Diffusion of a heteropolymer in a

multi-interface medium

F. den Hollander *
M.V. Wiithrich

March 18, 2003

Abstract

We consider a heteropolymer, consisting of an i.i.d. concatenation of hydrophilic and
hydrophobic monomers, in the presence of water and oil arranged in alternating layers.
The heteropolymer is modelled by a directed path (7, S;)ien,, where the vertical component
lives on Z, and the layers are horizontal with equal width. The path measure for the vertical
component is given by that of simple random walk multiplied by an exponential weight factor
that favors matches and disfavors mismatches between the monomers and the medium. We
study the vertical motion of the heteropolymer as a function of its total length n when the
width of the layers is d,, and the parameters in the exponential weight factor are such that the
heteropolymer tends to stay close to an interface (“localized regime”). In the limit as n — oo
and under the condition that lim,,_,~ d,/loglogn = co and lim,,_, d,/logn = 0, we show
that the vertical motion is a diffusive hopping between neighboring interfaces on a time scale
exp[xdn (1 + o(1))], where x is computed explicitly in terms of a variational problem. An
analysis of this variational problem sheds light on the optimal hopping strategy.
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1 Introduction and main result

1.1 One-interface heteropolymer. We begin by describing the one-interface model that was

studied in Bolthausen and den Hollander [3]. This model has two ingredients:

1. S = (Si)ien,: a simple random walk on Z; P,, E, denote its probability law and expecta-

tion, given Sy = x.

2. w = (w;)ien: an i.i.d. sequence of random variables taking the values £1 with probability

1/2 each; P, E denote its probability law and expectation.

Fix A € [0,00), h € [0,1) and n € N. Given w, define a transformed probability law on path
space by putting

PO (8) (w) = z(%k) exp {A > A(S)(wi + h)} P, (S), (L.1)
x w i=1

where z{"" (w) is the normalizing partition sum and

(1.2)

A(S)) = sign(S;) if S; # 0,
Y] A(SiZy)  ifSi=0.

We view PQEU’”) as modelling the following situation. Think of (7, S;)ien, as a directed polymer
on Z?2, starting at (0, z), consisting of monomers represented by the bonds in the path. The lower
half plane is water, the upper half plane is oil. The monomers are of two different types, occurring
in a random order indexed by w. Namely, w; = —1 means that monomer ¢ is hydrophilic, w; = +1
that it is hydrophobic. Since A(S;) = —1 when monomer 7 lies in the water and A(S;) = +1
when it lies in the oil, we see that the weight factor in (1.1) encourages matches and discourages
mismatches for the first n monomers. For h = 0 both types of monomers interact equally
strongly with the water and with the oil. For h € (0,1), on the other hand, the interaction
strength is asymmetric: the hydrophobic monomers interact more strongly with either solvent
than the hydrophilic monomers, resulting in the heteropolymer to prefer the oil in the upper
half plane over the water in the lower half plane. The parameter A is the overall interaction
strength and plays the role of inverse temperature. '

The one-interface model is self-averaging:

Theorem 1.1 ([3], Theorem 1) For every X € [0,00) and h € [0,1) there ezists a deterministic
number ¢(\, h) such that

lim ~log Z"™ (w) = d(Mh) P —aus. and in L'(P). (1.3)

n—-oo n

!Note that the second line in (1.2) makes the interaction act on bonds rather than on sites. Also note that
(1.1) makes perfect sense for A\, h € R but that only the indicated range of A, h is relevant.



The function ¢ is the specific free energy of the heteropolymer. It is continuous, nondecreasing
and convex in both variables, and satisfies ¢(A,h) > Ah. This lower bound comes from the
following estimate, which uses the strong law of large numbers for w:

n
Z0M (W) > E [exp {A S A(SH) (wi + h)} 1{S; >0V1<i< n}]
i=1
3 (1.4)
= exp{)\hn+>\zwi}P0[Si>0V1gign] :
i=1

= exp{\n +o(n)} O (n1/?), P—a.s.

Let
D = {(\h): ¢(Ah) = Ah},
L = {(\h): ¢(\ h) > Ah}.

In view of (1.4), intuitively, D corresponds to the situation where the heteropolymer moves away

(1.5)

from the interface in the upward direction (“delocalized regime”), while £ corresponds to the
situation where the heteropolymer stays close to the interface and manages to place more than
half of its monomers in their preferred medium (“localized regime”). It turns out that both

these situations occur:

Theorem 1.2 ([3], Theorem 2, Equation (0.8)(iii) and Corollary 1) For every A € (0,00) there
exists an h.(X) € (0,1) such that the heteropolymer is

localized  if 0 < h < he(N),

. ) (1.6)
delocalized if h > he(\).

Moreover, A — h¢(X\) is continuous and non-decreasing on [0,00), with he(A) ~ C1\ as A | 0
and 1 — he(X) ~ Ca/X as A — oo, for some Ci,Cy > 0.

0 A

Fig. 1. Qualitative picture of A — h.()).

In Biskup and den Hollander [2] various path properties were derived that confirm the above

intuitive description. In the delocalized regime D the heteropolymer intersects the interface with



zero frequency in the limit as n — oo ([2], Theorem 4). In the localized regime L, however,
this frequency is strictly positive, and the excursions away from the interface are exponentially
bounded both in length and in height ([2], Theorem 3). In Albeverio and Zhou [1] it was proved
that for A € (0,00) and h = 0 both the maximal length and the maximal height of an excursion
are of order logn ([1], Theorem 5.3 and Theorem 6.1). The same holds true throughout the
localized regime £ by the estimates in [2].

The one-interface model defined in (1.1-1.2) was introduced in Garel, Huse, Leibler and
Orland [5], and early studies include Sinai [13] (h = 0) and Grosberg, Izrailev and Nechaev
[6] (w periodic). Recent results on related one-interface models appear in Maritan, Riva and
Trovato [10], Martin, Causo and Whittington [11], and Orlandini, Rechnitzer and Whittington
[12].

1.2 Multi-interface heteropolymer. In the present paper we study a version of the above
model where the water and the oil are arranged in alternating horizontal layers. For n € N,
we choose a layer thickness d, € 2N (an even number for reasons of parity). The interfaces

separating the layers are located at the heights
0D, =d,Z, (1.7)
while the (+1)-layers resp. the (—1)-layers span the heights

DY = dnl@2k,26+1)n2Z], D, = |J dnl(2k —1,2k) NZ)]. (1.8)
keNg keNo

In analogy with (1.1-1.2), the probability law of the heteropolymer is defined as

Pag?&:) (5) (w) = m €xp {AZ Ag, (Si)(wi + h)} P, (S), (1.9)

z,dn, =1

(

where Z xoéz) (w) is the normalizing partition sum and

+1 if S; € DY,
Ag (Si)=4¢ -1 it S; € D, (1.10)
Adn(Sz-,l) if S; € OD,,.

