Derivatives of Markov kernels and their Jordan decomposition

Bernd Heidergott

Vrije Universiteit Amsterdam, Department of Econometrics De Boelelaan 1105, 1081 HV Amsterdam, the Netherlands email: bheidergott@feweb.vu.nl

Arie Hordijk

Leiden University, Mathematical Institute P.O.Box 9512, 2300 RA Leiden, the Netherlands email: hordijk@math.leidenuniv.nl

Heinz Weisshaupt * University of Düsseldorf, Mathematical Institute Universitätsstraße 1, D-40225 Düsseldorf, Germany email: Heinz.Weisshaupt@uni-duesseldorf.de

Abstract

We study a particular class of transition kernels that stems from differentiating Markov kernels in the weak sense. Sufficient conditions are established for this type of kernels to admit a Jordan–type decomposition. The decomposition is explicitly constructed.

MSC Index Primary: 60J10, 26A26 Secondary: 28A15, 47B34

Keyword: Markov chain, weak differentiation, Jordan decomposition

^{*}Main parts of this article have been written during a stay of Heinz Weisshaupt at EURANDOM, TU-Eindhoven

1 Introduction

Let P_{θ} be a family of Markov kernels from a measurable space (X, \mathcal{X}) to a locally compact space Y (a precise definition will be given later in the text), with $\theta \in \Theta \subset \mathbb{R}$, and let $\mathcal{C}_c(Y)$ denote the set of continuous real-valued mappings with compact support on Y. The Markov kernel P_{θ} is called *weakly differentiable* at θ if for any $x \in X$ a finite signed measure $P'_{\theta}(x; \cdot)$ on (Y, \mathcal{Y}) exists such that for any $g \in \mathcal{C}_c(Y)$:

$$\frac{d}{d\theta} \int g(y) P_{\theta}(x; dy) = \int g(y) P'_{\theta}(x; dy) .$$
(1)

This definition of weak differentiability is slightly more general than the original one in [4]: there (1) has to hold for any continuous bounded mapping g. Weak differentiability has been successfully applied to the theory of Markov chains. See [1] for an application to a problem in maintenance theory and [2] for an application to option pricing. The concept of weak differentiation is also related to finding optimal statistical tests, see [7]. For Markov chains, the following result is of particular interest: let π_{θ} denote the (unique) invariant distribution of P_{θ} (existence is assumed here), then it can be shown that

$$\pi'_{\theta} = \pi_{\theta} \sum_{n=0}^{\infty} P'_{\theta} P^n_{\theta} , \qquad (2)$$

where P'_{θ} is defined through (1) and P^n_{θ} denotes the *n* fold product of P_{θ} , see [4, 3] for a proof and more details on weak differentiability. If P'_{θ} exists, then the fact that $P'_{\theta}(x; \cdot)$ fails to be a probability measure poses the problem of sampling from P'_{θ} . For $x \in X$ fixed, we can represent $P'_{\theta}(x; \cdot)$ by its Jordan decomposition as a difference between two probability measures as follows. For a finite signed measure μ denote its Jordan decomposition by $[\mu]^+$ and $[\mu]^-$, i.e., $\mu = [\mu]^+ - [\mu]^-$ and $[\mu]^+, [\mu]^-$ are positive measures. Let

$$c_{P_{\theta}}(x) = [P'_{\theta}]^{+}(x;X) = [P'_{\theta}]^{-}(x;X)$$
(3)

and

$$P_{\theta}^{+}(x;\cdot) = \frac{[P_{\theta}']^{+}(x;\cdot)}{c_{P_{\theta}}(x)}, \quad P_{\theta}^{-}(x;\cdot) = \frac{[P_{\theta}']^{-}(x;\cdot)}{c_{P_{\theta}}(x)},$$

then it holds, for all $g \in \mathcal{C}_c(Y)$, that

$$\int g(y) P'_{\theta}(x; dy) = c_{P_{\theta}}(x) \left(\int g(y) P^+_{\theta}(x; dy) - \int g(y) P^-_{\theta}(x; dy) \right) .$$
(4)

