Ak

(
t− Γ(T )

k

)
∧ Jk.

The length of k-th transmission is defined as

Lk = inf{t : Ak(t) > Jk} = A←k (Jk).

FL denotes the marginal distribution of the transmission lengths, and satisfies

FL(x) = P[L1 6 x] = P[A1(x) > J1].
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3.1. Small time scale behavior. To study the behavior of the cumulative traffic process X(T )(·)
for small time scales, we need to make the following further minimal assumptions on the transmis-
sion schedule {Ak}:

(4) We assume {Ak} are identically distributed and have stationary increments.
(5) The multifractal spectrum of Ak(·) is not degenerated to a single point, which ensures that

we consider processes with paths that show real multifractal behavior.
(6) The multifractal spectrum of Ak(·) restricted to any (non-random) interval is non-random.

For the definitions and discussion regarding the multifractal spectrum, we invite the reader to
consult Maulik and Resnick [2002, Section 3.3] and Riedi [2001].

Remark 3.1. If Ak is, for example, an increasing Lévy process, then, restricted to any interval, it
has a non-random multifractal spectrum for the Hölder exponent based on exponential growth rate
[cf. Jaffard, 1999, Maulik and Resnick, 2002, Section 3.5].

In Maulik and Resnick [2002, Section 5], it has been shown, using a path-by-path analysis, that
under the assumptions (1)-(6), for each T , the multifractal spectrum of the process X(T ) coincides
with that of A1 almost everywhere.

3.2. Large time scale behavior. For large time scale analysis, we need to make distributional
assumptions, which are:

(7) We assume
{

Γ(T )
k , k > 1

}
form a homogeneous Poisson process with intensity parameter

λ(T ), called the input rate. We assume λ(T ) to be non-decreasing.
(8) We assume {Ak, k > 1} and {Jk, k > 1} are independent of each other and are i.i.d.

sequences independent of
{

Γ(T )
k , k > 1

}
.

(9) We assume the tail of the distribution of J1 is regularly varying of index of αJ , where
αJ ∈ (1, 2), i.e., F̄J ∈ RV−αJ . Hence J1 has finite first moment denoted by µJ .

(10) The transmission schedule A1 is H-self-similar (H-ss), where H satisfies:
(a) HαJ > 1.
(b) H < 1

αJ−1 .
(c) H < 1

2−αJ
.

These conditions guarantee that H can neither be too large nor too small.
(11) We also put the following moment conditions on A1:

E
[
A1(1)−αJ

]
< ∞ and E

[
A1(1)2−αJ+δ

]
< ∞,

for some δ > 0. Further uses of δ assume assumption (11) holds.

Remark 3.2. Assumptions (4)-(6) are path by path and are required for small time scale analysis.
The microscopic analysis does not require any distributional assumptions on the transmission ini-
tiation times. When (4)-(6) as well as (7)-(11) hold, the result about the multifractal spectrum of
each X(T )(·) holds as well as the large time scale approximations to be described.

Assume further that A1 has stationary increments. Since A1 has increasing paths and is H-ss
with stationary increments which is not identically zero, from Theorem 2.1 of Vervaat [1994], we
must have H > 1. When H = 1, we have A1(t) ≡ A1(1)t almost surely. But this leads to the
case where paths are linear and hence not multifractal. So we consider only the case H > 1.
Then A1(1) is a positive stable random variable of index 1

H and hence has a density which decays
exponentially near 0 (cf. Theorem 2.5.2 of Zolotarev [1986]) and so has all negative moments finite.
Also A1(1) has all positive moments smaller than 1/H finite. Hence, assumption (10c) guarantees
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the moment condition (11). Also Remark 3.1 shows that a Lévy process satisfies the conditions for
the multifractal analysis. Thus a 1

H -stable Lévy process can be made to satisfy all the requirements
on transmission schedules.

Remark 3.3. From Proposition 7.2 of Maulik and Resnick [2002], assumptions (8), (9) and (11)
imply that F̄L ∈ RV−HαJ

, and hence by assumption (10a), L has finite mean denoted by µL.
Actually, a closer look at the proof of Proposition 7.2 of Maulik and Resnick [2002] further gives
us that

(3.2) F̄L(T ) ∼ F̄J(TH)

If we also assume that L1 has infinite variance, i.e., HαJ < 2, then αJ < 2 implies
αJ

αJ − 1
= 1 +

1
αJ − 1

> 2 > HαJ ,

and so assumption (10b) holds.

3.3. Critical input rate. The results of large time scale analysis depend on the input rate. De-
pending on whether the input rate is slow or fast - a concept made precise in the following - we
can get either a stable or a Gaussian limit.

The input rate is called slow, if

(S) lim
T→∞

bJ(λ(T )T )
TH

= 0,

and it is called fast, if

(F) lim
T→∞

bJ(λ(T )T )
TH

= ∞.

The following lemmas provide alternate approaches to the above conditions.

Lemma 3.1. The slow growth condition (S) is equivalent to

(3.3) lim
T→∞

λ(T )T F̄L(T ) = 0.

On the other hand, the fast growth condition (F) is equivalent to

(3.4) lim
T→∞

λ(T )T F̄L(T ) = ∞.

Proof. First we prove the conditions (S) and (F) imply (3.3) and (3.4) respectively. We define
0 < ε(T ) := bJ(λ(T )T )/TH and we have THε(T ) →∞, since bJ(λ(T )T ) →∞. Then, using (3.2)

λ(T )T F̄L(T ) ∼ λ(T )T F̄J(TH) ∼ F̄J(TH)
F̄J(THε(T ))

,

which converges to 0 or ∞ according as the condition (S) or (F) holds, since F̄J ∈ RV−αJ .
Conversely, define

ε̃(T ) := λ(T )T F̄L(T ) ∼ λ(T )T F̄J(TH).

Then
bJ(λ(T )T )

TH
∼ bJ(ε̃(T )/F̄J(TH)

bJ(1/F̄J(TH))
,

which converges to 0 or ∞ according as ε̃(T ) goes to 0 or ∞, since bJ ∈ RV1/αJ
. �

The following lemma gives implications of the growth conditions which are useful when applying
the growth conditions.
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Lemma 3.2. The slow growth condition (S) implies

(3.5) lim
T→∞

λ(T )TH+1F̄L(T )
bJ(λ(T )T )

= 0.

The limit is ∞ when condition (F) holds.

Proof. Define ε(T ) = bJ(λ(T )T )/TH as before. Then λ(T )T ∼ 1/F̄J(THε(T )). Thus,

λ(T )TH+1F̄L(T )
bJ(λ(T )T )

∼ λ(T )TH+1F̄J(TH)
bJ(λ(T )T )

∼ F̄J(TH)
ε(T )F̄J(THε(T ))

=
TH F̄J(TH)

THε(T )F̄J(THε(T ))
,

which goes to 0 or ∞ according as the condition (S) or (F) holds, since sF̄J(s) ∈ RV1−αJ . �

4. Decomposition

Our analysis requires the Poisson point process

M (T ) :=
∞∑

k=1

ε(
Γ

(T )
k ,Ak,Jk

),

which has mean measure λ(T )dγ × P[A1 ∈ da] × FJ(dj) on (0,∞) × D↑ × (0,∞), where D↑ is the
space of non-decreasing càdlàg functions on (0,∞). The random variable X(T )(t) is the following
function of M restricted to R(t) = {(γ, a, j) ∈ (0,∞)× D↑ × (0,∞) : γ < t}:

X(T )(t) =
∞∑

k=1

[
Ak

(
t− Γ(T )

k

)
∧ Jk

]
1R(t)

(
Γ(T )

k , Ak, Jk

)
=
∫∫∫

(γ,a,j)∈R(t)
(a(t−γ)∧j)M(dγ, da, dj).