Here, we use the hat-superscript to distinguish the multi-interface model from the one-interface
model.
Our first result is a comparison of the multi-interface model with the one-interface model on

the level of the specific free energy.

Theorem 1.3 For every A € [0,00), h € [0,1) and for every sequence (dy) such that lim,_, d,
= OO,

1 1 A(O’n) — ; 1

lim —log Z; ; *(w) = ¢(A, h) P — a.s. and in L*(PP). (1.11)

n—oo N



This result says that for any diverging layer width the two models have the same specific free
energy and hence the same phase diagram (see Theorem 1.1 and Fig. 1). Intuitively, this result
is plausible: as the interfaces move apart, the heteropolymer “gets to see only one interface at

a time”. We will see that the limit d,, — oo makes the multi-interface model tractable.

1.3 Path behavior in the localized regime. We now come to the main result of this paper.
Our goal is to analyze the path behavior for the multi-interface model in the localized regime
L, in particular, we want to describe how fast the heteropolymer hops between the interfaces.
For technical reasons we will not analyze the jump process between the interfaces of the
layers, but rather between the middle lines of the layers, i.e., 9D, +d,,/2. The reason is that the
oil/water medium is symmetric with respect to these middle lines. Let us therefore introduce

the stopping times
7(o) =inf{i e Ny: S; =o0d,/2} Ninf{i € Ny: S; = —03d,,/2}, o==l. (1.12)

If Sy = 0, then 7(0) is the first time that S hits a middle line of a o-layer. Furthermore, let us
define 79 = 0 and the stopping times

'al = inf{i €Ny: |SZ—S()| :dn},

(1.13)
k41 = Ti00, +7 for k€N,

where 6; denotes the time-shift by i. If Sy € dD,, +d,,/2, then 7 is the k-th jump time between
the middle lines of the layers. In terms of these quantities, the number of hits of middle lines

up to time ¢ after time 7(41) is given by
N; = [sup {keNo: mhoblsn)+7(+1) <t} + 1} Lis(41)<t)s t €[0,n], (1.14)
and the vertical displacement at time ¢ relative to the height at time 7(+1) is given by
S = <STNt,loa+(+l)+f(+1) - 5%(+1)) Lipen<y,  t€0,n]. (1.15)

Similar formulas can be written down with 7(—1) instead of 7(+1), but we choose to follow the

jumps starting from the first hit of a middle line of a (41)-layer.

Theorem 1.4 Let (\ h) € L. Fiz a sequence (dy) such that

(1) le dy,/loglogn = oo,
(II) lim d,/logn =0.

n— 00

(1.16)

Then there ezists a constant x(\,h) € (0,00) such that, under the annealed measure E® ]50([31’:),

the process (gt)te[o,n] 1s a simple random walk on dpZ with i.1.d. random waiting times whose
variance at time un satisfies

. 1
nll)r{olo % log dg un

Vary o (Sun) | = =x(W ), w € (0,1). (1.17)



Equation (1.17) says that

eXWh)dn (1to(1)) — average jump time between middle lines of layers. (1.18)
1.4 Discussion of Theorem 1.4 and analysis of x(\, k). We begin by explaining the two
conditions in (1.16). The results cited in Section 1.1 for the one-interface model, in combination
with Theorem 1.3, tell us that in the localized regime L the heteropolymer is tied down to
the interfaces in dD,,. The excursions away from 9D, have a typical length of order one and
a maximal length and height of order logn. Condition (IT) therefore guarantees that the het-
eropolymer jumps between the interfaces many times prior to time n (i.e., the medium is “not
too macroscopic”). On the other hand, condition (I) guarantees that the heteropolymer does
not jump too frequently, so that between jumps it stabilizes near an interface (i.e., the medium
is “not too microscopic”). We do not know whether loglogn is optimal as a lower bound, but
it is important in our proof.

The proof of Theorem 1.4 shows that there exist constants x, (A, h), o £ 1, such that

eXeWhdn(1+0(1)) — average crossing time of o-layers, (1.19)

which implies that
XOWB) = X1 (A h) V x41 (A, h). (1.20)
In the course of the proof of Theorem 1.4 we give an explicit description of x, (A, h) in terms

of a variational problem involving a one-interface model with one neutral solvent (see (4.1-4.2)

and (4.18)). An analysis of this variational problem leads to the following qualitative picture.

Theorem 1.5 For every A € (0,00):

(i) x-1(A, 0) = x+41(A,0).

(1i)) On [0,hc(N)), h — x_1(A,h) is continuous and non-decreasing, while h — x41(A,h) is
continuous and non-increasing.

(iii) imppp,(0) X+1(A, B) = 0.

0 he(N) h
6
Fig. 2. Qualitative picture of h — x, (A, h) for o =1 and A € (0, 00).



In view of (1.20) and Theorem 1.5(i-ii), we have
XA h) = x-1(X h). (1.21)

i.e., the variance in (1.17) is dominated by the average crossing time of the (—1)-layers, which
is at least as long as the average crossing time of the (41)-layers. This comes from the fact
that the heteropolymer prefers to wander off into the (+1)-layers as soon as A > 0. In view
of Theorem 1.5(iii), on the phase transition line separating £ from D (see Fig. 1) the average
crossing time of the (41)-layers vanishes on time scale e%". We have no control over how the
average crossing time of the (—1)-layers behaves in the delocalized regime D, but we expect it
to be smooth across the phase transition line (see the dotted line in Fig. 2).

We are unable to prove strict monotonicity of h — (X, h), as suggested in Fig. 2.

1.5 Some future challenges. Here is a list of some open problems that merit closer investi-

gation:

(1) Is there a version of (1.17) for the quenched rather than the annealed model, i.e., for P-a.s.
all w with respect to ]50([31’:) (w)? We expect that the answer is yes, with the same x, because
of the ergodic theorem for w. A proof can probably be worked out with the help of the

“decoupling of excursions” argument in Section 3.

(2) What can we say about the hopping in the delocalized regime D7 Since the crossing of
the (—1)-layers is harder than in the localized regime L, we expect the jump process to

further slow down (see the dotted line in Fig. 2).

(3) What happens when the layer widths are random, say, layer &k has width Yid,, with (Yy)rez
i.i.d. random variables that are bounded away from 0 and co? The underlying jump process

between layers will be a random walk in random environment.

