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Abstract

Calls of two classes arrive at a call center according to two independent Poisson processes. The center
has two dedicated stations, one for each class, and one shared station. All three stations consist of par-
allel servers and no waiting room. Calls of each type demand exponential service times with different
service rates and generate different rewards. Moreover, the service rates are different in the shared and
dedicated stations. We assume non-preemptive service. Our objective is to derive the structure of dy-
namic admission policies that maximize the total expected discounted revenue over an infinite horizon
as well as the long-run average revenue. We show that it is optimal to serve a customer in her dedicated
station whenever it is possible. For the shared station, we derive a sufficient condition for each class
under which it is always optimal to accept customers of that class to the shared station if the dedicated
station is full and the shared station has available servers. Furthermore, the optimal admission policy
at the shared station can be characterized as a monotonic threshold policy.

1The research was done while the author was at EURANDOM, Eindhoven, The Netherlands
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1 Introduction

In the last decades, call centers have been an effective and low cost customer service in a variety of
industries such as financial services, airlines, hotels, and retail companies. Typically, call centers serve
different classes of customers, each of which can be distinguished by a different profitability, volume
of calls, and expectation for service. Call center operators often require different types of training to
handle different classes of customers. However, because cross-training is expensive, it is necessary
to manage the workforce training and call allocation carefully. In order to develop insight regarding
the extent to which operators would be cross-trained, and how calls should be dynamically assigned to
operators, we consider the problem of call admission in a system with no waiting room that serves two
classes of customers using dedicated and shared facilities.

Consider a call center which serves two classes of customers, each of which requires different
sets of skills from the operators of the center. At one extreme, the center can have two completely
independent call centers, each dedicated to one of the classes, and at the other one it may consist of
only one type of operators who are able to serve both classes. The former system suffers from either
low utilization or low quality of service due to a loss in economies of scale, whereas the latter one
has to face the high cost of cross-training many operators. Hence, we consider an intermediate model
in which the call center consists of two dedicated stations, one for each class, and one shared station
that can serve both classes. We assume that the system has no waiting room so that customers are
assumed to be lost if all servers are busy, or if the system chooses not to serve them. This assumption
is not restrictive when modelling large call centers, since such centers can answer about half of their
customers immediately, and the waiting time of those delayed is measured in seconds (Gans, Koole and
Mandelbaum, [5]). Moreover, the fraction of abandoning calls while waiting varies from 0 to 1-2%.
Hence, the effect of delaying a customer as well as the probability of a delay is low, which allows us
to ignore the waiting room completely. This study can also be viewed as a starting point for analyzing
finite-buffer systems, which can model any kind of call centers as well as many telecommunication and
manufacturing systems.

Our model assumes that customers of each class arrive at the system according to a Poisson process,
and demand exponential service times. Each class has different arrival and service rates, and generates
different rewards. Moreover, the service rate of a customer depends on the station he is being served,
i.e., the service rate for each class is different in the shared and dedicated stations. We do not allow
preemption as a call center would require. Our objective is to derive the structure of dynamic admission
policies that maximize the total expected discounted revenue over an infinite horizon as well as the
long-run average revenue.

We show that the optimal policy accepts customers of each class to their dedicated stations when-
ever that station has available servers. The optimal admission policy in the shared station, on the other
hand, can be characterized in two ways: We prove the existence of a monotonic threshold policy, where
the thresholds depend on the number of customers in all three stations. Moreover, we derive a sufficient
condition for each class to guarantee that customers of that class are always admitted to the shared sta-
tion whenever their dedicated station is full, and the shared station has at least one idle server. We call
such a class a preferred class.

This paper is organized as follows: In the next section, we present a brief literature review on the
related studies. Section 3 develops a Markov decision process (MDP) model for the system described
above. Section 4 characterizes the structure of optimal admission rules for the dedicated stations. In
sections 5 and 6, we consider the admission control in the shared station: Section 5 presents sets of
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Figure 1: Some canonical designs for skills-based routing (from Garnett and Mandelbaum (2001))

sufficient conditions for each class to be preferred, while section 6 establishes the existence of an
optimal monotonic threshold policy. Finally, we conclude and point out possible future research in
section 7.

2 Related research

Our work is related with the literature in two different areas: call centers due to our motivation, and
admission control of loss systems due to our model.

The increasing use of call centers in different industries has generated recent research on these
systems. Gans et al. [5] give a comprehensive review for analytical models that support capacity
management issues of call centers. Complexity of call centers provides a wide variety of different
problems: Workforce management has become one of the issues, see e.g., Akşin and Harker [2] who
consider a staffing problem of a call center with multiple call types and service agents that specialize in
different call types. Computing performance measures of call centers, such as the fraction of lost sales
due to blocking (busy signals) or reneging, is another important issue, which is addressed by Akşin
and Harker [1] among others. Our work, on the other hand, is most closely related to the problem of
routing different kinds of customers to servers with different skills. There are a number of canonical
designs for skill-based routing (some of which are depicted in Figure 1) introduced in Garnett and
Mandelbaum [7]. In V-design, two classes of calls are served by a single pool of cross-trained agents,
variants of which are analyzed by a number of authors such as Bhulai and Koole [4] and Gans and
Zhou [6]. Stanford and Grassman [17] and Shumsky [16] study the N-design assuming fixed static
priority policies, whereas the optimal structure of dynamic routing in such systems is considered by
Xu, Righter, and Shanthikumar [19] in a context different than call centers. In this paper, we address
the dynamic control in an M-design with no waiting room.

