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1 Introduction

Let Pθ be a family of Markov kernels from a measurable space (X,X ) to a
locally compact space Y (a precise definition will be given later in the text),
with θ ∈ Θ ⊂ R, and let Cc(Y ) denote the set of continuous real–valued
mappings with compact support on Y . The Markov kernel Pθ is called weakly
differentiable at θ if for any x ∈ X a finite signed measure P ′

θ(x; ·) on (Y,Y)
exists such that for any g ∈ Cc(Y ):

d

dθ

∫
g(y) Pθ(x; dy) =

∫
g(y) P ′

θ(x; dy) . (1)

This definition of weak differentiability is slightly more general than the orig-
inal one in [4]: there (1) has to hold for any continuous bounded mapping g.
Weak differentiability has been successfully applied to the theory of Markov
chains. See [1] for an application to a problem in maintenance theory and
[2] for an application to option pricing. The concept of weak differentiation
is also related to finding optimal statistical tests, see [7]. For Markov chains,
the following result is of particular interest: let πθ denote the (unique) in-
variant distribution of Pθ (existence is assumed here), then it can be shown
that

π′θ = πθ

∞∑
n=0

P ′
θP

n
θ , (2)

where P ′
θ is defined through (1) and P n

θ denotes the n fold product of Pθ, see
[4, 3] for a proof and more details on weak differentiability. If P ′

θ exists, then
the fact that P ′

θ(x; ·) fails to be a probability measure poses the problem of
sampling from P ′

θ. For x ∈ X fixed, we can represent P ′
θ(x; ·) by its Jordan

decomposition as a difference between two probability measures as follows.
For a finite signed measure µ denote its Jordan decomposition by [µ]+ and
[µ]−, i.e., µ = [µ]+ − [µ]− and [µ]+, [µ]− are positive measures. Let

cPθ
(x) = [P ′

θ]
+(x; X) = [P ′

θ]
−(x; X) (3)

and

P+
θ (x; ·) =

[P ′
θ]

+(x; ·)
cPθ

(x)
, P−

θ (x; ·) =
[P ′

θ]
−(x; ·)

cPθ
(x)

,

then it holds, for all g ∈ Cc(Y ), that∫
g(y) P ′

θ(x; dy) = cPθ
(x)

(∫
g(y) P+

θ (x; dy)−
∫

g(y) P−
θ (x; dy)

)
. (4)

For the above line of argument we fixed x. For P+
θ and P−

θ to be Markov
kernels, we have to consider P+

θ and P−
θ as functions in x and have to establish
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measurability of P+
θ (·; A) and P−

θ (·; A ) for any A ∈ Y . The solution of this
problem implies that cPθ

(·) in (3) is measurable as a mapping from X to
R. A representation of P ′

θ through (cPθ
(·) , P+

θ , P−
θ ), with cPθ

measurable and
P±

θ Markov kernels, is called a weak derivative of Pθ. The existence of a weak
derivative is of key importance for the statistical interpretation of (2) and
for obtaining efficient unbiased gradient estimators.

In this paper, we give sufficient conditions for P ′
θ to possess a represen-

tation as scaled difference of two Markov kernels. Specifically, we show that
uniform boundedness of P ′

θ ( i.e., the supremum of |
∫

g(y)Pθ(x; dy)| over
g ∈ Cc(Y ) with |g| ≤ 1 and x ∈ X is finite) is together with a topological
condition on Y sufficient for cPθ

(·) in (3) to be measurable (and for P+
θ and

P−
θ to be Markov kernels again). In conclusion we will show that uniform

boundedness is sufficient for P ′
θ to admit a weak derivative.

The paper is organized as follows. Section 1 introduces the basic concepts
and definitions. Section 2 shows that, under suitable conditions, the kernel P ′

θ

as defined in (1) can be uniquely extended to the bounded Borel–measurable
mappings. In Section 3 an explicit construct of a Jordan–type decomposition
of P ′

θ is given.

2 Conditional Integrals and Kernels

We say that a topological space is second countable if its topology is gen-
erated by a countable basis, i.e., if there exists a countable family of open
(or closed) sets which generates the topology. Throughout the paper we let
Y always denote a locally compact second countable Hausdorff space. We
denote by Y the σ–field of Baire measurable subsets of Y , i.e., the σ–field
generated by the compact subsets of Y .

Remark 1 On a second countable locally compact space the Borel–field (the
σ–field generated by the open or closed sets) and the Baire–field coincide.
(This holds true since any open set in a second countable locally compact
space is a countable union of compact sets.) Thus, Y is the σ-field generated
by the family of open sets in Y .