For the above line of argument we fixed x. For P_{θ}^+ and P_{θ}^- to be Markov kernels, we have to consider P_{θ}^+ and P_{θ}^- as functions in x and have to establish

measurability of $P_{\theta}^{+}(\cdot; A)$ and $P_{\theta}^{-}(\cdot; A)$ for any $A \in \mathcal{Y}$. The solution of this problem implies that $c_{P_{\theta}}(\cdot)$ in (3) is measurable as a mapping from X to \mathbb{R} . A representation of P_{θ}' through $(c_{P_{\theta}}(\cdot), P_{\theta}^{+}, P_{\theta}^{-})$, with $c_{P_{\theta}}$ measurable and P_{θ}^{\pm} Markov kernels, is called a *weak derivative* of P_{θ} . The existence of a weak derivative is of key importance for the statistical interpretation of (2) and for obtaining efficient unbiased gradient estimators.

In this paper, we give sufficient conditions for P'_{θ} to possess a representation as scaled difference of two Markov kernels. Specifically, we show that uniform boundedness of P'_{θ} (i.e., the supremum of $|\int g(y)P_{\theta}(x;dy)|$ over $g \in \mathcal{C}_c(Y)$ with $|g| \leq 1$ and $x \in X$ is finite) is together with a topological condition on Y sufficient for $c_{P_{\theta}}(\cdot)$ in (3) to be measurable (and for P^+_{θ} and P^-_{θ} to be Markov kernels again). In conclusion we will show that uniform boundedness is sufficient for P'_{θ} to admit a weak derivative.

The paper is organized as follows. Section 1 introduces the basic concepts and definitions. Section 2 shows that, under suitable conditions, the kernel P'_{θ} as defined in (1) can be uniquely extended to the bounded Borel-measurable mappings. In Section 3 an explicit construct of a Jordan-type decomposition of P'_{θ} is given.

2 Conditional Integrals and Kernels

We say that a topological space is *second countable* if its topology is generated by a countable basis, i.e., if there exists a countable family of open (or closed) sets which generates the topology. Throughout the paper we let Y always denote a locally compact second countable Hausdorff space. We denote by \mathcal{Y} the σ -field of Baire measurable subsets of Y, i.e., the σ -field generated by the compact subsets of Y.

Remark 1 On a second countable locally compact space the Borel-field (the σ -field generated by the open or closed sets) and the Baire-field coincide. (This holds true since any open set in a second countable locally compact space is a countable union of compact sets.) Thus, \mathcal{Y} is the σ -field generated by the family of open sets in Y.

For example, the space \mathbb{R}^n and any submanifold of it constitutes a locally compact second countable space.

Remark 2 Notice that a metrizable space is second countable if and only if it is separable (see [8] Theorem 16.11). Conversely, a locally compact or even a compact space may be separable but not second countable. An example of a separable compact space that fails to be second countable is provided by the Stone-Cech compactification of the natural numbers.

Let X be an arbitrary set and let \mathcal{X} be an arbitrary σ -field on X. Let $\mathcal{B}_b(Y)$ be the family of real-valued bounded \mathcal{Y} -measurable functions on Y, let \mathcal{C}_c the family of continuous functions with compact support on Y and let $\mathcal{B}(X)$ denote the family of real-valued \mathcal{X} -measurable functions on X.

We call a Baire measurable function, say g, simple if and only if an integer $n \in \mathbb{N}$ and, for $i \leq n$, sets $B_i \in \mathcal{Y}$ and constants $\gamma_i \in \mathbb{R}$ exist such that

$$g(y) = \sum_{i=1}^{n} \gamma_i \mathbf{1}_{B_i}(y), \quad y \in Y.$$

The family of Baire measurable simple functions on Y is denoted by $\mathcal{B}_{simp}(Y)$.