It helps to split R(t) in two disjoint sets

R1(t) = {(γ, a, j) ∈ (0,∞)× D↑ × (0,∞) : γ < t, j 6 a(t− γ)}

and

R2(t) = {(γ, a, j) ∈ (0,∞)× D↑ × (0,∞) : γ < t, j > a(t− γ)}.

R1(t) and R2(t) correspond to the regions where transmission has ended or is continuing respec-
tively, by time t. Correspondingly, the input process X(T ) breaks into two sums:

X
(T )
1 (t) =

∞∑
k=1

Jk1R1(t)

(
Γ(T )

k , Ak, Jk

)
(4.1)

and

X
(T )
2 (t) =

∞∑
k=1

Ak

(
t− Γ(T )

k

)
1R2(t)

(
Γ(T )

k , Ak, Jk

)
.(4.2)

Since X
(T )
i (t), i = 1, 2 are functions of M (T )|Ri(t), i = 1, 2 respectively with R1(t) ∩R2(t) = ∅, we

have X
(T )
1 (t) and X

(T )
2 (t) are independent.

For any t > 0, we also observe the following facts about the regions Ri (Tt) , i = 1, 2, as T →∞:

m1(Tt) =:
1

λ(T )
E
[
M (T ) (R1 (Tt))

]
=

Tt∫
γ=0

P [L1 6 Tt− γ] dγ =: F̂L (Tt) ∼ Tt,(4.3)
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and

m2(Tt) =:
1

λ(T )
E
[
M (T ) (R2 (Tt))

]
=

Tt∫
γ=0

P [L1 > Tt− γ] dγ ∼ µL.(4.4)

So the mean measure restricted to R1 (Tt) or R2 (Tt) is finite for fixed T, t and we can have the
Poisson representations

(4.5) M
(T )
i |Ri(Tt)

d=
P

(T )
i∑

k=1

ε(
τ
(T )
k,i ,S

(T )
k,i ,W

(T )
k,i

),

where P
(T )
i is a Poisson random variable with parameter λ(T )mi(Tt), which is independent of the

i.i.d. sequence
{(

τ
(T )
k,i , S

(T )
k,i ,W

(T )
k,i

)
: k ∈ N

}
with common joint distribution

(4.6)
dγ P[A1 ∈ da]FJ(dw)

mi(Tt)

∣∣∣∣
Ri(Tt)

.

Note t is fixed in this argument and is sometimes suppressed in the notations for the sake of brevity.
Also we define random variables

(
τ

(T )
i , S

(T )
i ,W

(T )
i

)
independent of P

(T )
i and distributed identically

as
(
τ

(T )
1,i , S

(T )
1,i ,W

(T )
1,i

)
, for i = 1, 2. Then we can rewrite X

(T )
i (Tt), i = 1, 2 in terms of the above

Poisson representation (4.5) as:

X
(T )
1 (Tt) d=

P
(T )
1∑

k=1

W
(T )
k,1 ,(4.7)

X
(T )
2 (Tt) d=

P
(T )
2∑

k=1

S
(T )
k,2

(
Tt− τ

(T )
k,2

)
.(4.8)

5. Moment Behavior

We will need moments of the above summands. We first consider the following modest variant
of Potter’s bound [cf. Potter, 1940, Resnick, 1987] for regularly varying functions.

Lemma 5.1. Let φ be a regularly varying function of index α > −1. Then given ε > 0 and x0 > 0,
there exists T0 such that for T > T0, and x > x0,we have

(1− ε)φ(T )xα+1−ε < (α + 1)

x∫
0

φ(Tu)du < (1 + ε)φ(T )xα+1+ε.

Proof. The result follows from Potter’s bounds applied to
∫ x
0 φ(u)du ∈ RV1+α. �

An analogous result can easily be proved for regularly varying functions φ of index smaller than
−1, which is summarized in the following lemma:
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Lemma 5.2. Let φ be a regularly varying function of index α < −1. Then given ε > 0 and x0 > 0,
there exists T0 such that for T > T0, and x > x0,we have

(1− ε)φ(T )xα+1−ε < −(α + 1)

∞∫
x

φ(Tu)du < (1 + ε)φ(T )xα+1+ε.

Now, we study the moments of the summands in the representations (4.7) and (4.8). Recall from
assumption (11), we have E[A1(1)2−αJ+δ] < ∞. Then, for αJ < l < 2 + δ/2, we have since A1 is
H-ss,

E
[(

W
(T )
1

)l
]
∼ 1

Tt

Tt∫
γ=0

∞∫
w=0

lwl−1 P [w < J1 6 A1 (Tt− γ)] dw dγ

=(Tt)HlF̄J

(
(Tt)H

) 1∫
γ=0

∞∫
w=0

lwl−1 1
F̄J ((Tt)H)

P
[
w <

J1

(Tt)H
6 A1(γ)

]
dw dγ

=(Tt)HlF̄J

(
(Tt)H

) 1∫
γ=0

E

 ∞∫
w=0

lwl−1 F̄J

(
(Tt)Hw

)
− F̄J

(
(Tt)HA1(γ)

)
F̄J ((Tt)H)

1[w<A1(γ)] dw

 dγ.(5.1)

Now, the integrand on the right side of (5.1) is bounded by

(5.2) lwl−1 F̄J

(
(Tt)Hw

)
F̄J ((Tt)H)

[
1[A1(1)>w∨1] + 1[w61]

]
→ lwl−αJ−1

[
1[A1(1)>w∨1] + 1[w61]

]
as T →∞ and

1∫
γ=0

E

 ∞∫
w=0

lwl−1 F̄J

(
(Tt)Hw

)
F̄J ((Tt)H)

[
1[A1(1)>w∨1] + 1[w61]

]
dw

 dγ

=E

 A1(1)∫
w=0

lwl−1 F̄J

(
(Tt)Hw

)
F̄J ((Tt)H)

1[A1(1)>1] dw

+

1∫
w=0

lwl−1 F̄J

(
(Tt)Hw

)
F̄J ((Tt)H)

dw.(5.3)

Now, by Karamata’s theorem, the second term on the right side of (5.3) converges to

(5.4)
l

l − αJ
=

1∫
γ=0

E

 ∞∫
w=0

lwl−αJ−11[w61] dw

 dγ.