For example, the space Rn and any submanifold of it constitutes a locally
compact second countable space.

Remark 2 Notice that a metrizable space is second countable if and only if
it is separable (see [8] Theorem 16.11). Conversely, a locally compact or even
a compact space may be separable but not second countable. An example of
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a separable compact space that fails to be second countable is provided by the
Stone-Cech compactification of the natural numbers.

Let X be an arbitrary set and let X be an arbitrary σ–field on X. Let
Bb(Y ) be the family of real–valued bounded Y–measurable functions on Y ,
let Cc the family of continuous functions with compact support on Y and let
B(X) denote the family of real–valued X–measurable functions on X.

We call a Baire measurable function, say g, simple if and only if an integer
n ∈ N and, for i ≤ n, sets Bi ∈ Y and constants γi ∈ R exist such that

g(y) =
n∑

i=1

γi1Bi
(y) , y ∈ Y .

The family of Baire measurable simple functions on Y is denoted by Bsimp(Y ).
We note that Cc(Y ) ⊂ Bb(Y ) and define the supremum norm ‖ · ‖ on

Bb(Y ) by
‖g‖ := sup

y∈Y
|g(y)| .

We call a set G ⊂ Bb(Y ) uniformly bounded or sup–norm bounded if

sup
g∈G

‖g‖ < ∞ .

We say that a sequence (gn)n∈N of functions gn ∈ Bb(Y ) is uniformly bounded
if the set {gn | n ∈ N} is uniformly bounded.

We say that a linear functional J : Cc(Y ) → R is an integral if it is
bounded on uniformly bounded subsets of Cc(Y ) (such functionals may also

be called sup-norm bounded). We say that a linear functional J̃ : Bb(Y ) → R
is an extended integral if it is bounded on uniformly bounded subsets G of
Bb(Y ).

We say that a sequence (fn)n∈N of functions fn from some set S to a
Hausdorff space V converges point–wise if limn→∞ fn(s) exists for any s ∈ S.

Definition 1 A kernel P (·, ·) from X to Y is a function P : X × Y → R
such that P (x, ·) is for any x ∈ X a finite signed measure on (Y,Y) and
x 7→ P (x, B) is for any B ∈ Y a X–measurable function on X. We say that
the kernel is Markov (or a Markov kernel) if for any x ∈ X the measure
P (x, ·) is a probability measure. We denote the space of all kernels from X
to Y by P(X, Y ).

Definition 2 A conditional integral I(·, ·) from X to Cc(Y ) is a function
I : X × Cc(Y ) → R such that
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• I(x, ·) is an integral (i.e. a linear functional on Cc(Y ) which is sup-
norm bounded) and

• x 7→ I(x, f) is for any f ∈ Cc(Y ) a X - measurable function on X.

We denote the space of conditional integrals from X to Cc(Y ) by I(X, Y ).

Definition 3 Let Z denote an arbitrary Hausdorff space. We say that a
function F : Bb(Y ) 7→ Z is point-wise sequentially continuous on uniformly
bounded subsets of Bb(Y ) if for any uniformly bounded point-wise convergent
sequence (gn)n∈N in Bb(Y ) with limit g ∈ Bb(Y ) we have that lim F (gn) =
F (g).

Given a function space F ⊆ RX . We say that a set S ⊂ F is point-wise
sequentially closed if S contains all the limits which are in F of point-wise
convergent sequences (gn)n∈N whose elements gn are in S. We say that a set
S is the point-wise sequential closure of a set S if S is the smallest point-wise
sequentially closed set containing S. A set S is point-wise sequentially dense
in a set T if T is a subset of the sequential closure S of S. (For more details
on sequential continuity and measurable functions see [5] Section 3.2.)

Proposition 1 Let K ⊆ Y be compact and let O ⊂ Y be open with compact
closure such that K ⊂ O. Then there exists a continuous function f : Y →
[0, 1] such that f(K) = 1 and f(Y \O) = 0.

Proof. This follows by an application of the Urysohn Lemma (see [8]
15.6) to K and Y \ O ∪ {∞} in the one-point compactification (see [8] 19.2
and 19A) Y ∪ {∞} of Y , since any compact space is normal (see [8] 17.10).
2

Lemma 1 It holds that:

(a) The space B(X) is point–wise sequentially closed in RX .

(b) The function-space Bsimp(Y ) is point–wise sequentially dense in Bb(Y ).

(c) The function-space Cc(Y ) is point–wise sequentially dense in Bb(Y ).

Proof. (a) Is the well known fact that a limit of a point–wise convergent
sequence of measurable functions is again measurable.

