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Abstract

In this paper, we consider an arbitrary irreducible random walk and an ar-
bitrary stationary and ergodic random scenery on Z¢. We find conditions
on their distributions such that the associated random walk in random
scenery is or is not weak Bernoulli. Our results extend an earlier clas-
sification for the special case in which the individual scenery values are
assumed to be independent and identically distributed random variables.

1 Background and main theorems

1.1 Background. For a fixed integer d > 1, let X = (X, )nez be independent
and identically distributed random variables taking values in Z% according to a
common distribution m on Z? satisfying

(x1) m is irreducible, i.e., supp(m) = {z: m(z) > 0} generates the group Z¢.
Let S = (S, )nez be the corresponding random walk on 7, defined by
So =0, Spn—=8n-1=X, (n€eZ).

Next, let C' = (Cy),eze be a random scenery on Z? taking values in a finite set
F' according to a distribution p on FZ° satisfying

(¥2) p is stationary with respect to translations in the group Z%

(x¥3) s ergodic with respect to translations in T',,, the subgroup of Z¢ gener-
ated by supp(m) — supp(m) = {z — y: m(x)m(y) > 0}.

The random walk and the random scenery are assumed to be independent.
The joint process

Y = (YVp)nez with Y, = (X,,Cs,)

is called the random walk in random scenery associated with m and u. In
ergodic theory, Y is an example of what is called a skew product.

It is obvious that, because of (x2), Y is a stationary process. The role of (x3)
is to make Y non-periodic. Indeed, if F = {0,1}, d = 1, m is simple random
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walk (i.e., m(z) = 1/2 for z = £1 and zero otherwise), and p gives weight 1/2 to
the alternating configuration (...,0,1,0,1,0,...) and its shift, then the second
component of Y also gives weight 1/2 to this configuration and its shift. The
point here is that, although p is ergodic under the full group Z, it is not ergodic
under the subgroup I'),, = 2Z.

In this paper, we are interested in the mixing properties of Y. A basic fact
about Y is the following, proved by Meilijson [11]:

Assume (x1), (x2) and (*3). Then'Y has a trivial right tail, i.e., all sets
in the tail o-field (o 0((Yn)n>n) have probability 0 or 1.

The intuition behind this result is that for large n the distribution of S, is close
to uniform on a large box in some shift of T';,, so that the walk sees an ergodic
average of the scenery. In ergodic theory, within the class of stationary processes
whose one-dimensional distribution has finite entropy, a process with a trivial
right tail is called a K-automorphism.

In den Hollander and Steif [8], two further mixing properties of ¥~ were
investigated, namely, Bernoulli and weak Bernoulli. For the latter, the following
result was obtained in [8] Theorem 2.2:

Assume that the scenery values are independent and identically distributed
random variables. Then Y is weak Bernoulli if and only if |Z| < oo a.s.,

where
Z ={Sp:n>0}N{S,: n <0}

is the intersection of the supports of the future and the past of the random
walk.

Here, the intuition is that |Z| < oo if and only if the past and the far away
future of the random walk are supported by disjoint sets, so that the walk sees
independent sceneries.

The goal of the present paper is extend the latter result to a more general
class of random sceneries. One trivial extension is to finite block codings of
independent and identically distributed random variables, but we want to push
much further. Throughout the sequel, the conditions (x1), (*2) and (x3) are in
force.

In addition to the grant support acknowledged on the title page, the first
author thanks Keio University and the other three authors thank EURANDOM
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1.2 Coupling representation. Before we state our main theorems, we recall
the definition of weak Bernoulli and its coupling representation. A stationary
process Y = (Y},)nez is called weak Bernoulli if its past and its far away future
are asymptotically independent in the sense of total variation, i.e.,

Jim | P—so 00w .00) = Pl=o0,01 X P(.00) 5, = 0,
where Pj4 is the distribution of Y restricted to ANZ and || - ||z» denotes the
total variation norm. In the course of the paper, we will need the following

characterization of the weak Bernoulli property stated in Berbee [1] Theorem
4.4.7:



A stationary process Y = (Y, )nez is weak Bernoulli if and only if there is a

joint process (Y,!,Y") ez such that:

(1) (Y))nez and (Y, )nez are equal to (Yy,)nez in distribution;
(2) (Y))nez and (Y,))n<o are independent;

3) a.s. there exists a (random) nonnegative integer NV such that Y/ =Y for
( g g n="Yn
n> N.