For the first term on the right side of (5.3), observe that T l−1F̄J(T ) is regularly varying with index
l−αJ−1 > −1, and hence by the upper bound from Lemma 5.1, there is a T0, which is non-random,
such that for all T > T0, we have

A1(1)∫
w=0

lwl−1 F̄J

(
(Tt)Hw

)
F̄J ((Tt)H)

1[A1(1)>1] dw <

(
1 +

δ

2

)
l

l − αJ
A1(1)l+ δ

2
−αJ 1[A1(1)>1],
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which is integrable by assumption (11). Then, by the Dominated Convergence Theorem, the first
term on the right side of (5.3) converges to

E
[

l

l − αJ
A1(1)l−αJ 1[A1(1)>1]

]
=

1∫
γ=0

E

 ∞∫
w=0

lwl−αJ−11[A1(1)>w∨1] dw

 dγ,

which along with (5.4) shows
1∫

γ=0

E

 ∞∫
w=0

lwl−1 F̄J

(
(Tt)Hw

)
F̄J ((Tt)H)

[
1[A1(1)>w∨1] + 1[w61]

]
dw

]
dγ

→
1∫

γ=0

E

 ∞∫
w=0

lwl−αJ−1
[
1[A1(1)>w∨1] + 1[w61]

]
dw

 dγ(5.5)

Then, from (5.2) and (5.5), using Pratt’s lemma [cf. Pratt, 1960, Resnick, 1998], we are allowed to
take the limit under the integral sign in the right side of (5.1) to get, for αJ < l < 2 + δ/2,

E
[(

W
(T )
1

)l
]
∼ THlF̄J

(
TH
)
tH(l−αJ )

1∫
γ=0

E

 ∞∫
w=0

lwl−1[w−αJ −A1(γ)−αJ ]+ dw

 dγ

= THlF̄J

(
TH
)
tH(l−αJ )

1∫
γ=0

E

 A1(γ)∫
w=0

lwl−1[w−αJ −A1(γ)−αJ ] dw

 dγ

=
αJ

l − αJ
THlF̄J

(
TH
)
tH(l−αJ )

1∫
γ=0

E
[
A1(γ)l−αJ

]
dγ

=
αJ

(l − αJ)[H(l − αJ) + 1]
THlF̄J

(
TH
)
tH(l−αJ ) E

[
A1(1)l−αJ

]
∼ αJ

(l − αJ)[H(l − αJ) + 1]
THlF̄L (T ) tH(l−αJ ) E

[
A1(1)l−αJ

]
.(5.6)

Also, using monotone convergence, we observe that as T →∞,

(5.7) E
[
W

(T )
1

]
∼

1∫
γ=0

∞∫
w=0

P [w < J1, L1 6 Ttγ] dw dγ ↑ µJ .

For future reference, note from (5.6) and (5.7) that

(5.8) lim
T→∞

Var
[
W

(T )
1

]
T 2H F̄L(T )

=
αJ

(2− αJ)[H(2− αJ) + 1]
tH(2−αJ ) E

[
A1(1)2−αJ

]
=: σ2

1t
H(2−αJ )

and

(5.9) lim sup
T→∞

E
[∣∣∣W (T )

1 − E
[
W

(T )
1

]∣∣∣2+ δ
2

]
TH(2+ δ

2)F̄L(T )
6 lim sup

T→∞

E
[(

W
(T )
1

)2+ δ
2

]
+
(
E
[
W

(T )
1

])2+ δ
2

TH(2+ δ
2)F̄L(T )

,

which is a finite constant.
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Next we study the moments of the summands of (4.8). First we consider the moments of order
l, with αJ < l < 2 + δ/2. We have, using self-similarity of A1 and (4.4), that

E
[
S

(T )
2

(
Tt− τ

(T )
2

)]l
∼ 1

µL

Tt∫
γ=0

∞∫
w=0

lwl−1 P [w < A1 (Tt− γ) < J1] dw dγ

=
1

µL
(Tt)Hl+1

1∫
γ=0

∞∫
w=0

lwl−1 P
[
w <

A1 (Ttγ)
(Tt)H

<
J1

(Tt)H

]
dw dγ

=
1

µL
(Tt)Hl+1F̄J

(
(Tt)H

) 1∫
γ=0

∞∫
w=0

lwl−1 1
F̄J ((Tt)H)

P
[
w < A1(γ) <

J1

(Tt)H

]
dw dγ

=
1

µL
(Tt)Hl+1F̄J

(
(Tt)H

) 1∫
γ=0

E

∞∫
w=0

lwl−1 F̄J

(
(Tt)HA1(γ)

)
F̄J ((Tt)H)

1[A1(γ)>w] dw dγ,(5.10)

and bounding the integrand above as in the case of l-th moments of W
(T )
1 with αJ < l < 2 + δ/2,

we justify the interchange of the limit and integral to obtain

E
[
S

(T )
2

(
Tt− τ

(T )
2

)]l
∼ 1

µL
THl+1F̄L(T )tH(l−αJ )+1

1∫
γ=0

E
[
A1(γ)l−αJ

]
dγ

=
1

µL[H(l − αJ) + 1]
THl+1F̄L(T )tH(l−αJ )+1 E[A1(1)l−αJ ].(5.11)

The first moment requires more careful analysis in this case. As for the higher moments, we
again have, using self-similarity of A1, (see (5.10)),

E
[
S

(T )
2

(
Tt− τ

(T )
2

)]
∼ 1

µL
(Tt)H+1F̄J

(
(Tt)H

) 1∫
γ=0

E

 ∞∫
w=0

F̄J

(
(Tt)HA1(γ)

)
F̄J ((Tt)H)

1[A1(γ)>w] dw

 dγ

=
1

µL
(Tt)H+1F̄J

(
(Tt)H

) 1∫
γ=0

E

 ∞∫
w=0

F̄J

(
(Tt)HA1(1)γH

)
F̄J ((Tt)H)

1[A1(1)γH>w] dw

 dγ

=
1

µL
(Tt)H+1F̄J

(
(Tt)H

) 1∫
γ=0

E

[
A1(1)γH

(
(Tt)HA1(1)γH

)
F̄J ((Tt)H)

]
dγ

=
1

µL
(Tt)H+1F̄J

(
(Tt)H

) 1
H

E

A1(1)−
1
H

A1(1)∫
ν=0

Ttν
1
H F̄J

(
(Tt)Hν

)
TtF̄J ((Tt)H)

dν

 ,(5.12)
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where we substitute ν = A1(1)γH in the last step. Now, by Karamata’s theorem, as T →∞,

(5.13)

A1(1)∫
ν=0

Ttν
1
H F̄J

(
(Tt)Hν

)
TtF̄J ((Tt)H)

dν → A1(1)
1
H
−αJ+1

1
H − αJ + 1

,

since by assumption (10b) H < 1
αJ−1 . Also, there exists a non-random T0, such that for all T > T0,

we have,

A1(1)∫
ν=0

Ttν
1
H F̄J

(
(Tt)Hν

)
TtF̄J ((Tt)H)

dν 6

1∫
ν=0

Ttν
1
H F̄J

(
(Tt)Hν

)
TtF̄J ((Tt)H)

dν +

A1(1)∫
ν=0

Ttν
1
H F̄J

(
(Tt)Hν

)
TtF̄J ((Tt)H)

dν1[A1(1)>1]

<
1 + αJ−1

2
1
H − (αJ − 1)

[
1 + A1(1)

1
H
−αJ−1

2 1[A1(1)>1]

]
,

where we bound the first term using Karamata’s theorem and the second term using the upper
bound from Lemma 5.1. Thus,

A1(1)−
1
H

A1(1)∫
ν=0

Ttν
1
H F̄J

(
(Tt)Hν

)
TtF̄J ((Tt)H)

dν <
αJ + 1

2
(

1
H − (αJ − 1)

) [A1(1)−
1
H + 1

]
,

which is integrable, since E[A1(1)−αJ ] < ∞ by assumption (11) and 1/H < αJ . So by the Domi-
nated Convergence Theorem and (5.13), we have from (5.12),

(5.14) E
[
S

(T )
2

(
Tt− τ

(T )
2

)]
∼ 1

µL
TH+1F̄L(T )t1−H(αJ−1) E[A1(1)1−αJ ]

1−H(αJ − 1)
.