(b) Is a re–formulation of the fact that any measurable function is the
point wise limit of a sequence of simple functions. (See for example Corollary
3.2.1 of [5].)

(c) Given an arbitrary compact set K we can by second countability and
local compactness of Y choose a sequence (On)n∈N of open sets such that
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On+1 ⊂ On,
⋂

n On = K and the closures On are compact. By Proposition
1 we find continuous functions fn such that fn(K) = 1 and fn(Y \ On) = 0.
Since On is compact these functions fn possess compact support. Thus,
1K = limn∈N fn(x), and 1K lies in the point-wise sequential closure of Cc(Y ).
Since any open set O is the countable union of compact sets, we see that also
any function 1O and thus especially the function 1Y belongs to the sequential
closure of Cc(Y ). (That 1Y belongs to the sequential closure of Cc(Y ) can also
be easily seen using a countable partition of unity.) Hence, any finite linear
combination of function 1A with A ∈ Y belongs to the sequential closure of
Cc(Y ) and thus Bb(Y ) is a subset of the sequential closure of Cc(Y ). So we
obtain (c) from (b). �

Lemma 2 Any conditional integral I ∈ I(X, Y ) extends uniquely to a con-

ditional integral Ĩ : X × Bb(Y ) 7→ R such that for any x ∈ X the function

Ĩ(x, ·) is point-wise sequentially continuous on uniformly bounded subsets of
Bb(Y ). Moreover, there exists a one-one correspondence between kernels and
conditional integrals G : P(X, Y ) → I(X, Y ) given by

[
G(P )

]
(x, f) =

∫
f(y) P (x, dy) for all f ∈ Cc(Y ), (5)

or, if we prefer to consider the extensions Ĩ of the conditional integrals I, by

˜[G(P )
]
(x, g) =

∫
g(y) P (x, dy) ,

for all g ∈ Bb(Y ).

We call the above extension Ĩ of a conditional integral I the extended
conditional integral. By Lemma 1 there is a one–one correspondence between
conditional integrals I and their extensions Ĩ.

Proof of Lemma 2: The proof consists of 3 steps. First we show that
for a given conditional integral I ∈ I(X, Y ) there exists for any x ∈ X a
unique measure P (x, .) on (Y,Y). Then we show that the integrals I(x, ·) on

Cc(Y ) extend for arbitrary x ∈ X uniquely to extended integrals Ĩ(x, .) on
Bb(Y ).

Step 1: Let I be a given conditional integral. According to the Riesz
representation theorem, there exists for any x ∈ X a unique measure P (x, ·)
on (Y,Y), such that

I(x, f) =

∫
f(y) P (x, dy) for all f ∈ Cc(Y ) . (6)
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Thus, there exists for any x ∈ X a unique extended integral Ĩ(x, ·) such that

Ĩ(x, g) =

∫
g(y) P (x, dy) for all g ∈ Bb(Y ) . (7)

Note that, by the dominated convergence theorem, Ĩ(x, ·) is sequentially

point-wise continuous on uniformly bounded sets. Ĩ(x, ·) is also the unique
extension of I(x, ·) from Cc(Y ) to Bb(Y ) which is sequentially point-wise
continuous on uniformly bounded sets, since {f ∈ Cc(Y ) | −1 ≤ f ≤ 1} is
point-wise sequentially dense in {g ∈ Bb(Y ) | −1 ≤ g ≤ 1} (The fact that
{f ∈ Cc(Y ) | −1 ≤ f ≤ 1} is point- wise sequentially dense in {g ∈ Bb(Y ) |
−1 ≤ g ≤ 1} is proved completely analogous as we proved (c) in Lemma 1.)

Step 2: In the second step we show that the functions x 7→ Ĩ(x, g) are

X -measurable, for g ∈ Bb(Y ) arbitrary, i.e., we show that Ĩ is a conditional
integral. Further we show that the unique corresponding function P : X×Y ,
defined in the first step, is a kernel.

Let RX be endowed with the topology of point-wise convergence. Define
an operator T : Bb(Y ) → RX by

[T (g)](x) = Ĩ(x, g) .

The fact that, for arbitrary x ∈ X, the integral Ĩ(x, ·) is point-wise se-
quentially continuous on uniformly bounded sets of Bb(Y ) (where we take
M = Bb(Y ) and V = R in Definition 3) implies that T is also point-wise
sequentially continuous (where we take M = Bb(Y ) and V = RX in Defini-
tion 3).