(4) The present paper is a first attempt to move away from the simple geometry of a single flat
interface. We are ultimately interested in situations where the two media mix “as droplets
of oil floating around in water”. Can anything be said for such more complicated models?
A toy model in this direction is studied in den Hollander and Whittington [7].

1.6 Outline. In Section 2 we prove Theorem 1.3 and derive a number of preparatory lemmas.
In Section 3 we provide a decoupling argument through which the probability law of the lengths
of the successive excursions can be estimated in terms of that of a single excursion. In Section 4
we give asymptotic estimates for the latter. In Section 5 these estimates are used to prove

Theorem 1.4. Theorem 1.5 is proved in Section 6.



2 Proof of Theorem 1.3 and preparations

This section contains the proof of Theorem 1.3 as well as three technical lemmas (Lemmas 2.1
2.3) that will be needed along the way. In Section 2.1 we look at partition sums, in Section 2.2

at excursion lengths.

2.1 Asymptotic behavior of partition sums. We start with the proof of Theorem 1.3, which
together with Theorem 1.2 shows that Fig. 1 is the phase diagram also for the multi-interface

model. Throughout the sequel we write
n
Hyg,(w,8) =AY Ag, (8i)(wi + h) (2.1)
i=1
to denote the Hamiltonian of the multi-interface heteropolymer defined in (1.9) and
Hy(w,8) =AY A(Si)(wi + h) (22)
i=1

to denote the Hamiltonian of the one-interface heteropolymer defined in (1.1).

Proof of Theorem 1.3. The proof is based on a folding argument applied to the random walk S.
We assume that Sy = 0.

Define 1y = 0 and
M1 = inf{i e N: S;€9D,\{So}},

(2.3)
Nk+1 = Mo oﬂk + Nk, ke Na
i.e., ng is the k-th crossing time of a layer, and
4l = sup{0 <i <m: [Si — Sy | =Sn — Sn.|/2}, (2.4)
lbpyr = Lyo0y + g, k€N,
i.e., £ is the last hitting time of a middle line of a layer prior to time 7. Also define
Ny =sup{k € No: np < n}, (2.5)

i.e., the number of layer crossings up to time n. Obviously, N, < n/d,.

Next, define a folding map S — §* for S = (S;)"_, and §* = (S)"_, as follows. Put S = ;
for 0 <4 < mn. For 1 <k <N, define recursively
w_ [ st if1<i <t 2.6
i 250 N — sV ifi > g, '

and set S* = SWn)_ Thus, we successively reflect the tail of the path at the heights +d,, /2. The
important observation is that supy<;<,, |S;| < dp, S;_ =0 for 0 <k < Ny, and

Ay (S;) = A(S;) for 0 <i<n, (2.7)



the latter implying, via (2.1-2.2), that
H, 4, (w,S) = Hp(w,S"). (2.8)

Therefore we need only worry about how many paths S are mapped onto a single path S*.
To that end, define Ry = 0 and

Ry, = inf{i eN: S;€0D,},

(2.9)
Rpy1 = Ryofg, + Ry, k€N,

i.e., Ry, is the k-th hitting time of an interface. Pick any path S* with supy<;<,, [S]| < dn. We

can defold S* whenever

sup 1SH =dn/2, 1<k <N, (SY). (2.10)
Ry (S%)<i<Ri(S7)

But this event can occur at most n/d, times and therefore S* is the image of at most 27/d

paths S. Hence, using (2.8) we get

70 (w) = > exp {Hua, (,5)} 2"
S

< gn/dn > exp { Hy,(w, S*)} 27" (2.11)
S*: supg<i<n [S7]<dn

n n O,TL .
< onldn z{0m)

and similarly

>
L
2
Py
€
N
v

Z exp{Hp 4, (w,S)}27"

St supg<i<y, |Sil<dn

= Z exp { Hy(w, S*)} 27" (2.12)

S*: supg<i<p [S71<dn

9~/ dn Z exp{H,(w,S)}27"
S

v

= 2/ g{0m) (),

Since limy, o d,, = 00, Theorem 1.3 is now a consequence of Theorem 1.1 and (2.11-2.12).

We next consider the partition sum for the multi-interface model up to time 2n restricted to

the endpoint S, lying in an interface:
235 4(@) = Bo | exp {Hopa, (w0, )}, S € DD, (2.13)

The following lemma, says that this restriction has no effect on the specific free energy.



Lemma 2.1 For every A € [0,00), h € [0,1) and for every sequence (dy,) such that limy,_, d,, =
m’
lim — log 205 o () = ¢(\h)  P—as. and in L'(P). (2.14)

n—o00 2n

Proof of Lemma 2.1. Using the stopping time R; defined in (2.9), we have for m € N,

,_.

m—

20 (W) = Zyoe @)+ 3 2305 o (w) Eo lexp { Hom—st,a, (02xw, S)}, Ry > 2m — 2K]
k=0
m—1 .
(0,2 2
= Zé(’aﬁl’,dn (w) + éoap,z,dn (w)Eo [exp { Ham—2k.d, (P2kw, S)} , R1 = 2m — 2K]
k=0
B [Rl > 2m — 2k]
2.1
P() [Rl =2m — 2k] ( 5)
0,2k
< 70y = éaDi7dn (w)Eo [exp { Ham 2,4, (O2kw, S)} , R1 = 2m — 2k]
= 0.0Dn.dn P Py[Ry = 2m — 2k] '

Here, the first line is a renewal relation, while the second line uses that the excursion starting
from an interface at time 2k stays within a single layer until time 2m. Next we apply the folding
argument from the proof of Theorem 1.3: for [ € N we fold the part of the path that lies between
inf{i > 0: S; =d,/2} and sup{0 < i < 2[: S; = d,/2} into the layer (0, d,) "N with symmetry
axis d,, /2. Then we get

Py[Ri =2l] > Py[Ry =2l,8 =0]
= 2Py [S; € (0,dy) for 0 < i < 2l, Sy = 0] (2.16)
> 2x 272 pi1S; >0 for 0 < i< 21, So = 0]
> 2_2l/d”cfll_3/2.

Substituting (2.16) into the last line of (2.15) to estimate the denominator of the summand, we

find the second inequality in

Z(O 2m) <

0,2 m/d, 0,2
o ™ < (1 ¢ 22l 705 (2.17)

> (
0,dn, Dy, dp,

The first inequality is trivial. Together with Theorem 1.3 this yields the claim.
|

2.2 Estimates on large excursions. Our next lemma is a large deviation result for the
restricted partition sum defined in (2.13) and for the successive excursion lengths, both in the
localized regime L. Recall from (1.5) that ¢(X, h) > Ah for (A, h) € L.