For future reference we collect some results about the variance and other centered moments
using (5.14) and (5.11),

lim
T→∞

Var
[
S

(T )
2

(
Tt− τ

(T )
2

)]
T 2H+1F̄L(T )

=
1

µL[H(2− αJ) + 1]
tH(2−αJ )+1 E

[
A1(1)2−αJ

]
(5.15)

=:
1

µL
σ2

2t
H(2−αJ )+1

and

lim sup
T→∞

E
[∣∣∣S(T )

2

(
Tt− τ

(T )
2

)
− E

[
S

(T )
2

(
Tt− τ

(T )
2

)]∣∣∣2+ δ
2

]
TH(2+ δ

2)+1F̄L(T )

6 lim sup
T→∞

E
[(

S
(T )
2

(
Tt− τ

(T )
2

))2+ δ
2

]
+
(
E
[
S

(T )
2

(
Tt− τ

(T )
2

)])2+ δ
2

TH(2+ δ
2)+1F̄L(T )

,(5.16)

which is a finite constant.

6. Heavy Tailed Approximation Under the Slow Growth Condition

To study implications of the slow growth condition, we need to look at the tail behavior of W
(T )
1 .
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Proposition 6.1. Under the slow growth condition (S), the random variable W
(T )
1 given in (4.5)

and (4.6) satisfies

(6.1) lim
T→∞

λ(T )T P
[
W

(T )
1 > bJ (λ(T )T ) w

]
= w−αJ .

Proof. Observe that

λ(T )T P
[
W

(T )
1 > bJ (λ(T )T ) w

]
∼ λ(T )T

Tt

Tt∫
0

P [bJ (λ(T )T ) w < J1 6 A1(γ)] dγ(6.2)

6 λ(T )T F̄J (bJ (λ(T )T ) w) → w−αJ .

Hence,

(6.3) lim sup
T→∞

λ(T )T P
[
W

(T )
1 > bJ(λ(T )T )w

]
6 w−αJ .

On the other hand, from (6.2),

λ(T )T P
[
W

(T )
1 > bJ (λ(T )T ) w

]

∼(bJ(λ(T )T ))
1
H

T

T

(bJ (λ(T )T ))
1
H∫

0

λ(T )T P
[
bJ(λ(T )T )w < J1 6 A1

(
γ(bJ(λ(T )T ))

1
H t
)]

dγ

>
(bJ(λ(T )T ))

1
H

T

T

(bJ (λ(T )T ))
1
H∫

N

λ(T )T P
[
bJ(λ(T )T )w < J1 6 A1

(
N(bJ(λ(T )T ))

1
H t
)]

dγ(6.4)

=

(
1−N

(bJ(λ(T )T ))
1
H

T

)
λ(T )T P

[
bJ(λ(T )T )w < J1 6 A1

(
N(bJ(λ(T )T ))

1
H t
)]

∼λ(T )T P
[
bJ(λ(T )T )w < J1 6 A1

(
N(bJ(λ(T )T ))

1
H t
)]

(6.5)

=λ(T )T P
[
w <

J1

bJ(λ(T )T )
6 A1(Nt)

]
(6.6)

→E[w−αJ − (A1(Nt))−αJ ]+,(6.7)

where the inequality (6.4) holds for any natural number N for sufficiently large T , since, by the
slow growth condition (S), we have bJ(λ(T )T )/TH → 0. The equivalence (6.5) holds for the same
reason. The equality in (6.6) follows from the H-self-similarity of A1. Finally the convergence (6.7)
holds by the regular variation of the tail of J1 and Dominated Convergence Theorem. Then letting
N go to ∞, using the fact A1(∞) = ∞ and Dominated Convergence Theorem, we have

(6.8) lim inf
T→∞

λ(T )T P
[
W

(T )
1 > bJ(λ(T )T )w

]
> w−αJ .

The inequalities (6.3) and (6.8) together complete the proof. �
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Using the tail behavior in the above Proposition 6.1 and an analysis based on the point process
as in, for example, Maulik et al. [2000, Section 5], we can conclude that

(6.9)

P
(T )
1∑

k=1

W
(T )
k,1

bJ(λ(T )T )
−

P
(T )
1 E

[
W

(T )
1

]
bJ(λ(T )T )

⇒ ZαJ (t),

where Zα is α-stable Lévy motion with mean 0, skewness 1 and scale C
1
α
α and

Cα =
1− α

Γ(2− α) cos
(

πα
2

) .
Now observe that

P
(T )
1 E

[
W

(T )
1

]
− λ(T )TtµJ

bJ (λ(T )T )

=
P

(T )
1 − λ(T )F̂L (Tt)√

λ(T )F̂L (Tt)

√
λ(T )F̂L (Tt)

E
[
W

(T )
1

]
bJ (λ(T )T )

− λ(T )
bJ (λ(T )T )

(
TtµJ − F̂L(Tt) E

[
W

(T )
1

])
.

(6.10)

Since we know from (5.7) and the fact that αJ < 2 that√
λ(T )F̂L (Tt)

E
[
W

(T )
1

]
bJ (λ(T )T )

∼
√

λ(T )T
bJ (λ(T )T )

√
tµJ → 0,

and P
(T )
1 is a Poisson random variable with mean λ(T )F̂L (Tt), which goes to ∞, the first term on

the right side of (6.10) is probabilistically negligible. As for the second term, observe that

λ(T )
bJ (λ(T )T )

(
TtµJ − F̂L (Tt) E

[
W

(T )
1

])
=

λ(T )
bJ (λ(T )T )

∞∫
j=0

Tt∫
γ=0

P[J1 > j, L1 > γ] dγ dj

6
λ(T )

bJ (λ(T )T )

 Tt∫
γ=0

γH F̄L(γ) dγ +

Tt∫
γ=0

∞∫
j=γH

F̄J(j) dj dγ


∼ constant

λ(T )TH+1F̄L(T )
bJ (λ(T )T )

→ 0,

where the equivalence follows using Karamata’s theorem, the fact 1 + H(1 − αJ) > 0 from as-
sumption (10b) and the relation (3.2) between the tails of the distributions of L1 and J1 and the
limit holds because of (3.5). Thus the left side of (6.10) is probabilistically negligible. This fact
combined with the convergence (6.9) gives us the weak convergence for the contribution of the first
region under slow growth: for all t > 0,

(6.11)
X

(T )
1 (Tt)− λ(T )TµJ t

bJ (λ(T )T )
⇒ ZαJ (t).
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For the contribution of the second region, observe from the representation (4.8) and the equiva-
lence (5.14), we have

E
[
X

(T )
2 (Tt)

]
bJ (λ(T )T )

=
E[P (T )

2 ] E
[
S

(T )
2

(
Tt− τ

(T )
2

)]
bJ (λ(T )T )

∼ constant
λ(T )TH+1F̄L(T )

bJ (λ(T )T )
→ 0,

where the limit follows from (3.5). Hence X
(T )
2 (t)/ (bJ (λ(T )T )) is probabilistically negligible. Com-

bining this fact with (6.11), we get for all t > 0,

X(T ) (Tt)− λ(T )Tt

bJ (λ(T )T )
⇒ ZαJ (t).