Admission control is a main focus of research on loss networks, see Chapter 4 of Ross [15] for a
comprehensive review on the admission control problems of generalized stochastic knapsacks. Earlier
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studies which investigate the structural properties of optimal admission policies for certain stochastic
knapsacks include Miller [13] and Lippman and Ross [12]. More recently, Altman, Jiménez and Koole
[3] and Koole [9] prove the existence of an optimal admission policy in a stochastic knapsack with
two classes of customers, that is characterized by acceptance thresholds, while Örmeci, Burnetas, and
van der Wal [14] establish the monotonicity of these thresholds under some restrictive conditions.
Örmeci et al. [14] also introduce the notion of “preferred class” in stochastic knapsacks. We extend
the existence of optimal thresholds and preferred class(es) to stochastic knapsacks receiving arrivals
according to an overflow process rather than a Poisson process.

We also investigate the dependence of admission control in the shared station on the state of the
dedicated stations. To the best of our knowledge, Ku and Jordan [10] is the only study which considers
admission control in a system with multiple stations of loss systems, and the interaction between them.
They show the existence of an optimal threshold policy for two stations in tandem, each with no waiting
room and parallel servers.

3 Markov decision model

We assume that class-i customers arrive at the system according to a Poisson process with rate λ i.
Stations 1 and 2 are dedicated to customers of class 1 and 2, respectively, whereas station 0 can be used
by either of the classes. If a class-i customer is served at station i, then she demands an exponential
service with mean 1

�
µ �i, and if she is served in station 0, then she is served for an exponential time with

rate µi. We assume, without loss of generality, that class-1 customers require longer service times so
that µ2 � µ1 and µ �2 � µ �1. The operators in station 0 will be trained to be able to serve both classes, so
we assume that these servers are slower than the “specialized” servers. Therefore, we assume µ j � µ � j.
Each served class-i customer brings a reward of ri upon finishing her service, regardless of the station
she is served.

The original process of the system evolves in continuous time. All the interarrival times as well
as the service times are exponential. Furthermore, we interpret discounting as exponential failures,
i.e., the system closes down in an exponentially distributed time with rate β (for the equivalence of
the process with discounting and the process without discounting but with an exponential deadline,
see e.g., Walrand [18]). These features allow us to build a discrete time equivalent of this system by
using uniformization (introduced by Lippman [11]): The maximum possible rate out of any state,
i.e., ∑i � 1 � 2 � λi � ciµ �i � � cµ2 � β, is finite so that we can assume, using the appropriate time scale,
∑i � 1 � 2 � λi � ciµ �i � � cµ2 � β � 1. As a result, we observe the state of the system at each instant of a
potential transition, so in every exponentially distributed time with rate 1, and the system changes its
state with certain probabilities to be specified below.

Now we can define the state of the system as � y;x � � � y1 	 y2;x1 	 x2 � , where yi is the number of
class-i customers in station i, and xi is the number of class-i customers in station 0. Let S be the set of
all feasible states, i.e., S ��
 � y;x � : yi � ci 	 i � 1 	 2;x1 � x2 � c � , so that if s � � s1 	 s2;s3 	 s4 �� S , s1 and
s2 are the number of customers in stations 1 and 2, respectively, whereas s3 and s4 are the number of
class-1 and class-2 customers, respectively, in station 0.

Let un � y;x � be the maximal expected β-discounted reward for the system starting in state � y;x �
when n observation points remain in the horizon. Now we can present the optimality equations, where
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we set e j as the unit vector which has a 1 at the jth coordinate, and 0 elsewhere:

un � 1 � y;x � � 2

∑
j � 1

�
x jµ jr j � y jµ � jr j � λ jvn

j � y;x � � x jµ jun � y;x � e j �� y jµ � jun � y � e j;x ��� � γun � y;x � 	 (1)

where

vn
j � y;x � � max � un � y � e j;x � 	 un � y;x � e j � 	 un � y;x ��� and (2)

γ � cµ2 � 2

∑
i � 1

�
ciµ �i � xiµi � yiµ �i � 	 (3)

with un � y;x � e j � � un � y;x � if x j � 0, un � y � e j;x � � un � y;x � if y j � 0, un � y � e j;x � ��� ∞ when
y j � 1 � c j and un � y;x � e j � ��� ∞ whenever x1 � x2 � 1 � c. Therefore, if e.g., x1 � x2 � c and y j � c j,
then vn

j � y;x � � un � y;x � . We define the action an
j � y;x � as the optimal state to move into when a class- j

customer arrives at a system in state � y;x � with n remaining transitions. If a class- j customer arrives,
which happens with probability λ j, he is either rejected, that keeps the system in the same state, i.e.,
an

j � y;x � � � y;x � , or depending on the availability of servers he is accepted to either station j, moving
the system to state an

j � y;x � � � y � e j ;x � , or to station 0, changing the state to an
j � y;x � � � y;x � e j � . If

a class- j customer finishes his service in station j, with probability y jµ � j, the system receives a reward
of r j and the state changes to � y � e j;x � . If a class- j customer finishes his service in station 0, with
probability x jµ j , again a reward of r j is gained and the system moves to state � y;x � e j � . The “fictitious”
service completions, which occur with probability γ given by equation (3), affect neither the state nor
the total reward of the system. Finally, if the system closes down, with probability β, the system
receives no more reward.