(The last condition is expressed by saying that the two copies of the process are
“successfully coupled” after time N.)

We will also need a Cesaro-version of the weak Bernoulli property of a sta-
tionary process Y, which is slightly weaker and is defined as follows:

Py — P(foo,[)] X P(O,oo) =0.

M=0

N—00

tv

Here, Py is the distribution of (Yn)nGZ with ¥, =Y, forn <0and Y, = M
for n > 0. As stated in Berbee [1] Theorem 4.4.9, this property has the same
coupling representation as above, except that condition (3) is replaced by

(3’) a.s. there exist (random) nonnegative integers My, M> such that Y, ,, =
Yy, forn > 0.

(The last condition is expressed by saying that the two copies of the process are
“successfully shift-coupled” after time M; V Ms.)

1.3 Not weak Bernoulli. Our first main theorem is general and reads:
Theorem 1: If u has no atoms and |Z| = oo a.s., then'Y is not weak Bernoulli.

Remarks: (a) By exchangeability of X, the event |Z| = co has probability 0
or 1 (see [8] Section 2.1).

(b) It is well-known that for simple random walk (i.e., m(z) = 1/2d for ||z|| = 1
and zero otherwise) |Z] = oo a.s. if and only if 1 < d < 4 (see e.g. Lawler [9]
Section 3). Further examples can be found in [8] Theorem 2.5, Theorem 5.3
and Corollary 5.6 (which include all m in 1 < d < 4 with zero mean and finite
variance).

(¢) Theorem 1 is optimal. Indeed, under conditions (x1), (¥2) and (*3), if u
has atoms, then it lives on a single periodic configuration and its shifts, such
that the periods of the scenery and the walk are different. Consequently, YV
has a nonperiodic renewal type structure, from which the weak Bernoulli prop-
erty easily follows. Note that in this case the weak Bernoulli property holds
even when the random walk is recurrent (which allows the full scenery C' to be
recovered from the past of ).

1.4 One dimension. Theorem 1 raises the question whether there are mild
conditions on p such that YV is weak Bernoulli when |Z| < oo a.s. Our second
main theorem provides a class of random walks for which this is not the case.

Theorem 2: Let d = 1. Assume that m is right-continuous (i.e., m(xz) = 0 for
x > 1), has positive drift (i.e., ., xm(x) >0), and Ty, =7Z. ThenY is weak
Bernoulli if and only if u is Cesaro weak Bernoulli.



Remarks: (a) The positive drift of m implies that |Z]| < oo a.s.

(b) At the end of Section 3 we will see that if 4 has no atoms and has zero
entropy, then it is not Cesaro weak Bernoulli. (See Walters [13] Chapter 4 for
the definition of entropy.)

(c) Theorem 2 may be extended to higher dimensions as follows. Let C, =
(Ca,,-..,Cl ) with (Ci,)s;ez independent one-dimensional random sceneries
with distributions p'. Put mi(y) =3_,.,.-, m(z), y € Z, and assume that, for
each i, m; is right-continuous, has positive drift, and I',;,, = Z. Then Y is weak
Bernoulli if and only if p? is Cesaro weak Bernoulli for all i.

1.5 Weak Bernoulli. Theorem 1 says that if |Z| = co a.s., then u having no
atoms is enough to make Y not weak Bernoulli. We would like to prove that,
conversely, if |Z] < oo a.s., then Y is weak Bernoulli for “most” random fields
i. The reason why this is difficult is that it comes down to showing that the
sceneries on two random infinite sets, namely, {Sp: n < 0} and {S,: n > N},
are close to independent when N is large (since then these sets are far away
from each other). Unfortunately, there are very few tools available to do this.
Below we will employ one such tool, based on disagreement percolation.