We can check the finite dimensional convergence as in Maulik et al. [2002]. Thus, we have

Theorem 6.1. Under the assumptions (7) - (11) and slow growth condition (S), we have,

X(T )(T ·)− λ(T )TµJ ·
bJ (λ(T )T )

fidi→ ZαJ (·),

where the convergence is in the sense of weak convergence of finite dimensional distributions and

Zα is α-stable Lévy motion with mean 0, skewness 1 and scale C
1
α
α .

7. Asymptotic Normality Under the Fast Growth Condition

7.1. One-dimensional convergence. We use the moment conditions (5.8), (5.9), (5.15), (5.16)
along with Lyapunov’s Central Limit Theorem to study the behavior of X(T ) (Tt) under the fast
growth condition (F). The fast growth condition (F) implies

(7.1) η(T ) =
√

λ(T )T F̄L(T ) →∞

using (3.4).
Using (5.8) and (5.9) we get that

lim sup
T→∞

bλ(T )TtcE
[∣∣∣W (T )

1 − E
[
W

(T )
1

]∣∣∣2+ δ
2

]
(
bλ(T )TtcVar

[
W

(T )
1

]) 2+δ/2
2

6 (constant) lim sup
T→∞

λ(T )T (2+ δ
2)H+1F̄L(T )(

λ(T )T 2H+1F̄L(T )
) 2+δ/2

2

= (constant) lim
T→∞

(η(T ))−
δ
2 = 0

by the fast growth condition (3.4). Also, since, by (5.8),

bλ(T )TtcVar
[
W

(T )
1

]
∼ σ2

1t
H(2−αJ )+1(THη(T ))2,

we have by Lyapunov’s Central Limit Theorem,

bλ(T )Ttc∑
k=1

(
W

(T )
1,k − E

[
W

(T )
1

])
THη(T )

⇒ σ1N
(
0, tH(2−αJ )+1

)
,
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where N(0, t) is a normal random variable with mean 0 and variance t. Further, we know that
P

(T )
1 is a Poisson random variable with parameter λ(T )F̂L (Tt) ∼ bλ(T )Ttc → ∞, and therefore

we have P
(T )
1 / bλ(T )Ttc P→ 1. Hence by Theorem 4.1.2 of Gnedenko and Korolev [1996], we have,

P
(T )
1∑

k=1

W1,k(T )− P
(T )
1 E

[
W

(T )
1

]
THη(T )

⇒ σ1N
(
0, tH(2−αJ )+1

)
.

Finally, we observe that,

(P (T )
1 − E[P (T )

1 ]) E
[
W

(T )
1

]
THη(T )

∼ (P (T )
1 − E[P (T )

1 ])√
E[P (T )

1 ]
E
[
W

(T )
1

]
(T 2H F̄L(T ))−

1
2

√
t

is oP (1), since E(W (T )
1 ) ∼ µJ and T 2H F̄L(T ) ∈ RVH(2−αJ ) and hence increases to ∞. Combining,

we get,

(7.2)

P
(T )
1∑

k=1

W1,k(T )− E[P (T )
1 ] E

[
W

(T )
1

]
Tη(T )

d=
X

(T )
1 (t)− E

[
X

(T )
1 (t)

]
Tη(T )

⇒ σ1N
(
0, tH(2−αJ )+1

)
.

For the second region determined by R2(T ), we consider equations (5.15) and (5.16) and get

lim sup
T→∞

bλ(T )µLcE
[∣∣∣S(T )

2

(
Tt− τ

(T )
2

)
− E

[
S

(T )
2

(
Tt− τ

(T )
2

)]∣∣∣2+ δ
2

]
(
bλ(T )µLcVar

[
S

(T )
2

(
Tt− τ

(T )
2

)]) 2+δ/2
2

6 (constant) lim sup
T→∞

λ(T )TH(2+ δ
2)+1F̄L(T )(

λ(T )T 2H+1F̄L(T )
) 2+δ/2

2

= (constant) lim
T→∞

(η(T ))−
δ
2 = 0.

Also, from (5.15), we have,

bλ(T )µLcVar
[
S

(T )
2

(
Tt− τ

(T )
2

)]
∼ σ2

2t
H(2−αJ )+1(THη(T ))2,

and P
(T )
2 /(bλ(T )µLc)

P→ 1. So again, using Lyapunov’s Central Limit Theorem and Theorem 4.1.2
of Gnedenko and Korolev [1996], we get

P
(T )
2∑

k=1

S
(T )
2

(
Tt− τ

(T )
2

)
− P

(T )
2 E

[
S

(T )
2

(
Tt− τ

(T )
2

)]
THη(T )

⇒ σ2N
(
0, tH(2−αJ )+1

)
.

To change the centering to a non-random one, observe from (5.14),

P
(T )
2 − E[P (T )

2 ]
THη(T )

E
[
S

(T )
2

(
Tt− τ

(T )
2

)]
∼ (constant)

P
(T )
2 − E[P (T )

2 ]√
E[P (T )

2 ]

E
[
S

(T )
2

(
Tt− τ

(T )
2

)]
TH+1F̄L(T )

√
T F̄L(T ) = oP (1),
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since HαJ > 1. Combining, we get,

P
(T )
1∑

k=1

S
(T )
2

(
Tt− τ

(T )
2

)
− E[P (T )

1 ] E
[
S

(T )
2

(
Tt− τ

(T )
2

)]
THη(T )

d=
X

(T )
2 (t)− E

[
X

(T )
2 (t)

]
THη(T )

⇒ σ2N
(
0, tH(2−αJ )+1

)
.(7.3)

Finally, since, X
(T )
1 and X

(T )
2 are independent, adding (7.2) and (7.3), we get

Theorem 7.1. Under the assumptions (7) - (11) and fast growth condition (F), we have, for each
t > 0,

X(T ) (Tt)− E
[
X(T ) (Tt)

]
THη(T )

⇒ σN
(
0, tH(2−αJ )+1

)
,

where σ2 = σ2
1 + σ2

2 = 2
(2−αJ )[H(2−αJ )+1] E

[
A1(1)2−αJ

]
.