We can observe from the optimality equations (2) that the effect of an additional class- j customer
in stations j and 0, as well as of moving a customer from station j to station 0, is an important quantity.
We will see in our analysis below that the effect of changing a class- j customer to a class-k at station
0 is also important. Therefore, we define the functions Dn

JK � jk � � y;x � as the difference in the total
expected discounted rewards between two systems A and B, where system A starts in state � y;x � ‘plus’
one class- j customer at station J, and system B starts in � y;x � plus a class-k customer at station K. Of
course, J can be 0 or j and K can be 0 or k. Moreover, k � 0 means that system B is in state � y;x � , i.e.,
there is no additional customer. We also denote Dn

LL � jk � � y;x � by Dn
L � jk � � y;x � , i.e., if both additional

customers are in the same station, we indicate it once. We occasionally omit the arguments � y;x � and
n when there is no danger of confusion. DJK � jk � functions that will be used in our analysis below are
as follows:

Dn
j � j0 � � y;x � � un � y � e j;x � � un � y;x � 	

Dn
0 � j0 � � y;x � � un � y;x � e j � � un � y;x � 	

Dn
j0 � j j � � y;x � � un � y � e j;x � � un � y;x � e j � 	 and

Dn
0 � 12 � � y;x � � un � y;x � e1 � � un � y;x � e2 ���

We can interpret the difference Dn
J � j0 � � y;x � as the net benefit of the system due to an additional class- j

customer at station J, J � 0 	 j, in state � y;x � when there are n more transitions, and Dn
j0 � j j � � y;x � as the

net benefit of the system when a class- j customer is moved from station 0 to station j in state � y;x � e j � ,
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whereas Dn
0 � 12 � � y;x � is the net benefit of the system when a class-2 customer at station 0 is changed to

a class-1 customer in state � y;x � e2 � . Note that Dn
K � jk � ��� Dn

K � k j � , and Dn
j0 � j j � ��� Dn

0 j � j j � .
One of our major tools to show certain properties of the value functions is coupling: We couple

two systems so that both will receive the same arrival stream. Moreover, the service times of customers
in the two systems are coupled as follows: If the coupled customers are of the same class and being
served in the same station, they depart at the same time, otherwise we use the assumptions that µ1 � µ2
or µ j � µ � j: If a class-1 customer is coupled with a class-2 customer, both in station 0, then whenever the
coupled class-1 customer finishes her service, the coupled class-2 customer also completes his service
with probability 1, due to µ1 � µ2. In terms of discrete time, this translates to the following: Both
customers leave the system with probability µ1, and only the class-2 customer departs from the system
with probability µ2 � µ1 leaving the coupled class-1 customer in the system. Thus, coupling does not
allow a coupled class-1 customer to leave the system while the coupled class-2 customer is still there.
Coupling additional class- j customers in stations j and 0 is similar: Both customers leave the system
with probability µ j , and only the customer in station j departs with probability µ � j � µ j.

We prove all our results for the objective of maximizing total expected β-discounted reward for
a finite number of transitions, n, including the “fictitious” transitions due to the “fictitious” service
completions. Thus, “finite” horizon problems are pseudo finite problems. They provide the powerful
tool of induction to prove our results for all n. To start the induction, we need an initial value function,
which satisfies the statement under consideration. Here, we present one such function which requires
that the rewards of customers, who are still in the system at n � 0, are collected even if their services
have not been finished. Of course, this makes no difference in the optimal policy for infinite horizon
problems. More specifically:

u0 � y;x � � 2

∑
j � 1

�
y jR � j � x jR j �  � y;x �! S 	 (4)

where R � j � r jµ � j � � µ � j � β � and R j � r jµ j
� � µ j � β � are the present values of the reward brought by a

class- j customer served in station j and 0, respectively. We will refer to R � j and R j as the immediate
reward of a class- j customer at station j and at station 0, respectively.

All the results proven for finite n are true for the limit n " ∞, so the corresponding conclusions
are valid when total expected β-discounted reward over an infinite horizon is maximized. Hence, we
define u � y;x � as the maximal expected β-discounted reward for the system starting in state � y;x � over
an infinite horizon. For β � 0, we have:

u � y;x � � lim
n # ∞

un � y;x ���
Moreover, since the state space and the action space in each state are finite and the results hold even
for β � 0, we have the same conclusions for maximizing the long-run average reward. Only for β � 0,
we need to consider the relative value functions and the gain in the usual MDP formulation, since
u � y;x � " ∞.

4 Optimal admission policy at station 1 and 2

This section specifies the optimal admission policy for stations 1 and 2, which needs derivation of
certain bounds on DJK � jk � functions. The following lemma establishes these bounds, some of which
will be used in the subsequent sections as well:
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Lemma 1 (i) For all � y � e j;x �$ S : 0 � Dn
j � j0 � � y;x � � R � j for all n % 0 and for j � 1 	 2.

(ii) For all � y;x � e1 �& S : Dn
0 � j0 � � y;x � � R j for all n % 0 and for j � 1 	 2.

(iii) For all � y � e j;x � e1 �' S : 0 � Dn
j0 � j j � � y;x � for all n % 0 and for j � 1 	 2.

(iv) For all � y;x � e1 �& S : Dn
0 � 12 � � y;x � � R1 � R2 for all n % 0.