In Theorem 2, the two infinite sets are simple, namely, two infinite rays in
opposite directions. This allows us to directly relate the mixing properties of
C and Y. In more general situations we need more structure. In Theorems 3
and 4 below we will obtain a classification for Markov random fields, both in
the “low noise” and the “high noise” regime (see Georgii [4] Section 8.2 for the
definition of a Markov random field).

A. Low noise regime. Our third main theorem uses the notion of disagreement
percolation for two independent realizations of the random scenery. For & € Z¢,
let

Ex(z) ={(d,c") € F2* x F%*. 37: 0 +—  such that dy)#c'(y) Vyen}

be the set of pairs of sceneries such that there is a nearest-neighbor path between
0 and z (including 0 and =z itself) on which the sceneries disagree everywhere,
and put
bu(x) = (1 x p)(Ex(z)).
Let
Sy ={Sp:n>0} and S_ ={S,:n <0}

denote the support of the future, respectively, the past of the random walk, and
put

d, = Z ¢u($ _y)-

zE€ES Y
yeES_

Theorem 3: Assume that p is Markov, )" ¢, (x) < oo and ®, < co a.s. Then
Y is weak Bernoulli.

Remarks: (a) Again, by exchangeability of X, the event ®, < co has proba-
bility 0 or 1.

(b) Unless p lives on a single constant configuration, in which case ¢, = 0, we
have ¢,(0) > 0 and so ®, < oo implies that |Z| < oco.



B. High noise regime. Our fourth main theorem uses standard percolation
to bound disagreement percolation. For u Markov, define

pw) = max |1 (Co € - | Clagoy =n) =1 (Co € - | Clagoy =) |,
with 0{0} = {z: ||z|| = 1}. (Throughout the paper, ||z|| =3, .,., || denotes
the ¢;-norm of x € Z%) A small p(u) corresponds to the scenery values be-
ing close to independent. In particular, all g that are “Gibbs measures with a
summable potential” have a corresponding p(u) that tends to zero as the “tem-
perature” tends to infinity (see Georgii [4] Chapter 1 for the definition of a Gibbs
measure).

For z € 74, let

E\(z)= {d € {O,I}Zd: dm: 0 ¢— 2 such that d(y) =1Vy € 7r} ,

and put ~

Pu () = Ppu) (Er(2))
with P, the probability measure for standard site percolation with parameter
p € [0,1], i.e., each site z is open (d(z) = 1) with probability p and closed
(d(z) = 0) with probability 1 — p independently of the other sites (see Grimmett
[7] Section 1.6). Let

®, = Z Pu(r —y).

zE€ES Yy
yES _

Theorem 4: Assume that i is Markov, 3" ¢, (z) < 00 and ®, < 00 a.s. Then
Y is weak Bernoulli.

C. Random walk classes. Our fifth main theorem provides conditions on m
under which &, < oo a.s. or ¢, < 0o a.s.

Theorem 5: Let f: Z¢ — [0,1] and F = >res, yes f(@—y). Then E(F) <
0o, with E expectation over S, in either of the following cases:

(i) d>5,5, f(z) < oo

(i) 1<d <4, 3, 7] (@) < 00, X, om(x) 0, T, llallm(z) < oo.