7.2. Finite-dimensional convergence. To study the finite dimensional convergence, we need
the following lemma.

Lemma 7.1. Suppose (7)–(11) hold and φ ∈ RVl−αJ
, αJ < l < 2 + δ. Then as u →∞

(7.4) E [φ(A1(u))] ∼ E
[
A1(1)l−αJ

]
φ(uH) ∈ RVH(l−αJ ).

In particular:
(i) If αJ < l < 2 + δ and

(7.5) φ(s) =
∫ s

0
wlFJ(dw) ∈ RVl−αJ

,

then

E [φ(A1(u))] = E

[∫ A1(u)

0
wlFJ(dw)

]
∼ E

[
A1(1)l−αJ

] ∫ uH

0
wlFJ(dw)

∼ αJ

l − αJ
E
[
A1(1)l−αJ

]
uHlF̄J(uH).(7.6)

(ii) If we have l = 2 and

(7.7) φ(s) = s

∫ ∞
s

wFJ(dw) ∈ RV2−αJ ,

then

E [φ(A1(u))] = E

[
A1(u)

∫ ∞
A1(u)

wFJ(dw)

]
∼ E

[
A1(1)2−αJ

]
uH

∫ ∞
uH

wFJ(dw)

∼ αJ

l − αJ
E
[
A1(1)2−αJ

]
u2H F̄J(uH).(7.8)

Furthermore, if 0 < l ≤ αJ and

(7.9) φ(s) = slF̄J(s) ∈ RVl−αJ
,
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then (7.4) continues to hold:

(7.10) E
[
A1(u)lF̄J

(
A1(u)

)]
∼ E

[
A1(1)l−αJ

]
uHlF̄J(uH).

Proof. Pick ρ > 0 and write

E [φ(A1(u))]
φ(uH)

=
E
[
φ(uHA1(1))

]
φ(uH)

≥ E
[
φ(uHA1(1))

φ(uH)
1[A1(1)≥ρ]

]
.

Now for αJ < l < 2 + δ, we choose ε > 0 small enough that l + ε < 2 + δ and we have by Potter’s
bounds that for some constant c > 0 and all large u

φ(uHA1(1))
φ(uH)

1[A1(1)≥ρ] ≤ cA1(1)l−αJ+ε ∈ L1.

So by dominated convergence, as u →∞

(7.11) E
[
φ(uHA1(1))

φ(uH)
1[A1(1)≥ρ]

]
→ E

[
A1(1)l−αJ 1[A1(1)≥ρ]

]
and therefore

lim inf
u→∞

E [φ(A1(u))]
φ(uH)

≥ E
[
A1(1)l−αJ

]
.

For the rest of the proof of (7.4) when l − αJ > 0, it suffices to show

(7.12) lim
u→∞

E
[
φ(A1(u))
φ(uH)

1[A1(1)≤ρ]

]
= E

[
A1(1)l−αJ 1[A1(1)≤ρ]

]
.

Since l−αJ > 0, we have uniform convergence in neighborhoods of 0 in the regular variation ratio
and thus

sup
0≤a≤ρ

∣∣∣∣φ(va)
φ(v)

− al−αJ

∣∣∣∣ =: ηv(ρ)

with limv→∞ ηv(ρ) = 0. Now∣∣∣∣E [φ(A1(u))
φ(uH)

1[A1(1)≤ρ]

]
− E

[
A1(1)l−αJ 1[A1(1)≤ρ]

]∣∣∣∣ ≤E
[
1[A1(1)≤ρ]

∣∣∣∣φ(uHA1(1))
φ(uH)

−A1(1)l−αJ

∣∣∣∣]
≤ηv(ρ) P[A1(1) ≤ ρ] → 0,

as u →∞.
Now consider the proof of (7.10) when 0 < l ≤ αJ and (7.9) hold. Set v = uH . We have, by

independence of J1 and A1

E

[
(A1(1))lF̄J(vA1(1))1[A1(1)<ρ]

F̄J(v)

]

= E

[
(A1(1))l1[J1>vA1(1)]1[A1(1)<ρ]1[J16vρ]

F̄J(v)

]
+ E

[
(A1(1))l1[J1>vA1(1)]1[A1(1)<ρ]1[J1>vρ]

F̄J(v)

]

6 E

J l
11[A1(1)−αJ >(J1/v)−αJ ]1[J16vρ]

vlF̄J(v)

+ E

ρl1[A1(1)−αJ >ρ−αJ ]1[J1>vρ]

F̄J(v)


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and applying Chebyshev’s inequality, this is bounded by

6
E
[
J l+αJ

1 1[J6vρ]

]
vl+αJ F̄J(v)

E
[
A1(1)−αJ

]
+ ρl+αJ

F̄J(ρv)
F̄J(v)

E
[
A1(1)−αJ

]
,

→ αJ

l
ρl E

[
A1(1)−αJ

]
+ ρl E

[
A1(1)−αJ

]
,

by Karamata’s theorem as v →∞. Thus, from (7.11)

lim sup
v→∞

E
[
(vA1(1))lF̄J(vA1(1))

vlF̄J(v)

]
6 lim sup

v→∞
E

[
A1(1)lF̄J(vA1(1))1[A1(1)>ρ]

F̄J(v)

]
+ lim sup

v→∞
E

[
A1(1)lF̄J(vA1(1))1[A1(1)<ρ]

F̄J(v)

]
6E

[
A1(1)l−αJ 1[A1(1)>ρ]

]
+

αJ

l
ρl E

[
A1(1)−αJ

]
+ ρl E

[
A1(1)−αJ

]
.

Letting ρ → 0, we have

(7.13) lim sup
v→∞

E
[
(vA1(1))lF̄J(vA1(1))

]
vlF̄J(v)

6 E
[
A1(1)l−αJ

]
.

This gives the desired result. �

For the finite dimensional convergence, we consider only two-dimensional convergence to make
notation simpler. The general case follows similarly. Let N (T )(t) =

∑
k ε

Γ
(T )
k

([0, t]) be the counting

process corresponding to the initiation times
{

Γ(T )
k

}
in [0, t]. Observe that

X(T )(t) =
N(T )(t)∑

k=1

Ak

(
t− Γ(T )

k

)
∧ Jk.

Recall that
∑

k ε
(Γ

(T )
k ,Ak,Jk)

is a Poisson random measure. Now fix 0 < s < t. Break the previous

sum defining X(T ) into the independent pieces corresponding to
∑

0≤Γ
(T )
k ≤Ts

+
∑

Ts<Γ
(T )
k ≤Tt

. Then,

using stationary, independent increments of N (T ) and the order statistic property of a Poisson
process, we have(

X(T ) (Ts)
X(T ) (Tt)

)
=

 ∑N(T )(Ts)
k=1 Ak

(
Ts− Γ(T )

k

)
∧ Jk∑N(T )(Tt)

k=1 Ak

(
Tt− Γ(T )

k

)
∧ Jk


d=

N
(T )
1 (Ts)∑
k=1

(
Ak,1(TsUk,1) ∧ Jk,1

Ak,1(T (t− s) + TsUk,1) ∧ Jk,1

)
+

N
(T )
2 (T (t−s))∑

k=1

(
0

Ak,2(T (t− s)Uk,2) ∧ Jk,2

)
,(7.14)

with {N (T )
i , i > 1} being i.i.d. copies of N (T ), Uk,i being i.i.d. copies of Uniform(0,1) random

variables, Jk,i and Ak,i being i.i.d. copies of J1 and A1 respectively. A typical summand in the first
sum represents accumulation by times Ts and Tt from a transmission initiated at Ts(1 − Uk,1),
while the summand in the second component of the second sum represents accumulation from
transmissions initiated in (Ts, T t]. Now, the second sum on the right side of (7.14) is independent
of the first sum and the second coordinate has the same distribution as X(T )(T (t− s)), and hence
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has a Gaussian limit after centering by the mean and scaling by THη(T ). So we need to study the
first term only. Let us define

Y
(T )
k,s,t = Ak(Tt + TsU1) ∧ Jk.