We note that $\mathcal{C}_c(Y) \subset \mathcal{B}_b(Y)$ and define the supremum norm $\|\cdot\|$ on $\mathcal{B}_b(Y)$ by

$$||g|| := \sup_{y \in Y} |g(y)|.$$

We call a set $\mathcal{G} \subset \mathcal{B}_b(Y)$ uniformly bounded or sup-norm bounded if

$$\sup_{g\in\mathcal{G}}\|g\|<\infty.$$

We say that a sequence $(g_n)_{n \in \mathbb{N}}$ of functions $g_n \in \mathcal{B}_b(Y)$ is uniformly bounded if the set $\{g_n \mid n \in \mathbb{N}\}$ is uniformly bounded.

We say that a linear functional $J : \mathcal{C}_c(Y) \to \mathbb{R}$ is an *integral* if it is bounded on uniformly bounded subsets of $\mathcal{C}_c(Y)$ (such functionals may also be called sup-norm bounded). We say that a linear functional $\widetilde{J} : \mathcal{B}_b(Y) \to \mathbb{R}$ is an *extended integral* if it is bounded on uniformly bounded subsets \mathcal{G} of $\mathcal{B}_b(Y)$.

We say that a sequence $(f_n)_{n \in \mathbb{N}}$ of functions f_n from some set S to a Hausdorff space V converges point-wise if $\lim_{n\to\infty} f_n(s)$ exists for any $s \in S$.

Definition 1 A kernel $P(\cdot, \cdot)$ from X to Y is a function $P : X \times \mathcal{Y} \to \mathbb{R}$ such that $P(x, \cdot)$ is for any $x \in X$ a finite signed measure on (Y, \mathcal{Y}) and $x \mapsto P(x, B)$ is for any $B \in \mathcal{Y}$ a \mathcal{X} -measurable function on X. We say that the kernel is Markov (or a Markov kernel) if for any $x \in X$ the measure $P(x, \cdot)$ is a probability measure. We denote the space of all kernels from X to Y by $\mathcal{P}(X, Y)$.

Definition 2 A conditional integral $I(\cdot, \cdot)$ from X to $C_c(Y)$ is a function $I: X \times C_c(Y) \to \mathbb{R}$ such that

- $I(x, \cdot)$ is an integral (i.e. a linear functional on $\mathcal{C}_c(Y)$ which is supnorm bounded) and
- $x \mapsto I(x, f)$ is for any $f \in \mathcal{C}_c(Y)$ a \mathcal{X} -measurable function on X.

We denote the space of conditional integrals from X to $\mathcal{C}_c(Y)$ by $\mathcal{I}(X,Y)$.

Definition 3 Let Z denote an arbitrary Hausdorff space. We say that a function $F : \mathcal{B}_b(Y) \mapsto Z$ is point-wise sequentially continuous on uniformly bounded subsets of $\mathcal{B}_b(Y)$ if for any uniformly bounded point-wise convergent sequence $(g_n)_{n\in\mathbb{N}}$ in $\mathcal{B}_b(Y)$ with limit $g \in \mathcal{B}_b(Y)$ we have that $\lim F(g_n) = F(g)$.

Given a function space $\mathcal{F} \subseteq \mathbb{R}^X$. We say that a set $S \subset \mathcal{F}$ is point-wise sequentially closed if S contains all the limits which are in \mathcal{F} of point-wise convergent sequences $(g_n)_{n \in \mathbb{N}}$ whose elements g_n are in S. We say that a set \overline{S} is the point-wise sequential closure of a set S if \overline{S} is the smallest point-wise sequentially closed set containing S. A set S is point-wise sequentially dense in a set T if T is a subset of the sequential closure \overline{S} of S. (For more details on sequential continuity and measurable functions see [5] Section 3.2.)

Proposition 1 Let $K \subseteq Y$ be compact and let $O \subset Y$ be open with compact closure such that $K \subset O$. Then there exists a continuous function $f: Y \to [0,1]$ such that f(K) = 1 and $f(Y \setminus O) = 0$.