In Burton and Steif [3] Proposition 2.4, it is shown that
du(z) < Ce Il for 2 € Z% and some ¢ > 0,C < oo,

when p is the plus-phase or the minus-phase of the nearest-neighbor ferromag-
netic Ising model (F = {—1,+1}) on Z% d > 2, at sufficiently low temperature.
Via Theorems 3 and 5, this yields a class of “low noise” random sceneries and
a class of random walks with |Z| < oo a.s. for which Y is weak Bernoulli. In
d = 1, for this model the same bound on ¢, holds at any temperature. Two
further examples of a p for which the same bound on ¢, holds are given in
[3] Propositions 3.1 and 4.1, both based on a nearest-neighbor subshift of finite

type.
Remarks: (a) It is not hard to extend the argument in [3] to cover the nearest-

neighbor ferromagnetic Potts model (F = {1,...,q}, ¢ € N) on Z% d > 2.
Thus, the above bound on ¢, also holds for the ¢ pure phases of the Potts



model at sufficiently low temperature.
(b) The restriction to sufficiently low temperature is necessary to get control
over the disagreement percolation under p X p. As we will see in Section 4,
disagreement percolation under p x p is a powerful tool, but it may seriously
overestimate the total variation norm.

It is well known (see Grimmett [7] Theorem 5.4) that
q}u(m) < Ce 2l for 2 € Z% and some ¢ > 0,C < oo,

when 0 < p(p) < pc(d) with p.(d) the critical value for standard site percolation
on Z, which satisfies p.(1) = 1 and p.(d) € (0,1), d > 2. Via Theorems 4 and
5, this yields a class of “high noise” random sceneries and a class of random
walks with |Z| < oo a.s. for which Y is weak Bernoulli.

Concluding, the Markov assumption on p in Theorems 3 and 4 is rather
restrictive, but at the beginning of this subsection we have explained why it is
hard to go further. We expect that Y is weak Bernoulli for all random sceneries
that are stationary extremal Gibbs measures with a sufficiently tempered in-
teraction potential at any non-critical temperature and all random walks with
|Z] < o0 a.s., but currently this seems beyond reach.

2 Proof of Theorem 1

We assume that g has no atoms, |Z| = oo a.s. and that Y is weak Bernoulli.
We show that this leads to a contradiction. It was proved in [8] Lemma 3.2 that
if |Z| = oo a.s., then a.s.

(A) Hz€Z?: 24+ B, C Z}| = 0 VkeN,

where By, = [k, k]¢ N Z? is the box of size k centered at the origin. We will
need this fact as we go along.

According to the coupling representation in Section 1.2, since Y is weak
Bernoulli, we have copies

(X;UC,IS’“)TLEZ a‘nd (X;Llacg’;:)nEZ

of the process (X, Cs, )nez satisfying conditions (1), (2) and (3). Let P,E
denote probability and expectation under this coupling. If NV is as in condition
(3), then after time N both walks take the same steps and see the same scenery
values. Therefore we have

ﬁ( U U N{s,+w=sy¢s :(Jg,n,}> =1.

wel,, NENgn>N

Put y
Z=A{S):n>0}n{S,: n<0}.

By conditions (1) and (2), Z is equal to Z in distribution. Hence, by (A),
there is a sequence (23 )ren in Z? such that zj, + Boy C Z. In order to properly
define these random variables, we consider an arbitrary fixed ordering of Z¢
and, for each k € N, we let z; be the smallest element in Z? (with respect to



this ordering) such that zy + Bay, C Z. Observe that (2k)ken is measurable with
respect to the pair (S},)n>0, (Sh)n<o-

Let C'|4 denotes the scenery C' restricted to the set A. Since (S),)n>0 visits
all of the box zj, + By, C'|;, +B, is defined. If k > ||w]||, then 2z, + By + w C
2k + Bor C Z, and so also C"| s 4B, +w i defined. From this observation and
the above coupling statement, it follows that

P U U ﬂ {Cl|2k+Bk = C”|2k+Bk+w} =1.

WET m K> ||l k>K

(Note that, given a realization of the process Y, it only makes sense to talk
about the scenery values at the sites that are visited by the walk.) We will show
that, for all w € Z¢,

P U ﬂ {Cl|zk+Bk = C”|Zk+Bk+w} =0,
K>||lw|| k2K

which yields the desired contradiction. The latter probability is equal to

K2[[w|| k> K

E {P U ﬂ {Cl|2k+Bk = C”|Zk+Bk+1U} | Z }
and so it suffices to show that
P U m {Cl|zk+Bk = C”|Zk+Bk+w} | Z)]=0 P-as.