Further, f ∈ Cc(Y ) implies by definition of T and the fact that I ∈
I(X,Y ) that

T (f) =
[
x → I(x, f)

]
∈ B(X) , (8)

i.e., we have that T (Cc(Y )) ⊆ B(X).
By (8) together with Lemma 1 (c) and the point-wise sequential continuity

of T , we obtain that T (Bb(Y )) ⊆ B(X). In other words, we obtain that g ∈ B
implies that x 7→ Ĩ(x, g) is X -measurable. The fact that x 7→ Ĩ(x, g) is X -
measurable implies in the case that g is the characteristic function of a set
B that x 7→ P (x, B) is X -measurable. Thus, P is a kernel and (as already
noted in the first step) by the Riesz representation theorem unique.

In the first two steps we have shown that to an integral I ∈ I(X, Y ) there

corresponds a unique kernel P ∈ P(X, Y ) and a unique extended integral Ĩ.
Further we know by equation (6) and (5) that this correspondence is given by
G−1. In the third step we show that to any P ∈ P(X, Y ) there corresponds
a unique I = G(P ) ∈ I(X, Y ).
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Step 3: We show now that any kernel P corresponds to an unique integral
I. That any kernel P gives us by formula (7) for any x an extended integral
Ĩ(x, .) is trivial. To show that Ĩ is a conditional extended integral note that
for any simple function g =

∑n
i=1 γi1Bi

∈ Bsimp we have:

Ĩ(x, g) =
∑

i

γiP (x, Bi) .

So for g ∈ Bsimp the function x 7→ Ĩ(x, g) is a finite sum of X -measurable
functions and thus itself X - measurable. It remains to be shown that x 7→
Ĩ(x, g) is for any g ∈ Bb(Y ) a X -measurable function. We do this by argu-
ments analogous to the arguments provided in step 2 as will be explained in
the following.

Let T denote the operator defined in step 2. Recall that T is point-wise
sequentially continuous. Furthermore, f ∈ Bsimp(Y ) implies (by definition

of T and the fact that for g ∈ Bsimp(Y ) the function x 7→ Ĩ(x, g) is X -
measurable) that:

T (f) =
[
x → Ĩ(x, f)

]
∈ B(X) , (9)

i.e., we have that T (Bsimp(Y )) ⊆ B(X).
By (9) together with Lemma 1 (b) and point-wise sequential continuity of

T , we obtain that T (Bb(Y )) = B(X). In other words, we obtain that g ∈ B
implies that x 7→ Ĩ(x, g) is X -measurable.2

Now we define weak differentiability of conditional integrals and kernels.

Definition 4 Let Θ be an open interval in R and let ϑ 7→ Iϑ be a path in
(mapping from Θ to) the space I(X,Y ). We say that ϑ 7→ Iϑ is weakly
differentiable if

dIϑ(x, f)

dϑ
exists for all (x, f) ∈ X × Cc(Y )

If ϑ → Iϑ is weakly differentiable then we say that it is bounded weakly
differentiable if

sup
f∈Cc(Y )
|f |≤1

∣∣∣∣dIϑ(x, f)

dϑ

∣∣∣∣ < ∞ ,

for any x ∈ X.
We say that a path θ 7→ Pϑ in the space P(X,Y ) of kernels is bounded

differentiable if the corresponding path θ 7→ G(Pϑ) in the space I(X, Y ) of
conditional integrals is bounded weakly differentiable.
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Theorem 1 If the path ϑ 7→ Pϑ in the space P(X, Y ) is bounded weakly
differentiable, then the weak derivative can be represented by a path ϑ 7→ P ′

ϑ

in the space P(X, Y ). The connection between ϑ 7→ Pϑ and ϑ 7→ P ′
ϑ is given

by ∫
f(y)P ′

ϑ(x, dy) =
d

∫
f(y)Pϑ(x, dy)

dϑ
.

Proof. Let Iϑ = G(Pϑ) be the corresponding path in the space of conditional
integrals. Define for any (x, f) ∈ X × Cc(Y ) the function I ′ϑ(x, f) by

I ′ϑ(x, f) =
dIϑ(x, f)

dϑ

Let (hn)n∈N be an arbitrary sequence of positive reals which goes to 0. Then
for f ∈ Cc we have:

x 7→ I ′ϑ(x, f) = x 7→ dIϑ(x, f)

dϑ
= x 7→ lim

n→∞

Iϑ+hn(x, f)− Iϑ(x, f)

hn

.