Proof. This follows by an application of the Urysohn Lemma (see [8] 15.6) to K and $Y \setminus O \cup \{\infty\}$ in the one-point compactification (see [8] 19.2 and 19A) $Y \cup \{\infty\}$ of Y, since any compact space is normal (see [8] 17.10). \Box

Lemma 1 It holds that:

- (a) The space $\mathcal{B}(X)$ is point-wise sequentially closed in \mathbb{R}^X .
- (b) The function-space $\mathcal{B}_{simp}(Y)$ is point-wise sequentially dense in $\mathcal{B}_b(Y)$.
- (c) The function-space $\mathcal{C}_c(Y)$ is point-wise sequentially dense in $\mathcal{B}_b(Y)$.

Proof. (a) Is the well known fact that a limit of a point–wise convergent sequence of measurable functions is again measurable.

(b) Is a re–formulation of the fact that any measurable function is the point wise limit of a sequence of simple functions. (See for example Corollary 3.2.1 of [5].)

(c) Given an arbitrary compact set K we can by second countability and local compactness of Y choose a sequence $(O_n)_{n \in \mathbb{N}}$ of open sets such that $O_{n+1} \subset O_n$, $\bigcap_n O_n = K$ and the closures $\overline{O_n}$ are compact. By Proposition 1 we find continuous functions f_n such that $f_n(K) = 1$ and $f_n(Y \setminus O_n) = 0$. Since $\overline{O_n}$ is compact these functions f_n possess compact support. Thus, $1_K = \lim_{n \in \mathbb{N}} f_n(x)$, and 1_K lies in the point-wise sequential closure of $\mathcal{C}_c(Y)$. Since any open set O is the countable union of compact sets, we see that also any function 1_O and thus especially the function 1_Y belongs to the sequential closure of $\mathcal{C}_c(Y)$. (That 1_Y belongs to the sequential closure of $\mathcal{C}_c(Y)$ can also be easily seen using a countable partition of unity.) Hence, any finite linear combination of function 1_A with $A \in \mathcal{Y}$ belongs to the sequential closure of $\mathcal{C}_c(Y)$ and thus $\mathcal{B}_b(Y)$ is a subset of the sequential closure of $\mathcal{C}_c(Y)$. So we obtain (c) from (b).

Lemma 2 Any conditional integral $I \in \mathcal{I}(X, Y)$ extends uniquely to a conditional integral $\tilde{I} : X \times \mathcal{B}_b(Y) \mapsto \mathbb{R}$ such that for any $x \in X$ the function $\tilde{I}(x, \cdot)$ is point-wise sequentially continuous on uniformly bounded subsets of $\mathcal{B}_b(Y)$. Moreover, there exists a one-one correspondence between kernels and conditional integrals $G : \mathcal{P}(X, Y) \to \mathcal{I}(X, Y)$ given by

$$[G(P)](x,f) = \int f(y) P(x,dy) \text{ for all } f \in \mathcal{C}_c(Y),$$
 (5)

or, if we prefer to consider the extensions \widetilde{I} of the conditional integrals I, by

$$\widetilde{\left[G(P)\right]}(x,g) = \int g(y) P(x,dy) \,,$$

for all $g \in \mathcal{B}_b(Y)$.

We call the above extension \tilde{I} of a conditional integral I the *extended* conditional integral. By Lemma 1 there is a one-one correspondence between conditional integrals I and their extensions \tilde{I} .

Proof of Lemma 2: The proof consists of 3 steps. First we show that for a given conditional integral $I \in \mathcal{I}(X, Y)$ there exists for any $x \in X$ a unique measure P(x, .) on (Y, \mathcal{Y}) . Then we show that the integrals I(x, .) on $\mathcal{C}_c(Y)$ extend for arbitrary $x \in X$ uniquely to extended integrals $\widetilde{I}(x, .)$ on $\mathcal{B}_b(Y)$.