K2 |w| k2K

By conditions (1) and (2), given any realization of (X} )n>0 and (X]))n<o
(and hence of Z and (zj), which are measurable with respect to this pair of
sequences), we have that

(C)eez and  (CF),cz

are independent and are distributed according to p restricted to Z. It follows
that, to verify the statement in the last display, it suffices to show that for all
w and (z),

(:U/ X :U’) U m {Cl|Bk+2k = C”|Bk+lk+UJ} =0.
K>[|w| k> K
By Fatou’s lemma, it in turn suffices to show that for all w and (zy),
liminf(p x p) ({Cl|Bk+2k = C”|Bk+zk+w}) =0.
k—o0
By the stationarity of u, it in turn suffices to show that

liminf(u x p)(Eg) =0,
k—o00



where
Ey ={(c,c"): ¢, = |, }-

Since i has no atoms, if ¢ is any fixed scenery, then
p({c: ¢, =€B,}) =0 as k— occ.

We even have
supp({c: ¢|p, =é|lp,}) =0 as k— oo.
c

Indeed, if the latter would fail, then there would exist an ¢ > 0, a sequence
ki, i € N, of positive integers tending to infinity, and a sequence ¢&;, i € N, of
sceneries such that

p{c: c|p,, = ¢Gilp,,}) > € for ieN

Picking a subsequence if necessary (via a diagonal argument), we would be able
to produce a sequence ¢;, @ € N, of sceneries converging, on any finite block, to
some scenery ¢ for which u(¢) > e. But this would contradict the assumption
that p has no atoms.

Thus, abbreviating € (¢) = u({c: ¢|p, = }), € € FP*, we have that for any
€ > 0 there exists a positive integer k. such that

sup €x(c) <e for k> k..

cEF Pk
Now write
E, = {(clvc”): c,|Bk = C”|Bk}
= U {(clac”): cl|Bk = c”|Bk =c}
CEF Bk
= U [ ) dlm =) NG ¢ m, = )
CEF Bk

and estimate

(uxp)(Br) < > en(@®<e > ex(@)=e for k> k.

¢EF B ¢eFBr

Hence limsup;,_, .. (1 x ) (Ey) < e. Let € | 0 to complete the proof. [ ]

3 Proof of Theorem 2

if: Suppose that p is Cesaro weak Bernoulli. Then there is a coupling of two
copies of the random scenery C' = (C})zez and C" = (C})zez such that

(Cl)zez and (CY)z<o are independent and a.s. there exist (random) nonneg-
ative integers M, M, such that

! A
wiry, = Cpyn, for x>0.

(Note that, while M; and M, are only defined up to a constant, M; — Mo
is uniquely defined.) Next, let X! = (X])n<o and X" = (X])n<o be two



independent copies of the random walk steps for nonpositive times, which we
also assume to be independent of C" and C". Let (S") be the random walk
corresponding to (X)), and put R = max{S): n < 0} > 0, which is finite by
our assumption that the random walk has positive drift. Now define

C'=C' 5 and C'=C" , for z€lZ.

Observe that (C})cz and (C).<gr are independent.

Next, for any k let (*X/)nso and (*X!),~0 be two copies of the random
walk steps for positive times such that a.s. there exists a (random) nonnegative
integer N such that

kgl = kS 4k for n>N.