10



Lemma 2.2 Assume that (A\,h) € L and limy,_, d,, = 00.
(1) For all € € (0, p(\, h) — Ah) there exists a §. > 0 such that

P % log 002 () < p(Ah) —¢| <O()exp{—dn}, n—oo.  (218)

(11) There exists a constant k > 0 such that, for all K € N and all mj, € 2N (1 < k < K) with
25:1 my < n,

E® Péf)d’:) [Ry — Ri_1=my for 1 <k < K] <0O(1 H exp{—kmy}. (2.19)
k=1

Proof of Lemma 2.2. The proof is similar to that of Lemmas 3 and 4 in Biskup and den Hollander
[2]. Lemma 2.1 is needed for the proof of (i), while (i) is needed for the proof of (ii). The reader

is referred to [2] for details.

We close this section with an estimate on the maximal excursion length away from an inter-
face. For [,n € N, define
R = zug{(Rk Al) = (Rp—1 A1)}, (2.20)
€

i.e., the maximal excursion length up to time /.

Lemma 2.3 Assume that (A, h) € L and lim, oo dy, = co. There ezxist kK > 0 and ¢y > 0 such
that for all ¢ > 0,
E® Py [Rf” > Clogn] e (2.21)

Proof of Lemma 2.3. For ( > 0 and n € N we have

E® Pé?d’:) [Rﬁlf > (log n]

n—_logn—1
< S E®BYVI[S €D, (R o6)A(n—i) > (logn]
=0
n—Clogn—1
S Z E® B%" [S; € 0Dy, Ry 0 0; = k] (2.22)
1=0 k=(logn+1
n—Clogn—1 n—i
< ¥ S E®@PY[Riob=k|S; €D,

11



Using Lemma 2.2(ii), we see that there exist constants x > 0 and c3 > 0 such that for all { > 0,

n—_(logn—1 n—i
E® Péo’") [Rg" > (log n} < Z Z c3 exp{ —kk}
1=0 k=(logn+1
< negk tnRS, n — 00. (2.23)
This proves the claim with ¢y = c37'.
|

3 Decoupling of excursions

This section contains three further lemmas (Lemmas 3.1-3.3) in which we estimate the proba-
bility law of the lengths of the successive excursions in terms of that of a single excursion. The
latter will be estimated in Section 4. In Section 3.1 we look at the effect of adding a bridge

point, in Section 3.2 we derive the decoupling estimates.

3.1 Adding a bridge point. We begin by estimating how much it costs to do an additional
hitting of an interface. For ¢ > 0 and /,n € N, define the event (recall (2.20))

¢ ={Ri" < Clogn}. (3.1)

Lemma 3.1 Assume that lim,, .o d,, = 0o. For all { > 0 there exists ¢4 > 0 such that for all
b € 2N,
Péfif) [An] < mdi%f’jf) (A5, Sy € ODy,],  n — oo. (3.2)

Proof of Lemma 3.1. For b € 2N, define
L =sup{0 < k <b: S, € OD,}, (3.3)

i.e., the last hitting time of an interface prior to time b. For simplicity we assume that b <

n — (logn. Then we have

By [exp{H, 4, (w, S)}, A"] = Eq [exp{Hmdn (w, )}, A", LY = b]

+ Y B [exp{Hn,dn (w,S)}, A% b — LY = [, Ry 0 6, = r} . (3.4)

2<i+r<Clogn
The case b > n — ( logn is analogous, but we have to restrict the sum in (3.4) to r <n —b. Let
us estimate the last term in the above inequality for fixed [,r. The important observation is
that, on the event {b— L =, Rj 00, = r}, Ay, (S;) has the same sign for all b—1 < < b+4r. If
we want to do an additional hitting of an interface in this interval, then all we have to do is to

make sure that the hitting of the interface is in fact a reflection at the interface, since this does

12



not change the sign of Ay (S;) and hence leaves the Hamiltonian H,, 4, (w, S) in (2.1) invariant.

Consequently,

Bo [exp{Hoa, (w, )}, Alb— L = |, Ry 0 6, = 1]
< 2Ep [exp{Hn,dn(wv S)}aAga b— Lb = la Ryoby = T, SLb = SRlogb]

=2 Z EO [eXp{Hbfl,dn (w, S)}, A?,l, Sbfl = Z]
z€0D,

xE, [eXp{Hl—l—r,dn (Op— 1w, S)}, A?—i—rv Ri=1l+rS4 = Z] (3.5)
XE. [exp{Hy(v11),d, Or0, S, A

= Ep [exp{Hn,dn (w,S)} AL, Rioby =1,Ry00,_; =1+,
Sp—1 = Sp = Sp4r € 3Dn}

" 2R [By =1+ 1,84, =0]
PO[RI:laR2:l+’r78l:Sl+T‘:0].

The inequality uses the fact that paths may be reflected in middle lines because the medium is

symmetric with respect to middle lines. A standard calculation for simple random walk gives

that . " L
Py[Ri =m,Sy, =0 = — Z cos™ (22 ) sin? [ 22 (3.6)
dn k|<d dn dn

(see e.g. Hughes [9], equation (3.291)). It is therefore easily seen that the ratio in the last term
in (3.5) is bounded above by c4d3 uniformly in I,7. Inserting this bound into (3.5) and the

resulting estimate into (3.4), we obtain
Ey [eXp{Hn,dn (wv S)}’ Ag]
< C4di (Eo [exp{Hn,dn (w, S)},AZ,L” = b}

+ ) E [eXP{Hn,dn (w,8)}, Ay, Riobp =1,Ry0bp =1+,
2<l4+r<(logn

Sy =Sy = Spyr € aDn] ) (3.7)

= cud3 By [exp{Hn,dn (w, S)}A™, S, € aDn] :

Divide by Eylexp{Hy 4, (w,S)}] to get the claim (recall (1.9)).
|

3.2 Decoupling estimates for excursion times. We now come to our two main decoupling

estimates. For fixed w, the successive excursion lengths are dependent. Lemmas 3.2-3.3 below
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show that, under the annealed measure E ® If’éod’:), they can be decoupled at the price of an

error term. Recall (1.12-1.13).