Step 1: Let *I* be a given conditional integral. According to the Riesz representation theorem, there exists for any $x \in X$ a unique measure $P(x, \cdot)$ on (Y, \mathcal{Y}) , such that

$$I(x,f) = \int f(y) P(x,dy) \text{ for all } f \in \mathcal{C}_c(Y).$$
(6)

Thus, there exists for any $x \in X$ a unique extended integral $I(x, \cdot)$ such that

$$\widetilde{I}(x,g) = \int g(y) P(x,dy) \text{ for all } g \in \mathcal{B}_b(Y).$$
 (7)

Note that, by the dominated convergence theorem, $\widetilde{I}(x, \cdot)$ is sequentially point-wise continuous on uniformly bounded sets. $\widetilde{I}(x, \cdot)$ is also the unique extension of $I(x, \cdot)$ from $\mathcal{C}_c(Y)$ to $\mathcal{B}_b(Y)$ which is sequentially point-wise continuous on uniformly bounded sets, since $\{f \in \mathcal{C}_c(Y) \mid -1 \leq f \leq 1\}$ is point-wise sequentially dense in $\{g \in \mathcal{B}_b(Y) \mid -1 \leq g \leq 1\}$ (The fact that $\{f \in \mathcal{C}_c(Y) \mid -1 \leq f \leq 1\}$ is point- wise sequentially dense in $\{g \in \mathcal{B}_b(Y) \mid -1 \leq g \leq 1\}$ is proved completely analogous as we proved (c) in Lemma 1.)

Step 2: In the second step we show that the functions $x \mapsto I(x,g)$ are \mathcal{X} -measurable, for $g \in \mathcal{B}_b(Y)$ arbitrary, i.e., we show that \widetilde{I} is a conditional integral. Further we show that the unique corresponding function $P: X \times \mathcal{Y}$, defined in the first step, is a kernel.

Let \mathbb{R}^X be endowed with the topology of point-wise convergence. Define an operator $T: \mathcal{B}_b(Y) \to \mathbb{R}^X$ by

$$[T(g)](x) = \widetilde{I}(x,g) \,.$$

The fact that, for arbitrary $x \in X$, the integral $\widetilde{I}(x, \cdot)$ is point-wise sequentially continuous on uniformly bounded sets of $\mathcal{B}_b(Y)$ (where we take $M = \mathcal{B}_b(Y)$ and $V = \mathbb{R}$ in Definition 3) implies that T is also point-wise sequentially continuous (where we take $M = \mathcal{B}_b(Y)$ and $V = \mathbb{R}^X$ in Definition 3).

Further, $f \in \mathcal{C}_c(Y)$ implies by definition of T and the fact that $I \in \mathcal{I}(X,Y)$ that

$$T(f) = \begin{bmatrix} x \to I(x, f) \end{bmatrix} \in \mathcal{B}(X), \qquad (8)$$

i.e., we have that $T(\mathcal{C}_c(Y)) \subseteq \mathcal{B}(X)$.

By (8) together with Lemma 1 (c) and the point-wise sequential continuity of T, we obtain that $T(\mathcal{B}_b(Y)) \subseteq \mathcal{B}(X)$. In other words, we obtain that $g \in \mathcal{B}$ implies that $x \mapsto \tilde{I}(x,g)$ is \mathcal{X} -measurable. The fact that $x \mapsto \tilde{I}(x,g)$ is \mathcal{X} measurable implies in the case that g is the characteristic function of a set B that $x \mapsto P(x, B)$ is \mathcal{X} -measurable. Thus, P is a kernel and (as already noted in the first step) by the Riesz representation theorem unique.