Proof. All proofs are by induction on the number of transitions combined with coupling. All statements
are true for u0 given by equation (4). Assume that they are true for n, and consider n � 1.� i � Consider the first inequality: Let system A be in state � y � e j;x � , and system B in state � y;x � .
We let system B follow the optimal policy. If system B accepts a class- j customer to station j, system
A rejects him, so that the two systems couple. Otherwise, system A imitates all decisions of system B,
keeping the difference between the two systems due to the additional customer in system A. Note that
system A can imitate system B in all other decisions since they have the same number of customers in
all other stations. If the additional class- j customer finishes his service in system A, which happens
with probability µ � j , then the two systems couple bringing a difference of r j in rewards. All other service
completions keep the difference between the two systems the same. Then we have:

Dn � 1
j � j0 � � y;x � % λ j min ( 0 	 min

s � e j ) S
� Dn

j � j0 � � s �*�,+ � r jµ � j� � 1 � λ j � µ � j � β � min
s � e j ) S

� Dn
j � j0 � � s � � % 0 	

where the first inequality is due to the policy of system A, uniformization and the coupling described
above, and the second follows from the induction hypothesis.

Now consider the second inequality, i.e., upperbound. Let system A and B be in the same states
as above, but now we let system A follow the optimal policy, and system B imitate all its decisions.
Note that system B can always imitate system A since its stations have at most the same number of
customers with system A. Then, the only difference between the two systems is due to the reward r j of
the additional customer in system A, gained upon her departure with probability µ � j . Hence, we have:

Dn � 1
j � j0 � � y;x � � r jµ � j � � 1 � µ � j � β � R � j � R � j

where the inequality is due to the policy system B is following, uniformization and the induction hy-
pothesis. Note that R � j � µ � j � β � � r jµ � j . Thus, both inequalities hold for all n % 0.� ii � The proof is very similar to that of the second inequality in part � i � , so it is omitted.� iii � Let system A be in state � y � e j;x � , and system B in state � y;x � e j � . We let system B follow
the optimal policy. System A can imitate all decisions of system B except for a class- j arrival admitted
to station j, and in this case system A accepts her to station 0, so that the two systems couple. We
couple the service times of the additional class- j customers in station j, say customer d �j , and in station
0, say customer d j , as well as all other service and interarrival times. Then, both d �j and d j finish their
services with probability µ j , coupling the two systems. With probability µ � j � µ j, d �j departs from system
A while d j is still receiving service, so that system B remains in its current state, while system A moves
to � y;x � with an additional reward of r j. All other service completions keep the same difference. Then
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we have:

Dn � 1
j0 � j j � � y;x � % λ j min ( 0 	 min

s � e j � e3 ) S
� Dn

j0 � j j � � s � �,+ � µ j - 0� � µ � j � µ j � � r j � Dn
0 � j0 � � y;x �.�� � 1 � λ j � µ � j � β � min
s � e j � e3 ) S

� Dn
j0 � j j � � s � � % 0 	

where the first inequality is due to the policy of system A, uniformization and the coupling described
above, and the second is due to the induction hypothesis, part � ii � and r j % R j.� iv � Assume that system A starts in state � y;x � e1 � and system B in � y;x � e2 � . Let system A follow
the optimal policy and system B imitate all decisions of system A. Because both systems have the same
number of customers in all stations, B can always imitate system A. We couple the additional class-1
customer in system A with the additional class-2 customer, as well as all other service and interarrival
times. Therefore, both additional customers finish their services with probability µ1, coupling the two
systems with a difference of r1 � r2 in rewards. With probability µ2 � µ1, only the additional class-2
customer departs, so that system B moves to � y;x � with an additional reward of r2, whereas system A
remains in its current state. Then:

Dn � 1
0 � 12 � � y;x � � µ1 � r1 � r2 � � � µ2 � µ1 � � Dn

0 � 10 � � y;x � � r2 �� � 1 � µ2 � β � min
s � e3 ) S


 Dn
0 � 12 � � s � �� µ1 � r1 � r2 � � � µ2 � µ1 � � r1 � r2 � � � 1 � µ2 � β � � R1 � R2 � � R1 � R2 	

where the first inequality is due to the policy of system B, the coupling and uniformization, and the
second follows from the induction hypothesis, part (ii) and some algebra. Note that R j � µ j � β � � r jµ j
and R j � r j. /

Part � i � of Lemma 1 proves Dn
j � j0 � � y;x � % 0 for all states and for all possible parameters, which

implies that it is always better to accept a class- j customer to station j rather than rejecting him. We
also have Dn

j0 � j j � � y;x � % 0 by part � iii � of Lemma 1, so that the optimal policy will always prefer to
accept a class- j customer to station j rather than accepting her to station 0. These two results together
specify the optimal admission rules for stations 1 and 2 due to the optimality equations (2):

Theorem 1 If y j 0 c j , i.e., whenever station j has available servers, then it is optimal to admit a
class- j customer to station j.