Lemma 3.2 Assume that lim,_, . d,, = co. For all ( > 2/k there exists c5 > 0 such that for
all N e N andl; > d,/2 (0 <i < N) with
N

(I + Clogn) <n (3.8)
1=0

the following is true as n — oo:

N
E® Aé,od’:) {7(+1) <o} N ﬂ{Ti 0 0r(41) — Tim1 0 03(41) < lz’}]

i=1

< 1—-k(¢ inf dG]E _FA)(O,TL) ~ -1 i < lz An 1-k( (3.9
= on +1Nc£...,N}i£[N <C5 n & 0,dn [ (( ))_ ) n]+czn (3.9)

Proof of Lemma 3.2. After applying Lemma 2.3, we can restrict ourselves to events contained
in A,. Fix any Iy C {0,..., N}. Throughout the proof we assume that n is large enough.
First we consider the case 0 € Iy. Using the inequality

v

Z02m) gy ZOm=2m) g < om <, (3.10)

(0,
Z5 (w) 0,0 D sdn 0,dy

0,dn

the independence on disjoint time intervals and Lemma 2.3, we have (variables with the wrong
parity automatically cancel)

N
E® Aéﬂz,’f) {7(+1) <o} N ﬂ{Ti 0 0:41) — Ti—1 0 0(41) < li},AZ]

=1

lo Clogn
< Z Z E® Pé?é%,t;i) [72(+1) = to, R1 00, = ro,A?OHO]
to:dn/2 T‘o:dn/Q

xE ® Py otro) [ (3.11)

N
{#(=1) <l —ro} N (V{mic1 0051y — Tica 0 051y < li},AZ(tOJrro)]
i=2

lo Clogn
S( S B[BYSTI[H) = to, Ri o 1y = 1o, Al | P (A7)
to:dn/Qrozdn/Q

_ 5(0,n—t
+ean! 7| x sup E® O(d’n 0)
dn<to<lo+(logn o

N
{#(=1) <} [ {mi100zy —Tig0 0z < li}a‘AZ—to] -
=2

14



Note that the term under the supremum is of the same type as the one in the left-hand side of
(3.11) but with 7(41) replaced by 7(—1) due to a change of layer (recall (1.12)). To the first

term on the right-hand side we can apply Lemma 3.1. Indeed, choose b = tg + 7y, to estimate

Odn [An] < C4d [Agvsto-l-?"o € 0Dy] (3.12)
0 n
< e éa%i,"52< VB [ex0 70 B 11 Ay )
< aa, ~ ,
Zé?gln)(m

which gives

lo Clogn

> X [ ooagj,r? [7(+1) = to, Ry 0 01y = 10, Afy 41 ] Ao(gi’:) [AZ]]

to= dn/27‘0 dn/2

<adEe PGY [(+1) < 1o, A2 (3.13)

Next we consider the case 0 ¢ Iy. Define ky = inf{k € Ny;k € Iy}. For k € Ny, define
Ir = 32 ,1;. Then, using (3.12), we obtain as in (3.11),

N

{7(+1) <lo}nN ﬂ{Ti 0 Oz(41) = Ti—1 0 Oz(41) S Li}, Ay
i=1

E® Pé,‘f;:)

Zko 1 Clogn
( Z Z E ooag:, dn [Tho—1©0z(41) = t, R1 0 by, =1, At+r] [A”]]

t=0 r=d,/2

+eontTFC | x sup E® }A’O(%n_t)
0<t<ly,—1+¢logn o

N
{%((_1)]%) < lko}ﬂ ﬂ {Tifko 09%((7 1)ko) — Ti—ko—1 0. #((=1)k0) < l} .A ]
i—=ko+1

< (cad> + coan®7r) x sup E® 130(0[2:0) (3.14)
n—l_ko_l—l—(log n<no<n ’

N

{F((=1)%) <l } 0 () {Tizko © Os((_1y0) = Timko—1 © Os((_1yi0) < li}w‘%]-
i—=ko+1

Tterating the above decoupling argument, we obtain the claim for c5 = 2c3. Note that

can?~¢ < ¢yd? for large n because ¢ > 2/k.

Lemma 3.3 Assume that lim, . d,, = 0o. For all { > 0 there exists ¢4 > 0 such that for all

15



N eNandl; € N (0 <i < N) the following is true as n — 0o:

N
E® P()(Si:) {72(-1-1) An > lg} N ﬂ{(n o 0¢(+1)) An — (7'1;1 o 0¢(+1)) An > ll} (315)
=1
N
<ec 1—k(¢ 3 5(0,m) 1A _1)\¢ L n 1—k(¢
< com +H cd, E® 0. [7’(( 1))/\n>lZ Clogn,An]—i—ch .
=0

Proof of Lemma 8.3. The proof is similar to that of Lemma 3.2. Therefore we only indicate

where the two proofs differ. Abbreviate ny, ., =mn — (to + r0). Then, as in (3.11), we have

E® Péfif)

N

{F(+1) An > Lo} N [(V{(7i 0 0z41)) A — (T 10 0541) An > li},AZ]
=1

n ClognA(n—to)

H(0, A
< > Y EepRGyT [T(+1) An = to, Ry o6 A(n—tg) = m,A?OJrro}
to=lp+1 Toidn/Z

x sup E® }ff;:two) [{%(—1) Ao >l — o} 0 (3.16)
lp<tp<n
dn/2§r0%Zigg_;n/\(n7t0)

Ntg,rg

N
({(Fim1 0 031) A ntgrg = (Tima 0 031)) At pg > i}, An ] :
=2

Now we can deduce the claim in the same way as for Lemma 3.2, using in addition that {7(—1)A
k>l —ro} C{7(=1)An >y —Clogn} for d,/2 <1y < (logn and 0 < k < n.
[ |

Lemmas 3.2-3.3 provide an upper bound for the probability that the lengths of the first N
excursions from the middle line of a (41)-layer do not exceed, respectively, exceed Iy, ...,Iy, for

N arbitrary. These bounds will be used in Section 5 to prove Theorem 1.4.

4 The first-passage time

In the previous section we have decoupled the excursions. In the present section we derive the
key estimates that involve a single excursion. In Section 4.1 we look at a one-interface model
with one neutral solvent, which plays a key role in the variational problem for x (A, h) in Theorem
1.4 that will be introduced in Section 4.2. In Section 4.3 we use this variational problem to derive

upper and lower bounds for the first-passage time.