Thus, x 7→ I ′ϑ(x, f) is for f ∈ Cc(Y ) a limit of a sequence of X -measurable
functions and therefore itself X -measurable. Furthermore, I ′(x, ·) is by the
condition of boundedness in the definition of bounded weakly differentiable
for any x ∈ X norm-bounded; i.e., I ′(x, ·) is bounded on uniformly bounded
subsets of Cc(Y ). Thus, I ′(x, ·) is for any x ∈ X an integral and I ′(·, ·) is
thus itself a conditional integral. By the correspondence between conditional
integrals and kernels we obtain a kernel P ′ = G−1(I ′). The formula connect-
ing P ′ and P is clear from the correspondence between P ′, P and I ′, I and
the definition of I ′. 2

3 Jordan Decomposition of Weak Derivatives

of Markov Kernels

Definition 5 Given a kernel P ∈ P(X,Y ) we define the absolute value |P |
of the kernel as follows:

|P |(x, B) = sup
A∈Y
A⊆B

2 · P (x, A)− P (x, B) , x ∈ X , B ∈ Y .

Lemma 3 The absolute value |P | of a kernel P ∈ P(X, Y ) is again a kernel.

Proof: That the absolute value |P |(x, .) is a finite measure is a well
known fact and it remains to be shown that the function

x 7→ |P |(x, B)
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is X–measurable.
Let A be the set–field generated by a countable basis of the topology of

Y . Then, A is countable and generates the σ–field Y . For any set B ∈ Y
and any measure µ on (Y,Y) there exists a sequence (An)n∈N of sets An ∈ A
such that lim µ(An4B) = 0 (see [6] Lemma A.24). Thus, the function

x 7→ |P |(x, B)

is the point–wise supremum over the countable family{
x 7→ 2 · P (x, A)− P (x, B) : A ∈ A and A ⊆ B

}
of X -measurable functions and thus itself a X -measurable function on X. �

Definition 6 We say that a kernel is positive if P (x, B) ≥ 0 for all (x, B) ∈
X×Y. We say that a pair of kernels (P+, P−) forms a decomposition of a ker-
nel P if P+ and P− are positive kernels and P (x, B) = P+(x, B)−P−(x, B).
We say that this decomposition is minimal or Jordan if for any other de-
composition (Q+, Q−) of P we have P+(x, B) ≤ Q+(x, B) and P−(x, B) ≤
Q−(x, B).

Corollary 1 Any kernel P ∈ P(X, Y ) possesses a Jordan decomposition.

Proof: For (x, B) ∈ X × Y define

P+(x, B) :=
|P |(x, B) + P (x, B)

2

and

P−(x, B) :=
|P |(x, B)− P (x, B)

2
.

Then, P+(x, B), P−(x, B) ≥ 0 and P+(x, ·), P−(x, ·) are measures, and x 7→
P+(x, B) as well as x 7→ P+(x, B) are X - measurable functions on X. It is
also clear that the decomposition is minimal. �

Theorem 2 Suppose that the path ϑ 7→ Pϑ in the space P(X, y) is bounded
weakly differentiable and that for any θ the kernel Pϑ is Markov. Then there
exist for any ϑ Markov kernels Q+

ϑ and Q−
ϑ from X to Y and a X -measurable

function cϑ : X → R such that the weak derivative P ′
ϑ of Pϑ decomposes in

the form

Pϑ(x, B) = cϑ(x)
(
Q+

ϑ (x, B)−Q−
ϑ (x, B)

)
∀(x, B) ∈ X × Y .
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Proof: By Theorem 1, the weak derivative P ′
ϑ is for any ϑ a kernel

and by the Corollary 1, P ′
ϑ possesses a Jordan decomposition (P+

ϑ , P−
ϑ ), i.e.,

P ′
ϑ = P+

ϑ − P−
ϑ and P+

ϑ , P−
ϑ are positive kernels. Since the Pϑ are Markov

kernels we have P+
ϑ (x, Y ) = P−

ϑ (x, Y ). Let cϑ : X → R be defined by

cϑ(x) := P+
ϑ (x, Y ) = P−

ϑ (x, Y ) .

Since P+
ϑ is a kernel, the function c(·) is X - measurable. Let

Q+
ϑ (x, B) :=

1

c(x)
P+

ϑ (x, B) for all x with c(x) > 0 ,

Q−
ϑ (x, B) :=

1

c(x)
P−

ϑ (x, B) for all x with c(x) > 0

and let for an arbitrary fixed probability measure µ, arbitrary x with cϑ(x) =
0 and arbitrary B ∈ Y

Q+
ϑ (x, B) = Q−

ϑ (x, B) = µ(B) .

Then Q+
ϑ as well as Q−

ϑ are Markov kernels. �

Remark 3 This specific decomposition (cϑ(·), Q+
ϑ , Q−

ϑ ) is only possible be-
cause the kernels P ′

ϑ stem from weak differentiation of a Markov kernel valued
function θ 7→ Pϑ.
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