In the first two steps we have shown that to an integral $I \in \mathcal{I}(X, Y)$ there corresponds a unique kernel $P \in \mathcal{P}(X, Y)$ and a unique extended integral \tilde{I} . Further we know by equation (6) and (5) that this correspondence is given by G^{-1} . In the third step we show that to any $P \in \mathcal{P}(X, Y)$ there corresponds a unique $I = G(P) \in \mathcal{I}(X, Y)$. **Step 3:** We show now that any kernel P corresponds to an unique integral I. That any kernel P gives us by formula (7) for any x an extended integral $\tilde{I}(x, .)$ is trivial. To show that \tilde{I} is a conditional extended integral note that for any simple function $g = \sum_{i=1}^{n} \gamma_i \mathbf{1}_{B_i} \in \mathcal{B}_{simp}$ we have:

$$\widetilde{I}(x,g) = \sum_{i} \gamma_i P(x,B_i)$$

So for $g \in \mathcal{B}_{simp}$ the function $x \mapsto \tilde{I}(x,g)$ is a finite sum of \mathcal{X} -measurable functions and thus itself \mathcal{X} - measurable. It remains to be shown that $x \mapsto \tilde{I}(x,g)$ is for any $g \in \mathcal{B}_b(Y)$ a \mathcal{X} -measurable function. We do this by arguments analogous to the arguments provided in step 2 as will be explained in the following.

Let T denote the operator defined in step 2. Recall that T is point-wise sequentially continuous. Furthermore, $f \in \mathcal{B}_{simp}(Y)$ implies (by definition of T and the fact that for $g \in \mathcal{B}_{simp}(Y)$ the function $x \mapsto \tilde{I}(x,g)$ is \mathcal{X} measurable) that:

$$T(f) = \left[x \to \widetilde{I}(x, f) \right] \quad \in \mathcal{B}(X) , \qquad (9)$$

i.e., we have that $T(\mathcal{B}_{simp}(Y)) \subseteq \mathcal{B}(X)$.

By (9) together with Lemma 1 (b) and point-wise sequential continuity of T, we obtain that $T(\mathcal{B}_b(Y)) = \mathcal{B}(X)$. In other words, we obtain that $g \in \mathcal{B}$ implies that $x \mapsto \widetilde{I}(x, g)$ is \mathcal{X} -measurable. \Box

Now we define weak differentiability of conditional integrals and kernels.

Definition 4 Let Θ be an open interval in \mathbb{R} and let $\vartheta \mapsto I_{\vartheta}$ be a path in (mapping from Θ to) the space $\mathcal{I}(X,Y)$. We say that $\vartheta \mapsto I_{\vartheta}$ is weakly differentiable if

$$\frac{dI_{\vartheta}(x,f)}{d\vartheta} \text{ exists for all } (x,f) \in X \times \mathcal{C}_{c}(Y)$$

If $\vartheta \to I_\vartheta$ is weakly differentiable then we say that it is bounded weakly differentiable if

$$\sup_{\substack{f \in \mathcal{C}_c(Y) \\ |f| \le 1}} \left| \frac{dI_{\vartheta}(x, f)}{d\vartheta} \right| < \infty ,$$

for any $x \in X$.

We say that a path $\theta \mapsto P_{\vartheta}$ in the space $\mathcal{P}(X, Y)$ of kernels is bounded differentiable if the corresponding path $\theta \mapsto G(P_{\vartheta})$ in the space $\mathcal{I}(X, Y)$ of conditional integrals is bounded weakly differentiable. **Theorem 1** If the path $\vartheta \mapsto P_{\vartheta}$ in the space $\mathcal{P}(X, Y)$ is bounded weakly differentiable, then the weak derivative can be represented by a path $\vartheta \mapsto P'_{\vartheta}$ in the space $\mathcal{P}(X, Y)$. The connection between $\vartheta \mapsto P_{\vartheta}$ and $\vartheta \mapsto P'_{\vartheta}$ is given by

$$\int f(y)P'_{\vartheta}(x,dy) = \frac{d\int f(y)P_{\vartheta}(x,dy)}{d\vartheta}$$