This coupling exists by Georgii [5] Lemma 2.2, because of our assumption that
[, = Z. We assume that these couplings are independent for different k& and
also independent of all the other random variables defined earlier.
We now define processes Y’ and Y in terms of the above random variables
as follows. Let the first coordinate of Y}, which we call X/, be
X = X! for n <0,
Mi=M2 X1 for n > 0,

and let the second coordinate of Y, be C%, , where (S") is the random walk

corresponding to (X!). Analogously, let the first coordinate of ¥}, which we
call X/, be

XII

n

X/ forn <0,
Mi=Mz X" for n > 0,

and let the second coordinate of ¥ be C¥%, , where (S”) is the random walk

i
corresponding to (X!"). From the construction it follows (after some reflection)
that Y’ and Y satisfy properties (1), (2) and (3). |

only if: Suppose that Y is weak Bernoulli. Then, as in the proof in Section 2,
we have copies

(XrIuC.IS;L)nEZ and (X;:aols{’n')nGZ
of the process (X, Cs, )nez satisfying conditions (1), (2) and (3), the latter
stating that a.s.

S;’L +w = S;,{ and C{gr - Cgrr fOI‘ n > N

for a (random) w € Z and a (random) nonnegative integer N. Since SE’N ooy 2
(Sir,00) a.s. by our assumption that the random walk is right-continuous and
has positive drift, it follows that a.s.

Crl

T—w

=C! for x> SY.

Moreover, since S}, = Z and SEL n0,0] 2 (—00,0] a.s., it follows from conditions
(1) and (2) that

(Ci)zez and  (Cy)a<o
are independent. Thus, conditions (1), (2) and (3’) hold for (C.).ecz and
(CNgez with My = My —w and My = S§; (pick Mz > w). Hence p is Cesaro
weak Bernoulli. [ |



Note that the “if” direction does not require the right-continuity of the ran-
dom walk, while the “only if” direction does not require that '), = Z.

We close this section by proving the claim made in Remark (b) below The-
orem 2. Suppose that u is Cesaro weak Bernoulli. Then, as above, there exist
random sceneries

(Cilzez and  (C})zez
such that conditions (1), (2) and (3’) hold, the latter stating that a.s.

¢ ,=C" for >N

for a (random) w € T, = Z and a (random) nonnegative integer N (> w). Now,
if p1 has zero entropy, then (C!),~o can be retrieved from (CJ),<o a.s. Thus,
we have two independent copies (C}).ez and (CL)zez of the random scenery
such that a.s.

c_,=C" for z>N.

This in turn implies that

wxw| U Ul = ves>Ny| =1.

wel'm NeNg

But, by the argument given at the end of Section 2, the latter is impossible
when p has no atoms.

4 Proof of Theorem 3

We assume that ®,, < oo a.s. and construct a coupling satisfying conditions (1),
(2) and (3). The key to the construction is the following property. Let

S ={S.:n<0} and S¥ ={S,:n>N}, NeN,

denote the support of the past, respectively, the future beyond time N of the
random walk. We say that the random scenery is weak Bernoulli along the
random walk if

(8)

where p] 4 denotes the restriction of pu to A. We first construct the coupling (with
properties (1), (2) and (3)) assuming (§). After that we show that ®,, < co a.s.
implies (§).

A}gnoo H N|S_usf — pls_ x ,u|5$ Htv =0 foras.all S,

Step 1: (§) implies that Y is weak Bernoulli.
Proof: Let

X' = (X;L)HGZa ' = (C;)mEZda X" = (Xrlzl)nEZa " = (Calrl)xEZda

be independent copies of the random walk and the random scenery. Let S’ =
(S))nez and 8" = (S]))nez be the associated random walks. Define

Yri = (X;UC’.IS’)a nEZ,
Yril = (X,,I,Z,C”H), n S 0

10



For n > 0, let the first component of Y,/ be X/,. Then, clearly, condition (2)
and most of condition (1) hold. We now need to define the second component
of Y,/ for n > 0 in such a way that condition (3) and the rest of condition (1)
hold.