5 Existence of a preferred class in station 0

A consequence of Theorem 1 is that admission of customers to station 0 should be considered only
after the dedicated station of class j becomes completely full. Then station 0 behaves like a stochastic
knapsack receiving an arrival stream equivalent to the overflow process of stations 1 and 2. Altman
et al. [3] and Örmeci et al. [14] analyze similar stochastic knapsacks when arrivals occur according
to a Poisson process. Örmeci et al. [14] define a customer class as “preferred”, in the sense that its
customers are always admitted to the system if there are free servers, regardless of the congestion level.
We adopt their terminology for station 0 so that class j is preferred if it is always optimal to admit
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class- j customers to station 0 whenever station 0 has at least one available server while y j � c j. In
this section, we derive sufficient conditions for each class to be preferred. In determining preferred
class(es), two different criteria can be considered, immediate rewards, R j, and average rewards, r jµ j.
That is, we would expect that whenever the corresponding reward of class j is higher than that of the
other class, class j is preferred. We will discuss the validity of both criteria later in conjunction with
the related results.

From optimality equations (2), it is clear that having Dn
0 � j0 � � y;x � % 0 for all � y;x � e1 �! S guar-

antees that it is always better to serve a class- j customer at station 0 rather than rejecting him. Our first
result present the sufficient conditions for Dn

0 � 20 � � y;x � % 0 for all � y;x � e1 �& S :

Lemma 2 If λ1R1 � � λ1 � µ2 � β � R2, then for all � y;x � e1 �& S : 0 � Dn
0 � 20 � � y;x � for all n % 0.

Proof. Let λ1R1 � � λ1 � µ2 � β � R2. We use induction to prove the result. The function u0 defined
by equation (4) satisfies the inequality. So assume that the statement is also true for period n, and
consider period n � 1. Let system A be in state � y;x � e2 � and system B in � y;x � in period n � 1. If an
arrival occurs while y j 0 c j, both systems accept the new customer to station j, keeping the difference
between the two systems the same. Hence, consider an arrival when y j � c j: System A denies service
at station 0 to the new customers in period n � 1, while system B takes the optimal actions. If system
B also rejects the incoming customer, both systems remain in their current states, preserving the extra
class-2 customer. Acceptance of a class-1 customer to system B leads the two systems to two different
states � y;x � e2 � and � y;x � e1 � . If a class-2 customer is admitted to system B, then the two systems
couple with no difference in reward. With the departure of the additional class-2 customer in system A,
the systems enter the same state with a return of r2 for system A, whereas all other service completions
keep the extra class-2 customer in system A. Then:

Dn � 1
0 � 20 � � y;x � % λ1 min ( min

s � e3 ) S

 Dn

0 � 20 � � s � � 	 Dn
0 � 21 � � y;x � +

� λ2 min ( min
s � e3 ) S


 Dn
0 � 20 � � s � � 	 0 +

� µ2r2 ��1 ∑
j � 1 � 2 c jµ � j � � c � 1 � µ2 2 min

s � e3 ) S

 Dn

0 � 20 � � s � �% λ1 min 
 0 	 R2 � R1 � � r2µ2

where the first inequality is due to the coupling, and the second follows from the induction hypothesis,
and part � iv � of Lemma 1. If R2 % R1, then the statement is proven. Otherwise, we have:

Dn � 1
0 � 20 � � y;x � % λ1 � R2 � R1 � � � µ2 � β � R2 � � λ1 � µ2 � β � R2 � λ1R1 % 0 	

where the last inequality is due to the assumption of the theorem. /
This lemma shows that under the specified condition it is always better to accept a class-2 customer

to station 0 rather than rejecting her. We know from Theorem 1 that station 0 should admit only the
overflow of stations 1 and 2. Hence, we can conclude the following:

Theorem 2 If y2 � c2 and λ1R1 � � λ1 � µ2 � β � R2, then it is optimal to accept a class-2 customer to
station 0 whenever it has available server(s), i.e., class 2 is preferred.
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Theorem 2 shows that when the rewards satisfy the given condition, it is optimal to accept class-2
customers to station 0 regardless of the precise state of station 0 or of station 1: It is enough to have
at least one available server at station 0 while station 2 is completely busy. Furthermore, if R2, the
immediate reward of class 2 (fast class), is sufficiently high compared to that of class 1, then class 2 is
preferred in station 0. Obviously, class-1 (slow class) customers would not be necessarily preferred in
station 0 even if their immediate reward is higher, i.e., R1 � R2, as we may have µ1 030 µ2. Hence, the
criterion of immediate rewards favors class 2 by emphasizing its superiority of “being fast”.

We establish a similar condition for class-1 customers to be always accepted to station 0. For this,
we need to derive lower bounds on the effect of changing a class-1 customer to a class-2 customer in
station 0 together with the effect of an additional class-1 customer.

Lemma 3 If λ2r2µ2 � � λ2 � µ2 � β � r1µ1, then for all � y;x � e1 �& S and for all n:� i � Dn
0 � 10 � � y;x � % 0 �� ii � Dn
0 � 12 � � y;x � % r1µ1 � r2µ2

µ2 � β �
Proof. We use induction on the number of transitions, n. Both statements are satisfied for u0 defined
by (4). Assume that both are true for n.� i � Assume that system A is in state � y;x � e1 � and system B is in � y;x � in period n � 1. If an arrival
occurs while y j 0 c j, both systems accept the new customer to station j, keeping the difference between
the two systems the same. So we consider an arrival when y j � c j: We let system A reject all customers
and system B follow the optimal policy. If upon an arrival system B also rejects the incoming customer,
both systems remain in their current states. Acceptance of a class-1 customer to system B leads both
systems to enter the same state. If a class-2 customer is admitted to system B, then the systems move
to two different states � y;x � e1 � and � y;x � e2 � . With the departure of the additional class-1 customer
in system A, the systems enter the same state with an additional reward of r1 for system A, whereas all
other service completions keep the difference between the two systems the same. Then:

Dn � 1
0 � 10 � � y;x � % λ1 min ( min

s � e3 ) S

 Dn

0 � 10 � � s � � 	 0 +
� λ2 min ( min

s � e3 ) S

 Dn

0 � 10 � � s � � 	 Dn
0 � 12 � � y;x � +

� µ1r1 � 1 ∑
j � 1 � 2 c jµ � j � � c � 1 � µ2 2 min

s � e3 ) S

 Dn

0 � 10 � � s � �
% λ2 min ( 0 	 r1µ1 � r2µ2

µ2 � β + � r1µ1

where the first inequality is due to coupling, and the second follows from the induction hypotheses for
parts � i � and � ii � . If r1µ1 % r2µ2, the statement is proven; otherwise:

Dn � 1
0 � 10 � � y;x � % r1µ1

λ2 � µ2 � β
µ2 � β

� λ2r2µ2

µ2 � β
% 0 	

where the last inequality is due to the assumption of the theorem. Thus, the first statement is true for
all x  S and for all n % 0.
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� ii � Now let system A be in state � y;x � e1 � and system B in � y;x � e2 � in period n � 1. System B
takes the optimal actions and system A imitates all the actions of system B in this period. We, as in
part � iv � of Lemma 1, couple the additional class-2 customer, say customer d2, in system B with the
additional class-1 customer, say customer d1 in system A, as well as all other service and interarrival
times. Then, if d1 and d2 finish their services, which happens with probability µ1, the systems couple
with a difference in reward, r1 � r2. The departure of d2 alone, with probability µ2 � µ1, takes the
systems to two different states, � y;x � e1 � and � y;x � with a difference of � r2. Whenever there is any
other transition, both systems continue to have their additional customers. Thus:

Dn � 1
0 � 12 � � y;x � % µ1 � r1 � r2 � � � µ2 � µ1 � � Dn

0 � 10 � � y;x � � r2 ��41 ∑
j � 1 � 2 � λ j � c jµ � j � � � c � 1 � µ2 2 min

s � e3 ) S

 Dn

0 � 12 � � s � �
% r1µ1 � r2µ2 � � 1 � µ2 � β � r1µ1 � r2µ2

µ2 � β
� r1µ1 � r2µ2

µ2 � β

where the first inequality is due to the coupling and the second follows by uniformization and the in-
duction hypotheses for parts � i � and � ii � . This proves the second part of the lemma. /

This lemma together with Theorem 1 specifies the sufficient conditions for class 1 to be preferred
in station 0:

Theorem 3 If y1 � c1 and λ2r2µ2 � � λ2 � µ2 � β � r1µ1, then it is optimal to accept a class-1 customer
to station 0 whenever it has available server(s), i.e., class 1 is preferred.

Theorem 3 shows that when the average reward, or reward rate, of class 1 (slow-service class)
is higher than that of class 2, class 1 is preferred. In a queueing environment with two classes of
customers, giving priority to the class with higher average reward would determine a preferred class,
as shown in Harrison [8], but in a loss system it favors slower customers: When r2µ2 � r1µ1, class-
1 customers generate reward at higher rate and keep the server busy for longer period than class-2
customers do. Hence, class 1 is obviously preferred. Class 2 (fast-service class), on the other hand, is
not necessarily preferred if r1µ1 0 r2µ2: Consider a firm which has to choose one from two customers,
one of whom brings $1,000 profit each month for 12 months and the other with a profit of $1,200 per
month for only 3 months. The possibility that the firm will have no customer after 3 months works in
favor of the longer duration customer. Hence, class-2 customers with higher average rewards can be
rejected if µ1 050 µ2. The difference between loss systems and queueing systems is due to the fact that
a queueing system is not concerned with the “occupation” time of a server since all customers can wait,
i.e., no loss of work.

Theorems 2 and 3 present the sufficient conditions for class 2 and class 1, respectively, to be pre-
ferred, i.e., to be always admitted to station 0, when stations 2 and 1 are full and station 0 has at least
one available server. These conditions are exactly the same as those in Örmeci et al. [14], where the
stochastic knapsack receives two Poisson arrivals with rates λ1 and λ2. Hence changing the arrival
stream to an overflow process has not changed the admission policy in terms of “preferred” class. Fi-
nally, we note that our results are not complete in the sense that there are parameters for which none of
the classes is proved to be preferred in station 0. Örmeci et al. [14] include a detailed discussion on the
existence of preferred class.
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Remark 1 If the parameter values are such that:

λ2 � µ2 � β
λ2

0 r2µ2

r1µ1
0 λ1 � µ2 � β �� λ1 � µ2 � β � � µ1 � β � 	

then our results cannot guarantee the existence of a preferred class, or in other words, we cannot state
that it is optimal to always accept customers of at least one of the classes to station 0.

6 An optimal threshold policy for station 0

Intuitively, we expect that it should be more difficult to accept customers to station 0 when there are
many customers already in the system. As station 0 has more customers, the resources shared by both
classes decrease, which in turn decreases the marginal benefit of the system from an additional customer
in station 0. The first part of our next lemma shows that the benefit of an additional class- j customer in
station 0 is decreasing in the number of class-k customers in station 0. As the number of customers in
a dedicated station k increases, the probability of overflow in that station also increases. Hence, when
station k has more customers, the system becomes more reluctant to admit class- j customers to station
0 since the resources in station 0 may be needed by future class-k customers soon. The second part of
Lemma 4 proves that the benefit of an additional class- j customer in station 0 decreases in the number
of customers in station k.