Proof. Let $I_{\vartheta} = G(P_{\vartheta})$ be the corresponding path in the space of conditional integrals. Define for any $(x, f) \in X \times \mathcal{C}_c(Y)$ the function $I'_{\vartheta}(x, f)$ by

$$I'_{\vartheta}(x,f) = \frac{dI_{\vartheta}(x,f)}{d\vartheta}$$

Let $(h_n)_{n \in \mathbb{N}}$ be an arbitrary sequence of positive reals which goes to 0. Then for $f \in \mathcal{C}_c$ we have:

$$x \mapsto I_{\vartheta}'(x,f) = x \mapsto \frac{dI_{\vartheta}(x,f)}{d\vartheta} = x \mapsto \lim_{n \to \infty} \frac{I_{\vartheta+h_n}(x,f) - I_{\vartheta}(x,f)}{h_n} \,.$$

Thus, $x \mapsto I'_{\vartheta}(x, f)$ is for $f \in \mathcal{C}_c(Y)$ a limit of a sequence of \mathcal{X} -measurable functions and therefore itself \mathcal{X} -measurable. Furthermore, $I'(x, \cdot)$ is by the condition of boundedness in the definition of bounded weakly differentiable for any $x \in X$ norm-bounded; i.e., $I'(x, \cdot)$ is bounded on uniformly bounded subsets of $\mathcal{C}_c(Y)$. Thus, $I'(x, \cdot)$ is for any $x \in X$ an integral and $I'(\cdot, \cdot)$ is thus itself a conditional integral. By the correspondence between conditional integrals and kernels we obtain a kernel $P' = G^{-1}(I')$. The formula connecting P' and P is clear from the correspondence between P', P and I', I and the definition of I'. \Box

3 Jordan Decomposition of Weak Derivatives of Markov Kernels

Definition 5 Given a kernel $P \in \mathcal{P}(X, Y)$ we define the absolute value |P| of the kernel as follows:

$$|P|(x,B) = \sup_{\substack{A \in \mathcal{Y} \\ A \subset B}} 2 \cdot P(x,A) - P(x,B), \quad x \in X, B \in \mathcal{Y}.$$

Lemma 3 The absolute value |P| of a kernel $P \in \mathcal{P}(X, Y)$ is again a kernel.

Proof: That the absolute value |P|(x, .) is a finite measure is a well known fact and it remains to be shown that the function

$$x \mapsto |P|(x,B)$$

is \mathcal{X} -measurable.

Let \mathcal{A} be the set-field generated by a countable basis of the topology of Y. Then, \mathcal{A} is countable and generates the σ -field \mathcal{Y} . For any set $B \in \mathcal{Y}$ and any measure μ on (Y, \mathcal{Y}) there exists a sequence $(A_n)_{n \in \mathbb{N}}$ of sets $A_n \in \mathcal{A}$ such that $\lim \mu(A_n \Delta B) = 0$ (see [6] Lemma A.24). Thus, the function

$$x \mapsto |P|(x,B)$$

is the point–wise supremum over the countable family

$$\left\{ x \mapsto 2 \cdot P(x, A) - P(x, B) : A \in \mathcal{A} \text{ and } A \subseteq B \right\}$$

of \mathcal{X} -measurable functions and thus itself a \mathcal{X} -measurable function on X. \Box

Definition 6 We say that a kernel is positive if $P(x, B) \ge 0$ for all $(x, B) \in X \times \mathcal{Y}$. We say that a pair of kernels (P^+, P^-) forms a decomposition of a kernel P if P^+ and P^- are positive kernels and $P(x, B) = P^+(x, B) - P^-(x, B)$. We say that this decomposition is minimal or Jordan if for any other decomposition (Q^+, Q^-) of P we have $P^+(x, B) \le Q^+(x, B)$ and $P^-(x, B) \le Q^-(x, B)$.

Corollary 1 Any kernel $P \in \mathcal{P}(X, Y)$ possesses a Jordan decomposition.