By (§), we have that a.s.

i sy = lse % gy |, =0
On the set of measure zero where the latter fails to hold, let the second coor-
dinate of Y}/ for n > 0 be some fixed element fo € F. On the set of measure
one where it holds, define the second coordinate of V' for n > 0 as follows. By
a trivial extension of Berbee [1] Equation (4.4.2) to the present nonstationary
setting, on this latter set we have a.s.

tim | ulgoigr = plg | =0
Ngnoo 'U|S+N‘Sf 'U|S+N tv ’
where |4 p denotes the restriction of y to A conditional on the scenery in B.
(Note that, even with the walk fixed, || “|SﬂrN 57 —u|S;N [|¢v is a random variable,

since it depends on the scenery on S”.) With (X],)n>0 and (X]))n<o fixed, call
the set of sceneries on S” for which the last limit is zero “good”. Then this set
of good sceneries has measure one. Now, if the scenery on S” is not good, then
we again let the second coordinate of Y, for n > 0 be the fixed element fy € F.
On the other hand, if the scenery on S” is good, then, by Goldstein [6] Theorem
2.1, there exists a coupling of p| AL and s, under which the two processes

are successfully coupled after some random time.

Let v denote the latter coupling (which depends on (X)n>0, (X))n<o and
the scenery on S”). Let the second coordinate of Y, for n > 0 be given by the
first marginal of v conditioned on the second marginal of v being the scenery
C" on S’ = S!. This completes the definition of Y and Y, and from the
construction it follows (after some reflection) that conditions (1), (2) and (3)
hold. [ ]

Step 2: (§) holds when ®, < oo a.s.

Proof: The fact that ®, < oo a.s. plays a crucial role, for one, because it
implies that |Z| < oo a.s. (recall Remark (b) below Theorem 3). Consequently,
the sets S_ and SY a.s. move apart as N — oo, which is of course vital for (§).
The argument below is inspired by Burton and Steif [3] Section 2.

Fix S for which ®, < co. Choose NN so large that S_ and Sf are disjoint,

and define
on = Z Pulz —y).

zesf
yeES_

Fix finite sets A and B such that A C SY and B C S_. Let
E.(4,B) = {( ¢):3zed yeB,

m: 2 ¢ y such that ¢/(z) # ¢ (2) Vz € 7}.

11



We have
(1 x p) (Ex(4, B))

IA

> (nx p)(Ex(2,y))

z€A
yEB

Z ¢u($_y) =0N-

mesf
YyES _

IN

Let
K ={ce FP: (4 x ) (B(4,B)) < Von |,

where u¢ denotes the conditional measure given that the scenery on B is c.
Below we will prove that

(t) 1l = plally, <2Vén Vee K.

Next, continuing from (f), we have

Sn > / uls(de) (4 % 1) (Bx(A, B) > v/ox [1 - pls(K)],
cEFB\K

and so
1= plp(K) < Von.

It follows that
| elauvs — ula x plB I,
< Jeers pla(de) || pfla — plallz,
< 2V6oN plp(K) +2[1 — p|p(K)] < 40N,

where the second inequality uses (f). Taking the supremum over A and B, we
get

H,U|s,usf —pls_ X H|sf ‘o

= sup sup || plavs —pla X plB ||, <4V/0N.

AcsN BCS_

Finally, we let N — oo and use that limy_,o dy = 0 because ¢, < oo, to
obtain (§).

It remains to prove (7). We show that, for any ¢ € K, the measures u¢ and
i can be successfully coupled on A with a probability at least 1 — v/dn. From
this, (1) follows via the basic coupling inequality relating total variation norms
to couplings (see Lindvall [10] Section I1.2).

Fix ¢ € K. Let (01,02) be chosen according to u¢ x u. Let U be the set of
sites that can be reached from B via a path of disagreement in (o1, 03). Our
assumption that ) ¢,(z) < oco implies that (u¢ x p)(|U| < oo) = 1. Next,
define (1, 72) as follows:

(mym2) = (01,02) fUNAZD,
= (01,62) fUNA=0,

where
G2(x) = oo(z) forzxzeU,
= o1(x) forzeUe-.
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The Markov property of p implies that 7, has distribution u (while, of course,
71 has distribution p¢). By construction, if n; and n, differ somewhere on A,
then there must be a path of disagreement from B to A in (n1,712). Hence m
and 7 differ somewhere on A with probability at most (u¢ x u)(Ex(A, B)),
which is < /0 because ¢ € K. [ ]