Then

E
[(

Y
(T )
1,s,t

)l
]

=

1∫
u=0

∞∫
w=0

E
[
(A1(Tt + Tsu) ∧ w)l

]
FJ(dw) du

=

1∫
u=0

E
[
A1(Tt + Tsu)l F̄J(A1(Tt + Tsu))

]
du +

1∫
u=0

E

 A1(Tt+Tsu)∫
w=0

wl FJ(dw)

 du.(7.15)

Now, observe that, for 1 6 l < 2 + δ, by substitution of variable,

1∫
u=0

E
[
A1(Tt + Tsu)l F̄J(A1(Tt + Tsu))

]
du

=
1

Ts

T (s+t)∫
u=Tt

E
[
A1(u)l F̄J(A1(u))

]
du

=
1

Ts

T (s+t)∫
u=Tt

E
[
(uHA1(1))l F̄J(uHA1(1))

]
du

∼ 1
H(l − αJ) + 1

(s + t)H(l−αJ )+1 − tH(l−αJ )+1

s
E
[
A1(1)l−αJ

]
THlF̄J(TH),(7.16)

using Karamata’s theorem and Lemma 7.1, since, by assumption (10b), H(l − αJ) + 1 > H(1 −
αJ) + 1 > 0. For the second term of (7.15), observe that, again changing variables u′ = us + t, we
get

1∫
u=0

E

[ A1(Tt+Tsu)∫
w=0

wl FJ(dw)

]
du =

1
s

t+s∫
u=t

E

 A1(Tu)∫
w=0

wl FJ(dw)

 du,

∼

{
E
[
J l

1

]
, for 0 < l < αJ

αJ
l−αJ

(s+t)H(l−αJ )+1−tH(l−αJ )+1

[H(l−αJ )+1]s E
[
A1(1)l−αJ

]
THlF̄L(T ), for αJ < l < 2 + δ

(7.17)

where we use Monotone Convergence Theorem in the first case and Karamata’s theorem and
Lemma 7.1 in the other. We also used F̄L(T ) ∼ F̄J(TH). Hence, combining (7.16) and (7.17), we
have from (7.15),

E
[(

Y
(T )
1,s,t

)l
]
→ E

[
J l

1

]
, for 1 6 l < αJ

E
[(

Y
(T )
1,s,t

)l
]

= O(THlF̄L(T )), for αJ < l < 2 + δ.
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Thus, we have, as T →∞,

(7.18)
Var

[
Y

(T )
1,s,t

]
T 2H F̄L(T )

→ 2
2− αJ

(s + t)H(l−αJ )+1 − tH(l−αJ )+1

[H(2− αJ) + 1]s
E
[
A1(1)2−αJ

]
and

(7.19) E
[∣∣∣Y (T )

1,s,t − E
[
Y

(T )
1,s,t

]∣∣∣2+δ/2
]

= O(TH(2+δ/2)F̄L(T )).

Next we study the covariance between Y
(T )
1,s,0 and Y

(T )
1,s,t−s. Observe that by decomposing

[0,∞) = [0, A1(Tsu)] ∪ (A1(Tsu), A1(Tsu + T (t− s))] ∪ (A1(Tsu + T (t− s)),∞),

we get

E

[
Y

(T )
1,s,0Y

(T )
1,s,t−s

T 2H F̄J(TH)

]
=

1∫
u=0

∞∫
w=0

E [(A1(Tsu) ∧ w) (A1(T (t− s) + Tsu) ∧ w)]FJ(dw)du

T 2H F̄J(TH)

=

1∫
u=0

E

[∫ A1(Tsu)
w=0 w2FJ(dw)

T 2H F̄J(TH)

]
du +

1∫
u=0

E

[
A1(Tsu)

∫∞
w=A1(Tsu) wFJ(dw)

T 2H F̄J(TH)

]
du

−
1∫

u=0

E

[
A1(Tsu)

∫∞
w=A1(T (t−s)+Tsu) wFJ(dw)

T 2H F̄J(TH)

]
du

+

1∫
u=0

E
[
A1(Tsu)A1(T (t− s) + Tsu)F̄J(A1(T (t− s) + Tsu))

T 2H F̄J(TH)

]
du.

We treat each of the terms above separately. The first term gives us

1∫
u=0

E

[∫ A1(Tsu)
w=0 w2FJ(dw)

T 2H F̄J(TH)

]
du =

Ts∫
u=0

E

[∫ A1(u)
w=0 w2FJ(dw)

Ts · T 2H F̄J(TH)

]
du

→ αJ

(2− αJ)[H(2− αJ) + 1]
E[A1(1)2−αJ ]sH(2−αJ )

using Lemma 7.1. The second term gives us, also using Lemma 7.1,

1∫
u=0

E

[
A1(Tsu)

∫∞
w=A1(Tsu) wFJ(dw)

T 2H F̄J(TH)

]
du =

Ts∫
u=0

E

[
A1(u)

∫∞
w=A1(u) wFJ(dw)

T 2H F̄J(TH)

]
du

→ αJ

(αJ − 1)[H(2− αJ) + 1]
E[A1(1)2−αJ ]sH(2−αJ ).

For the third term, observe that

A1(Tsu)
∫∞
w=A1(T (t−s)+Tsu) wFJ(dw)

T 2H F̄J(TH)
6

A1(Tsu)
∫∞
w=A1(Tsu) wFJ(dw)

T 2H F̄J(TH)
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and hence from Dominated Convergence theorem, using the analysis of the second term,
1∫

u=0

E

[
A1(Tsu)

∫∞
w=A1(T (t−s)+Tsu) wFJ(dw)

T 2H F̄J(TH)

]
du =

1∫
u=0

E

[
A1(su)

∫∞
w=T HA1((t−s)+su) wFJ(dw)

TH F̄J(TH)

]
du

→ αJ

αJ − 1

1∫
u=0

E
[
A1(su)A1((t− s) + su)1−αJ

]
du.

Finally, observe that, the fourth term is

1∫
u=0

E
[
A1(Tsu)A1(T (t− s) + Tsu)F̄J(A1(T (t− s) + Tsu))

T 2H F̄J(TH)

]
du

=

1∫
u=0

E
[
A1(su)A1(t− s + su)F̄J(THA1(t− s + su))

F̄J(TH)

]
du.