4.1 A one-interface model with one neutral solvent. For m € 2N and ¢ = +1, define
(recall (2.13))

0, exp {oA Y (w; + h)
Vw4, w,0) = SAT Sz i 2 1))
ZO,éDn,dn (w)

(4.1)
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Lemma 4.1 For every (\,h) € L and o = £1 there exists a deterministic number juy,(\,h) €

(0,00) such that, for every sequence (dy) with lim,_, . d, = 00,

1
lim — logE YO(,%%Z),dn(w,a)] = s (\ ). (4.2)

n—o0 2n [

Proof of Lemma 4.1. For m € 2N and ¢ = £1, define

1

0m) () o) = .
o) = R e DS A — @ T 1) 5 =1

(4.3)

Note that the interaction is neutral for the o-layers (o = +1). Using the folding argument from

the proof of Theorem 1.3, we see that

2= 2/duy (020) (g 0) < V0T | (w,0) < 220/0y 02y, o), (4.4)

so it suffices to prove that

lim %logE[Y(M”)(w,a) = —jig(\, h). (4.5)

n—oo 2n
For m,l € 2N we have, using the independence of w on disjoint time intervals,
logE [Y(O’m"'l) (w, U)]

1
| By [exp {A STHA(S)) — o) (w; + h)} St = o]

=logE

1
| Bo [exp {AXIA(S) = o) wi+ 1) |+ Sin = St = 0]

<logE (4.6)

=logE [y @m) (w, a)} +1logE [Y(O’l) (w, U)} .
Hence m +— logE [Y(U’m) (w, U)] is a subadditive sequence, which implies (4.5) with

1
_ — (0,2n)
po(A h) = Tlfg ™ logE [Y (w,a)] . (4.7

It remains to prove that us (X, h) € (0,00). Using Chebychev’s inequality, we see that

logE [Y(O’%) (w, U)}

> —logE | Ey

2n
exp {AZ(A(Si) — o) (w; + h)} , Sop = 0” (4.8)

=1

> —4N(1 + h)n,
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0 fig (A, h) < 2X(1 + h). On the other hand,
E [Y(O’Zn) (w, —1) + Y020 (4, +1)]

(1/2) exp { -2 S22 (wi + )} + (1/2) exp { A2 (wi + 1) }

= 9E ) (4.9)
Bo [exp { A7) AS)(wi +h) |, Sn = 0]
2 (0 2n)
=—————E|F, ' [T1 =2
P[][Tl = 2TL] [ 0,0 [ ! n]]
where T} = inf{k € N: S, =0} and P()(?O’Zn) is the path measure defined as
2n
0,2

p0<70 " (S) = o P {A > AS) (wi + h)} L5y, =0y Po(S), (4.10)

0,0 i=1

with Zé?dZn) the normalizing partition sum. From Biskup and den Hollander [2], Lemma 4, we
know that for every (A, h) € L there exists a k£ > 0 such that

E [P(O ,2n) [Ty = 2n]] <exp{—2kn}, n — 00. (4.11)
Moreover, we know that Pp[T} = 2n] > (cgn) /2. Hence (4.9) yields
L logE [Y(U’Q”) (w O')j| < 1 logE [Y(O’Z”) (w, —1) + Y021 (4 +1)]
2n ’ - 2n ’ ’
1
< o [log2 + (3/2)log(cen) — 2kn], n—oo.  (4.12)
n

So pig (A, h) > Kk > 0.

4.2 Variational formula for x(\,h).

Lemma 4.2 Assume that lim, , d, = 0o. For y > 1 and every nonnegative sequence ()

such that limy,,_, ey = 0,

nll)ngo % log Py | Ry > ydy, 1<nlrla;iln Si > dn/2,Syd, <endn| =—I(y), (4.13)
where ) ) . .
RS IS Db Ay 1 Ay (4.14)

I(y) = ]
(y) 5 loe— 5 "

Proof of Lemma 4.2. This is an elementary large deviation estimate for simple random walk,
based on a combinatorial expression similar to (3.6). Indeed, I(y) is y times the relative entropy
of y+15+ + = 5 1 with respect to 5+1 + 15 1.

18



We note that the rate function y — I(y) is strictly decreasing with lim,; I(y) = log2 and

limy o0 I(y) = 0.
For e; € (0, s (A, b)), we next define

Xo X hoer) = min{y [us (A, h) —er] + 1(y)} (4.15)

Let y,(e1) denote the maximizer, i.e.,

Xo (A hye1) = yo(e1) (o (M h) —e1] + I(yo(€1))- (4.16)
We have
lim XU()‘a h, 51) = XU()‘a h, 0) = XO'(A? h)a
£1{0 (4.17)
;ﬁ% Yo (e1) = Yo (0) = Yo,
and
Xo(A ) = min {ypa (N h) +1(y)} € (o (X ), po (X, h) +log 2. (4.18)
Define
X(Avh) = max {X*l(Aah)7X+l(>‘7h)} . (419)

The quantity x (A, h) will be analyzed in Section 6.

4.3 First-passage time. In this section we derive upper and lower bounds for the first-passage
time involving x (A, h) (Lemmas 4.3-4.4). It is now that conditions (1.16)(I) and (1.16)(II) come
into play.

Lemma 4.3 Assume (1.16)(I). For all eg > 0 and | € N,

E® B [7 (0) <1, AL < Lexp {—xo(A\, h)dy + e2d},  n— o0, (4.20)

Proof of Lemma 4.3. We borrow an argument from the proof of Lemma 6.2 in Albeverio and
Zhou [1]. For 0 = +1 and ¢ € (0,1/2), we estimate (recall (1.12))

E® B [7 (o) < 1, A7)

¢l
-1 [ =11

<Y Y ¥ Ee B[S0 = p(=0da), B0 0, € [ — Veda, (G + Vedsl,
k=0 j:[%+1J p=0,1
—1)Po Sk > ni
lgirg%)l(oek( 1)PoSkyi > dp/2 +pdn,.4n]
(4.21)
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Let us first consider the case p = 0 and o = 1. We estimate

E@ B[S = 0. Ry 00 € [( ~ Dedy, (1 + Deda,_max S > dn/2, A
e 1<i<Rjoby

=2E® P [Sk =0, R1 06, € [(j — Dedn, ( + Dedy)

max  Sp.; > d. /2.8 :0,4"}
lgigRlon k41 Z n/7 k+Rj00y, yvin

<2E® P [Se =0, R0 by € [(j — Vedn, (j + Dedy),

Spai > dn /2,8t i req. < 2edy, n}
lgigraaji)sdn k4i 2 n/ k+(j—1)edn, > 4€0Gn A

(4.22)

<2 % E[YGE 4+
m=[(j=1)edn

x Py [Rl > (j —Vedn, max  S; >dy/2,S(j_1)eq, < 2ed ]
1<i<(j—1)edn

In the last line we recall (4.1) and use that after time k& the path returns to the interface for the
first time at time k + m (the inequality is uniform in k). The cases p = 1 and/or 0 = —1 are

analogous. Inserting the estimates into (4.21), we obtain

E® B [7(0) <1, Al

=1 T8 1 ((G+)edn
0,m
<4y B[V a4, (@,0)] (4.23)

0
XPO |:R1 > (_] — 1)€dn, max S > dn/2 S 1edn < 26d
1<i<(j—1)edn

Next we use Lemmas 4.1-4.2. Pick e3 > 0, and pick €1 € (0,us(A, h)) so small that
Ixo (X, hye1) — xo (A, h,0)] < e2/3. Furthermore, pick ¢ = ¢, such that ¢, — 0 and ¢,d, — oo

as n — 00. Then

E® 150“)’") [# (o) < 1, A"

Clogn
1 [ — 1

< 42 S (2endy +1) exp{ — (G = Vendn 1o\ h) — e1] — dn (( — 1)en) + dn52/3}
k=0 j=[-+1]

(Clogn 1-|

edn

<4Z > Bendnexp {—dnxos(\ hye1) + dnea/3} (4.24)
k=0 j=| - +1]

<120 ¢logn exp {—dnxs(A, h,0) + dy2e9/3}, n — 00.