Lemma 4 For all n % 0 and for j � 1 	 2 and k 6� j:

(i) For all � y;x � ek � e j �& S :

un � y;x � ek � e j � � un � y;x � ek � � un � y;x � e j � � un � y;x ��� (5)

(ii) For all � y � ek;x � e j �& S :

un � y � ek;x � e j � � un � y � ek;x � � un � y;x � e j � � un � y;x ��� (6)

Proof. We prove the statements by induction on the number of remaining arrivals. u0 given by (4)
satisfies both inequalities, so assume that they also hold for n.� i � We first observe that this inequality implies a seemingly more strong inequality almost immedi-
ately. We iterate on � x � ek � in inequality (5), so that:

un � y;x � bkek � e j � � un � y;x � bkek � � un � y;x � e j � � un � y;x � 	
for all bk % 0 with � y;x � bkek � e j �' S , which can be rewritten as follows:

un � y;x � bkek � e j � � un � y;x � e j � � un � y;x � bkek � � un � y;x ��� (7)

Now we iterate on � y;x � e j � in (7) to obtain:

un � y;x � bkek � b je j � � un � y;x � b je j � � un � y;x � bkek � � un � y;x � 	 (8)

for all b j % 0 and bk % 0 with � y;x � bkek � b je j �! S .
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Now we want to show that vn
i ’s also satisfy this monotonicity. Hence we define:

δn
i � vn

i � y;x � ek � e j � � vn
i � y;x � ek � � vn

i � y;x � e j � � vn
i � y;x ���

Let systems A, B, C and D be systems starting from states � y;x � ek � e j � , � y;x � ek � , � y;x � e j � ,
and � y;x � , respectively, in period n. Since this inequality is symmetric in j and k, it is enough to
consider only one of these indices, say i � k: If a class-k arrival occurs when yk 0 ck, then all four
systems accept the customer to station k so that vn

k ’s satisfy the inequality by the induction hypothesis
immediately. Hence, consider a class-k arrival when the system is in a state with yk � ck: Systems
A and D take the optimal actions with aA and aD being the optimal number of customers accepted to
station 0 in system A and D, respectively. Then, we let system B accept aA customers and system C
admit aD customers to station 0. Notice that systems B and C can always behave as described since
system D already has one more customer in station 0 than these two systems, i.e., they both have at
least one free server. We have:

δn
j � un � y;x � � 1 � aA � ek � e j � � un � y;x � aDek � e j �� un � y;x � � 1 � aA � ek � � un � y;x � aDek � � 0 	

where the first inequality follows from the optimality of vn’s, and the second inequality holds due to
inequality (8) by taking � y;x � aDek � equal to � y;x � , bk � 1 � aA � aD and b j � 1. Notice that for all
possible values of aA and aD, bk % 0 so that we can use inequality (8).

We couple all these systems so that, except for the additional customers, they all behave in the
same way. Moreover, we couple the additional class-k customers in systems A and B, and the additional
class- j customers in systems A and C. Then if one of the additional customers departs from one system,
the one in the coupled system also departs. Now, consider un � 1’s:

un � 1 � y;x � ek � e j � � un � 1 � y;x � ek � � un � 1 � y;x � e j � � un � 1 � y;x �� ∑
i � j � k 1 λi 7 vn

i � y;x � ek � e j � � vn
i � y;x � ek � � vn

i � y;x � e j � � vn
i � y;x �98� xiµi 7 un � y;x � ek � e j � ei � � un � y;x � ek � ei � � un � y;x � e j � ei � � un � y;x � ei �98� yiµ �i 7 un � y � ei;x � ek � e j � � un � y � ei;x � ek � � un � y � ei;x � e j � � un � y � ei;x �98 2� µk 7 un � y;x � e j � � un � y;x � � un � y;x � e j � � un � y;x �98� µ j 7 un � y;x � ek � � un � y;x � ek � � un � y;x � � un � y;x �98� γ 7 un � y;x � ek � e j � � un � y;x � ek � � un � y;x � e j � � un � y;x �98� 0

where γ � cµ2 � µ j � µk � ∑2
i � 1 � ciµ �i � xiµi � yiµ �i � . The first term is less than or equal to 0 since we

have shown δn
i � 0, the second, the third and the last are also non-positive by the induction hypothesis

whereas the fourth and fifth terms are 0. Thus, the value functions, un, satisfy inequality (5) for all
n % 0.� ii � We, similarly to the proof of part � i � , iterate on � y � ek;x � , and then on � y;x � e j � to obtain the
following inequality for b j % 0 and bk % 0 with � y � bkek;x � b je j �& S :

un � y � bkek;x � b je j � � un � y � bkek;x � � un � y;x � b je j � � un � y;x ��� (9)
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We want to show that vn
i ’s also satisfy this monotonicity. Hence we define:

δ : ni � vn
i � y � ek;x � e j � � vn

i � y � ek;x � � vn
i � y;x � e j � � vn

i � y;x �
Let systems A, B, C and D be systems starting from states � y � ek;x � e j � , � y � ek;x � , � y;x � e j � , and� y;x � , respectively, in period n � 1. Unlike part � i � , this inequality is not symmetric with respect to j
and k, so we need to consider the arrivals of both classes explicitly:

When a class-k customer arrives when yk � 1 0 ck, then all four systems accept the customer to
station k, satisfying the inequality trivially by the induction hypothesis. Now assume yk � 1 � ck: In
this case system C and D will follow their optimal policy, thus accepting the incoming customer to
station k, whereas system A and B will accept aA class-k customers to station 0 with aA being the
optimal number of customers that system A accepts to station 0. Then:

δ : nk � un � y � ek;x � aAek � e j � � un � y � ek;x � aAek �� un � y � ek;x � e j � � un � y � ek;x � � 0 �
If aA � 0, then the right hand side becomes 0, otherwise, i.e., if aA � 1, then the inequality becomes
inequality (5) with � y;x � � � y � ek;x � and so it is satisfied by part � i � .

If a class- j arrival occurs when y j 0 c j , then all four systems accept the customer to station j so
that vn

j ’s satisfy the inequality by the induction hypothesis immediately. Hence, consider the states
with y j � c j: We let systems A and D take the optimal actions, and denote the number of customers
accepted to station 0 in systems A and D by aA and aD, respectively. Then, systems B and C accept aD
and aA customers to station 0, respectively, which is always feasible since systems B and C have the
same number of customers in station 0 with systems D and A, respectively. We have:

δ : nj � un � y � ek;x � � 1 � aA � e j � � un � y � ek;x � aDe j �� un � y;x � � 1 � aA � e j � � un � y;x � aDe j � � 0 	
where the first inequality follows from the optimality of vn

i ’s, and the second inequality holds due to
inequality (9) by taking � y;x � aDe j � equal to � y;x � , bk � 1 and b j � 1 � aA � aD % 0.

We couple all these systems so that, except for the additional customers, they all behave in the same
way. Moreover, we couple the additional class-k customers in systems A and B, and the additional
class- j customers in systems A and C, similarly to part � i � . Now, consider un � 1’s:

un � 1 � y � ek;x � e j � � un � 1 � y � ek;x � � un � 1 � y;x � e j � � un � 1 � y;x �� ∑
i � j � k 1 λi 7 vn

i � y � ek;x � e j � � vn
i � y � ek;x � � vn

i � y;x � e j � � vn
i � y;x �98� xiµi 7 un � y � ek;x � e j � ei � � un � y � ek;x � ei � � un � y;x � e j � ei � � un � y;x � ei �98� yiµ �i 7 un � y � ek � ei;x � e j � � un � y � ek � ei;x � � un � y � ei;x � e j � � un � y � ei;x �98 2� µ j 7 un � y � ek;x � � un � y � ek;x � � un � y;x � � un � y;x �98� µ �k 7 un � y;x � e j � � un � y;x � � un � y;x � e j � � un � y;x �98� γ 7 un � y � ek;x � e j � � un � y � ek;x � � un � y;x � e j � � un � y;x �98� 0
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where γ � cµ2 � µ j � µ �k � ∑2
i � 1 � ciµ �i � xiµi � yiµ �i � . The first term is less than or equal to 0 since we

have shown δ : nj � 0, the second, the third, and the last are also non-positive by the induction hypothesis
whereas the fourth and the fifth terms are 0. Thus, the value functions, un, satisfy inequality (6) for all
n. /

Part � i � of Lemma 4 guarantees the existence of optimal thresholds regarding the admission control
of class- j customers, while part � ii � establishes the monotonicity of these thresholds in the number of
customers in station k:

Theorem 4 For j � 1 	 2, there exist numbers ; ln
j � y;0 � 	 �<�<� 	 ln

j � y;c � 1 �>= such that it is optimal to accept

a class- j customer to station 0 if y j � c j and xk 0 ln
j � y;x j � , and to reject her otherwise, so:

an
j � y;x � �4( � y;x � e j � : xk 0 ln

j � y;x j �� y;x � : otherwise

with k 6� j. Moreover, ln
j � y;m � % ln

j � y � ek;m � .
The first part of this result, i.e., the existence of thresholds, extends the results of Altman et al. [3] on

the existence of optimal thresholds in the admission control problem for stochastic knapsacks receiving
Poisson arrivals to the same problem for stochastic knapsacks with an overflow arrival process. Indeed,
we expect that optimal thresholds for class j are also monotone in the number of class- j customers in
station 0. However, this would typically require concavity of value functions in x j when xk and y are
kept fixed, which we could not show due to the boundary effects and multiple servers. Note that even
with regular stochastic knapsacks, it is difficult to show concavity, as Örmeci et al. [14] are able to
show it only under very restrictive conditions.

7 Conclusion

In this paper, we have analyzed the dynamic admission control of a loss system with one shared and two
dedicated stations. The main purpose of this analysis is to provide insight on the design and control of
large call centers receiving two classes of customers. However, this kind of models is also encountered
in certain telecommunications and manufacturing systems, where the assumption of no waiting room
becomes critical. Recent trends in these systems, such as just-in-time manufacturing and wider use
of synchronous services on the internet, e.g., real-time video or audio, demand for loss models with
admission control (see for example [10]). Our model is suitable for systems, which utilize admission
restrictions rather than scheduling and routing in order to control the amount of work in the system.
Still, our future research plan includes considering finite buffers as well as more than two customer
classes that will widen applicability of our model.
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