Proof: For $(x, B) \in X \times \mathcal{Y}$ define

$$P^+(x,B) := \frac{|P|(x,B) + P(x,B)}{2}$$

and

$$P^{-}(x,B) := \frac{|P|(x,B) - P(x,B)|}{2}$$

Then, $P^+(x, B), P^-(x, B) \ge 0$ and $P^+(x, \cdot), P^-(x, \cdot)$ are measures, and $x \mapsto P^+(x, B)$ as well as $x \mapsto P^+(x, B)$ are \mathcal{X} - measurable functions on X. It is also clear that the decomposition is minimal. \Box

Theorem 2 Suppose that the path $\vartheta \mapsto P_{\vartheta}$ in the space $\mathcal{P}(X, y)$ is bounded weakly differentiable and that for any θ the kernel P_{ϑ} is Markov. Then there exist for any ϑ Markov kernels Q_{ϑ}^+ and Q_{ϑ}^- from X to Y and a \mathcal{X} -measurable function $c_{\vartheta} : X \to \mathbb{R}$ such that the weak derivative P'_{ϑ} of P_{ϑ} decomposes in the form

$$P_{\vartheta}(x,B) = c_{\vartheta}(x) \left(Q_{\vartheta}^{+}(x,B) - Q_{\vartheta}^{-}(x,B) \right) \quad \forall (x,B) \in X \times \mathcal{Y}$$

Proof: By Theorem 1, the weak derivative P'_{ϑ} is for any ϑ a kernel and by the Corollary 1, P'_{ϑ} possesses a Jordan decomposition $(P^+_{\vartheta}, P^-_{\vartheta})$, i.e., $P'_{\vartheta} = P^+_{\vartheta} - P^-_{\vartheta}$ and $P^+_{\vartheta}, P^-_{\vartheta}$ are positive kernels. Since the P_{ϑ} are Markov kernels we have $P^+_{\vartheta}(x, Y) = P^-_{\vartheta}(x, Y)$. Let $c_{\vartheta} : X \to \mathbb{R}$ be defined by

$$c_{\vartheta}(x) := P_{\vartheta}^+(x, Y) = P_{\vartheta}^-(x, Y)$$
.

Since P_{ϑ}^+ is a kernel, the function $c(\cdot)$ is \mathcal{X} - measurable. Let

$$Q_{\vartheta}^{+}(x,B) := \frac{1}{c(x)} P_{\vartheta}^{+}(x,B) \text{ for all } x \text{ with } c(x) > 0,$$
$$Q_{\vartheta}^{-}(x,B) := \frac{1}{c(x)} P_{\vartheta}^{-}(x,B) \text{ for all } x \text{ with } c(x) > 0$$

and let for an arbitrary fixed probability measure μ , arbitrary x with $c_{\vartheta}(x) = 0$ and arbitrary $B \in \mathcal{Y}$

$$Q_{\vartheta}^+(x,B) = Q_{\vartheta}^-(x,B) = \mu(B) .$$

Then Q_{ϑ}^+ as well as Q_{ϑ}^- are Markov kernels.

Remark 3 This specific decomposition $(c_{\vartheta}(\cdot), Q_{\vartheta}^+, Q_{\vartheta}^-)$ is only possible because the kernels P'_{ϑ} stem from weak differentiation of a Markov kernel valued function $\theta \mapsto P_{\vartheta}$.

References

- B. Heidergott. A weak derivative approach to optimization of threshold parameters in a multi-component maintenance system. JAP, 38:386-406, 2001.
- [2] B. Heidergott. Option pricing via Monte Carlo Simulation: A weak derivative approach. Probability in Engineering and Informational Sciences, 15:335-349, 2001.
- [3] B. Heidergott, A. Hordijk and H. Weisshaupt. Measure–Valued Differentiation for Stationary Markov Chains. *EURANDOM report 2002-027*, 2002.
- [4] G. Pflug. Optimisation of Stochastic Models. Kluwer Academic Publishers, Boston, 1996.

- [5] I. Segal and R. Kunze. *Integrals and operators.* (2nd rev. and enl. ed.) Springer, Berlin, 1978.
- [6] M. Schervish. Theory of statistics. Springer, New York, 1995.
- [7] H. Weisshaupt. A measure-valued approach to convex set-valued dynamics. *Set-Valued Anal.* 9:337-373, 2001.
- [8] S. Willard. General topology. Addison-Wesley, Mass., 1970.