For § > 0, define
tn, = exp{dd,}. (4.25)

To prove the next lemma, we chop our time horizon n into intervals of length ¢,,.
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Lemma 4.4 Assume (1.16)(I) and (1.16)(IT). For all e3 > 0 and I € N,

E® P [7(0) An > I, AZ] < (1—exp {—dnXo (A h) —dnes}),  n—oco.  (4.26)

Proof of Lemma 4.4. Throughout the proof we assume that n is large enough. For z,y € 7Z,
define (recall (1.9))

PO (8)(w) = P (S | 1, = y)(w): (4.27)

For [ € N we have (putting 2o = 0)
E® P [#(0) An > Iy, A2

_ 5(0,n)

—E® R, 1<i<t
n

k=0 b ==

-1
ﬂ { max |0Skt, +i + dn/2| < dn} ,AZ]

-1

ﬁ > 1T (4.28)
0

Jdn (w) L1y |oxi+dn /2| <dy V1<i<l k=0

<E

(P“”t"’ [max 08+ dn /2] < dn,Az] Zy) )(oktnw)Z“”"‘“"’(ounw)]

mkakarl:dn 1<i<tn Ik:Ik+1:dn z1,dn

<

!
» (Oatn) . n
<IE L,?ﬁ \am—l—dn%a};y—l—dnﬂkdn P [12%}; |0S; +dn/2| < dy, An] (w)]) )

To estimate the right-hand side, we fix z,y such that |oz + d,,/2| < d,, and |oy + dy, /2| < dp,.

Define ngoy,tgz to be the following measure for the random walk S:

PO (5)(w) = PO <s ‘ ho max [o8; +dn /2| < 3dn /2,5, = y) (w), (4.29)

:E,y,dn o Z',dn

i.e., the path is conditioned to start at x at time 0, to end at y at time ¢,, to stay inside the

height interval (—3d,/2,d,/2) and to not make excursions longer than (logt,. Then

A(Oatﬂ) . _(Oatn) .
P IISI%);L loSi + dn /2| < dn,Aﬁ] (W) < Pp,a Lrgriz%)gn oS + dn /2| < dn] (w)

_ 5(0,tn) . >
1-P [12?& |oS; + dn /2| > dn] (w).

T,y,dn
(4.30)
Our goal is to estimate the last term on the right-hand side.
Let
I, = [tn/2,t,/2+ 3Clogn],
Cr, = {S: there are no iy,is,i3 € I,, with i; < ig < i3 such that (4.31)

Si1 € 0D, |Sl2 — S“| = dn/2, |SZ3 — SZZ| = dn/Z},
i.e., Cy, is the event that there are no two half-crossings of a layer in the time interval I,,. Define
Sp = 2|Ysdn/2] (recall (4.17)) and note that s, < (logn for large n by (1.16)(II). Define

ai(n) = ty/2 + (logn, az(n) =t,/2+ (logn + sp, (4.32)
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and note that [a1(n) — (logn, as(n) + (logn] C I, C [0,t,] for large n. We have

=(0,t2) _ S
PO |y 1S+ o2l > ) )

Sal(n) = Sag(n) €{0,—od,}| (w) (4.33)

—(0,tn
> ng,y,di Lgﬁ}gﬂ 0Si +dn /2] = dy

Xpl(_?;;i [Soa(n) = Sag(n) € {Oa _Udn}‘ Cfn] (w) P{L('?g}f;i [Cln] (w)

Let us first look at the second term on the right-hand side of (4.33), which we write as

P (S, () = Sag(ny € {0, —0dn}| C1,] (w)

p(0,tn H(0,tn
= Pt [Sas) = Sast| Sasm) € 10, =0dn},C1,] (@) P5) [Sany € {0, ~0dn}| €1,] (@)
(4.34)
To the second term on the right-hand side of (4.34) we can apply the same argument as in the

proof of Lemma 3.1, to obtain

B [exp {Hi (@, 5)}, max |oSi+du/2| < 34./2, A, Cr,

<dy B i;,’é [exp{th(w S)} . 8a:(m) € {0, —0dn}, (4.35)
max [oS; +dn/2| < 3dn/2,,4tn,c,n].

Here we use the event Cj, to avoid having to do the first step of (3.5), since this step does not

apply when the endpoint of the path is fixed. Dividing the two sides of (4.35), we obtain

Pyi) [San(m) € {0, =0dn}| Cr,] (@) = (ead]) " (4.36)

The first term on the right-hand side of (4.34) we treat in a similar way. Combining the two
estimates, we obtain

PO 1S, ) = Sanmy € {0, —0dn}|Cr] (w) > (cad?)

,y,dn (4.37)

Let us next look at the first term on the right-hand side of (4.33). This term we can estimate
by

Sal(n) = Sag(n) € {07 _O-dn}:| (w)

_(Uatn) .
Py [12%}; loSi +dpn/2| > dy,
1
> iYo(%i)nn)’dn (Hal(n)w, 0’) Py |:1I<Iii)s(n S; > dp, /2 Ry = sy, SRl = 0:| (4.38)

Inserting (4.30), (4.33), (4.37-4.38) into the right-hand side of (4.29) and using Lemma 4.5

below, we see that for e3 > 0

- = (0t
. L v+ lowhdn /2 loytdn /2]<d Px(’y’d’z [123”)( |oSi +dn /2] 2 d ] (w )] (4.39)

> gdnea/4 (c4d:;’l)72E {YO(%Z’:B i (w, o)] Py [ max S; > dy,/2, Ry = sp, SR, = O]

1<i<sp
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Finally, use Lemmas 4.1-4.2. Then we have for large n (recall that s, = 2|y,d,/2]),

i pLom) o+ dy /2 > d
T |a:v+dn/r£l|}|r;y+dn/2\<dn z,Y,dn 12?@ |O'Sz + n/ | = Utn (CU)

> (ead) exp { = dn [1o(0)pts (A, B) + T(yo (0))] — dn(323/4) ) (4.40)

> exp {_ana()‘a h) - dn53} .