Now, A1(su)A1(t− s + su)F̄J(THA1(t− s + su))/F̄J(TH) converges to A1(su)A1(t− s + su)1−αJ

almost surely and is bounded by A1(t− s + su)2F̄J(THA1(t− s + su))/F̄J(TH). Also
1∫

u=0

E
[
A1(t− s + su)2F̄J(THA1(t− s + su))

F̄J(TH)

]

=

t∫
u=t−s

E
[
A1(Tu)2F̄J(A1(Tu))

s · T 2H F̄J(TH)

]
=

Tt∫
u=T (t−s)

E
[
A1(u)2F̄J(A1(u))
Ts · T 2H F̄J(TH)

]

→ 1
H(2− αJ) + 1

tH(2−αJ )+1 − (t− s)H(2−αJ )+1

s
E[A1(1)2−αJ ].

Hence, the fourth term converges to
∫ 1
u=0 E

[
A1(su)A1(t− s + su)1−αJ

]
du, by the Dominated Con-

vergence Theorem. Putting all the terms together, we have,

Cov(Y (T )
1,s,0, Y

(T )
1,s,t−s)

T 2H F̄J(TH)
∼ E

[
Y

(T )
1,s,0Y

(T )
1,s,t−s

T 2H F̄J(TH)

]

∼αJ E[A1(1)2−αJ ]sH(2−αJ )

(2− αJ)[H(2− αJ) + 1]
+

αJ E[A1(1)2−αJ ]sH(2−αJ )

(αJ − 1)[H(2− αJ) + 1]

− αJ

αJ − 1

1∫
u=0

E
[
A1(su)A1((t− s) + su)1−αJ

]
du +

1∫
u=0

E
[
A1(su)A1(t− s + su)1−αJ

]
du

=
αJ E[A1(1)2−αJ ]sH(2−αJ )

(αJ − 1)(2− αJ)[H(2− αJ) + 1]
− 1

αJ − 1

1∫
u=0

E
[
A1(su)A1((t− s) + su)1−αJ

]
du.(7.20)

Thus, if Y(T )
k,s,t =

(
Y

(T )
k,s,0, Y

(T )
k,s,t−s

)T
and Var

[
Y(T )

s,t

]
= Σ(T )

s,t , using (7.18) and (7.20), we have,

Σ(T )
s,t /(T 2H F̄J(T )) converges to a positive-definite covariance matrix Σs,t, say.
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Then, for any 2-dimensional vector a = (a1, a2)T , we have

lim
T→∞

Var[aTY(T )
1,s,t]

T 2H F̄J(TH)
= lim

T→∞

aT Σ(T )
s,t a

T 2H F̄J(TH)
= aT Σs,ta,

which is non-zero. On the other hand, by Minkowski’s inequality, we have

E
[∣∣∣aTY(T )

1,s,t − E
[
aTY(T )

1,s,t

]∣∣∣2+δ/2
]

= O
(
TH(2+δ/2)F̄L(T )

)
.

So aTY(T )
1,s,t satisfies Lyapunov’s condition

bλ(T )T cE
[∣∣∣aTY(T )

1,s,t − E
[
aTY(T )

1,s,t

]∣∣∣2+ δ
2

]
[THη(T )]2+ δ

2

6 (constant) lim sup
T→∞

(η(T ))−
δ
2 = 0.

Hence, using Lyapunov’s Central Limit Theorem and Cramer-Wold device, we have that

bλ(T )T c∑
k=1

(
Y(T )

k,s,t − E
[
Y(T )

1,s,t

])
THη(T )

converges weakly to a normal random vector with zero mean and covariance matrix Σs,t. Also, we
have

N
(T )
1 (Ts)
bλ(T )T c

P→ s.

Hence, by using Theorem 4.1.2 of Gnedenko and Korolev [1996], we have∑N
(T )
1 (Ts)

k=1 Y(T )
k,s,t − E

[∑N
(T )
1 (Ts)

k=1 Y(T )
s,t

]
THη(T )

converges weakly to a normal random vector with zero mean and covariance matrix
√

sΣs,t. Note
that we can change the centering as in the one-dimensional case, since the changes are probabilis-
tically negligible coordinate by coordinate. Recall from (7.14), the two dimensional distribution of
X(T ) is sum of two independent terms, both of which are now shown to be asymptotically Gaussian
on centering by mean and scaling by THη(T ). Hence, we have

1
THη(T )

{(
X(T )(Ts)
X(T )(Tt)

)
− E

[(
X(T )(Ts)
X(T )(Tt)

)]}
converges to a zero mean Gaussian process σG(·) in the sense of the convergence of finite dimensional
distribution.

To understand the Gaussian process better, we look at its second order properties. From the
one dimensional convergence given in Theorem 7.1, we know that Var[G(t)] = tH(2−αJ )+1. Also,
from (7.14), it is clear that only the first term on the right side contributes to the asymptotic

covariance Cov[G(s), G(t)] and so from the limiting covariance matrix of
∑N

(T )
1 (Ts)

k=1 Y(T )
k,s,t/(THη(T ))

and (7.20), we have Cov[G(s), G(t)] is homogeneous of order H(2− αJ) + 1. So G is a self-similar
process of index [H(2− αJ) + 1]/2. We summarize this in the following theorem:

Theorem 7.2. Under the assumptions (7) - (11) and the fast growth condition (F), we have

X(T )(T ·)− E
[
X(T )(T ·)

]
THη(T )

fidi→ σG(·),
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where G is a zero mean self-similar Gaussian process with self-similarity index H(2−αJ )+1
2 .

8. Conclusion

In this paper, we have proposed a family of models, each of which exhibits multifractal behavior at
small time scales and we obtain two different types of limiting behaviors for the process X(T )(·) for
large time scale depending on the growth condition. Under the slow growth condition, X(T )(·) when
scaled by bJ(λ(T )T ) has a centered limit which is a right-skewed stable Lévy motion of self-similarity
index 1/αJ . Under the fast growth condition, X(T )(·) needs to be scaled by

√
λ(T )T 2H+1F̄L(T ) and

the centered limit is a Gaussian process of self-similarity parameter [H(2−αJ)+1]/2. Interestingly,
both the self-similarity indices have a range (1

2 , 1) using assumptions (9) and (10c) and 1/αJ <
[H(2 − αJ) + 1]/2 using the conditions αJ < 2 and HαJ > 1. Yet, the limiting behavior in the
slow growth case fails to capture the effect of the individual input processes Ak, as only the terms
corresponding to connections, which have ended transmissions, contribute towards the limit. The
limit in the fast growth case depends on H and hence can lead to models with richer parametrization.
Further we note that, the limit obtained under the fast growth condition does not have stationary
increments. If the limit had stationary increments besides being Gaussian and self-similar, we
could consider the limit to be fractional Brownian motion, since the index of self-similarity is in
the interval (1

2 , 1). A possible approach towards obtaining a limit with stationary increments is to
consider a stationary version of the process X(T ), as has been done in the work of Mikosch et al.
[2002], by looking at the contributions from time 0, where the connections may begin way back in
the past.
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