5 Proof of Theorem 4

We will prove that & u < 0o a.s. implies property (§) introduced at the beginning
of Section 4. The weak Bernoullicity of ¥ will then follow from Step 1 in
Section 4. We will in fact prove the stronger property that

lim sup sup sup || plapy — mla ||tv =0

N—oco 49N BCS_ F

\A7\<oo |B|<oo

for any S for which ‘i)u < 00.
Fix € > 0 and S for which ®, < co. Pick IV large enough so that

Z Pp(u)(l‘ — y) < 6/2.

mesf
YyES _

Let A C Sf, B C S and n € FB, with A, B finite. Then Py (A +—
B) < €/2. Next, choose k so large that AU B C By = [—k,k]? N Z? and
Pyu)(A < Bj) < €/2, the latter being possible because éu(z) < 0o. Put
C = By \ B. Then P,,)(A <— C°) < € because C° = B U By.

Next, write

o =ty < [0

The key step in the argument now is van den Berg and Maes [2] Corollary 1,
which implies that

Be (do) || plajo.m — 1a ||tv :

| tlajom = #la |,y < Py (A= C°)  Voe FP neFP.

The right-hand side is < e. Take the supremum over A, B and let ¢ | 0 to
complete the proof. |

6 Proof of Theorem 5

Given m, let 7 be defined by m(z) = 30,0 + 3m(z), x € Z% In other words,
we make the random walk pause with probability % In doing so, we obtain a
random walk that is “genuinely d-dimensional” (recall that m is irreducible) in
the sense of Spitzer [12] Proposition 7.6, which will be needed in part (i) below.
The pausing leaves S_, S, invariant, and hence also F'.

Let P, E denote probability and expectation with respect to S, the random
walk associated with m. Then

B(F) = X fa-y)PeS)Plres)
< S @) X a0 T pa0,2),
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where p,,(z,y) is the n-step transition probability between z and y for S. Write
P (Y, 0)pn(0,2) = pm (0, —y)pn(—y,r — y), sum over y while keeping 2 =z — y
fixed, and use the identity Zypm (0, —Y)pn(—Yy, 2) = Pm+n(0,2), to obtain

E(F) < Y f(2) Y kpi(0,2),

2€Z14 k>0

(i) According to Spitzer [12] Proposition 7.6, we have
pi(0,2) < Ck~? for k>0, z € Z% and some C < .

Thus, if d > 5, then the sum over k is bounded uniformly in z, and so E(F) < oo
by our assumption that > f(z) < oo.

(i) Let >, xm(xz) = v # 0. Pick 0 < € < ||v||. For fixed k, split the sum over z
into two parts:

I, = Z f(2)kpr(0,2) and II, = Z f(2) kpr(0,2).

2t ||z—vk||<ek z:||z—vk||>ek
In I, use that ||z]] > (||v]| — €)k, to estimate
Y I < o 2 llzlf(2) X pe(0,2)
k>0 2€24 k>0
S S [E£G) T pe(0,0).
k>0

2€Z4

IN

The sum over k is finite because the random walk is transient by our assumption
that v # 0. The sum over z is finite by our assumption that ) _ ||| f(z) < co.
In I, on the other hand, use that f < 1, to estimate

S I, < Y kP(|Sk — E(Sk)|| > k)
£>0 £>0 ) )
< % X #=EISk— E(Sw).
$>0

Since Sy, = Zle X, where the increments are independent with common distri-
bution 17, it is not too difficult to invoke our assumption that - ||z]|57(z) < co
to deduce that

d k 6
E (llS‘k - E(Smllﬁ) <d 3B ([Z (X7 - E(X;’))} > < Ok

=1
for k > 0 and some C < oo.

Hence the last sum is also finite. ]
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