4.4 Two inequalities. In the proof of Lemma 4.4 we have used the following;:

Lemma 4.5 Let (A h) € L, and assume (1.16)(I) and (1.16)(II). Let Pégfgi(w) be the path
measure defined in (4.29). Then for o = £1:

(i)
E|yon W, o min plot) e w]
|: 078Dn,dn( )l’,y: ‘UI+dn/2‘7‘Uy+dn/2|<dn x?l/’dn[ In]( ) (4 41)
> g |yon E i plot)re :
B [ 0’8D”’d”(0)} L,y: \ax+dn?21\l,r\}fy+dn/2l<dn ran (C1n] (@)
(i1)

E Ly. e P (e, ] (w)] >exp{—ed,}  Ve>0,n>ngle). (4.42)

Proof of Lemma 4.5. (i) We will prove that

0,
(a) wr Yo(,ag)mdn (w,0),

_ (4.43)
b — i plo) e ,
(b) w v lowidy BB 0 oicq, Femn [C1,] (w)
are both non-decreasing when ¢ = +1 and both non-increasing when ¢ = —1. The claim will

then follow from the FKG-inequality applied to P (see Fortuin, Kasteleyn and Ginibre [4]).
We give the proof for ¢ = +1. The proof for 0 = —1 is analogous.

(a) Fix 1 < j < n. Let w,w’ be such that w; = w] for 1 <i < n withi # j and w; = —1,w;~ = +1.
We have from (4.1) that

0,2 0,2
YO(,aDT:L),dn (w',+1) > Yo(,BDT,LI),dn (w, +1) (4.44)
if and only
25 4 () < P20 | (). (4.45)

With the help of the relation (recall (2.1))

Hopa, (@', S) = Hopg, (w, S) + 2XAq, (S)), (4.46)
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the inequality in (4.45) amounts to (recall (2.13))

Ey [exp{Hgn,dn (W', 8)}, San € OD,,

< Ey [eXP{Hmdn (W', S)} e =Ran (5] 8, € 3Dn],

which is trivially true because Ay, (S;) € {—1,+1}.
(b) Let

Bp¥ ={S: Sy ==z, 8, =y, Si € (—3dn/2,dn/2) V1 <i<t,} NA}.

Then
ZSEC[n ﬂBfL’y eXp{th Jdn (w7 S)}

plOstn)re _
,yydn[ In]( ) 25682’?’ eXP{th,dn (w, S)}
Fix z,y € (—3d,/2,d,/2). Pick w,w’ as in the proof of (a). Then

POMe, 1w > PO [er, ) (w)

if and only if

Yoo p(S2)(w) f(S1)[g(S1) — g(S2)] > 0,

S1 EBE Y SQEBZ Y
where we abbreviate
exp{Hy, d, (w,5)}
> sepzy exp{Hy, 4, (w, S)}

p(S)(w) = S e B,

and
f(Sy=1Secn},  g(S) =Pl ge By,

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

Here we have again used (4.46). What (4.51) says is that under the probability measure p(w)

the functions f and g are positively correlated:

p(w)[fg] = p(w)[f]lp(w)lg]-

(4.54)

We will prove (4.54) with the help of the FKG-inequality. In order to do so, we need a partial

ordering on paths. To achieve this, we first reflect paths in the middle line at height —d,, /2. To

that end we rewrite (4.54) as
pw)fgl = p(w)[f]p(w)]g]

with N(S)
~ exp{Ht d (w,S)}Z 2
S = e S € BHY,
PN =5 o exp(Hiy (0, 8)}2°0) "
where
Bg’y = {S 50233, Stn =Y, SZ € [_dn/27dn/2) V]-Slgtn}m/l?na

N(S) = é1{si:—dn/2}.
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(4.57)



Here we use that f, g are invariant under the reflection (recall (4.31) and the symmetry of the
medium with respect to middle lines), and now also z,y € [—d,/2,d, /2).

On the set BiY there is a natural partial ordering:
Sl S SQ if and only if [Sl]z S [SQ]Z V1 S 1 S tn. (4.58)

Let S1V Sy and S1 A S5 denote the pointwise maximum, respectively, pointwise minimum of S
and Sy. Then

Hy, 4, (w, 81V 82) + Hy, 4, (w,S1 A S2) = Hy, g,(w,51) + Hy, 4, (w,S2), (4.59)
4.59
N(Sl \/SQ) +N(Sl /\82) = N(Sl) +N(SQ),

because, for each i, either [S; V S3]; = [S1]; and [S1 A S3]; = [S2]; or vice versa. Consequently,
p(w)(S1V S2)p(w)(S1 A S2) = p(w)(S1)p(w)(S2), V51,5, (4.60)

i.e., p(w) satisfies the convexity condition needed for the FKG-inequality.

Now, both S — f(S) and S — ¢(S) are non-decreasing in the partial ordering defined by
(4.58). Hence we conclude that (4.55) indeed holds, and therefore also (4.50). Since z,y were
fixed arbitrarily, the same is true when in (4.50) we take the minimum over z,y. Since w was
fixed arbitrarily, this completes the proof of (b) in (4.43).

(ii) We give the proof for o = +1. The proof for o = —1 is analogous. We will prove that

: p(():tn) C > . p(oytn);ln C V
O aaet i O )2 8 g Frada ™ (O
) E| min PO 1 (w)] > expl—eda}) Ve >0,n > nole), '
zyel—dn0] Y
where
PO (S) (w) = PO (S | AL, S € [~dn, 0] V1 < i < by, S =1) (@) (4.62)

with Px(oéi”)’ln the same probability measure as in (1.9) but with the interaction “switched off”

outside I,,, i.e., with (2.1) replaced by

Hl" ) (@0,8) =AY Ag, (S5)(wi + h). (4.63)
1€1ly

(a) By (4.50), the left-hand side of (4.61)(a) is non-decreasing in w. Therefore we get a lower
bound by putting w; = —1 for all 1 <14 < n except 7 € I,. Hence

POM 2,1 (w) > S seey, nszv xp{H[" ; (w,5) = 2X(1 — h)N{*(S)}
zadn I = T g exp{HI (@, 8) — 2A(1 — h)N*(S)}

: (4.64)
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where we recall (4.48) and define

NS = > 1{Ag,(S) = +1} (4.65)
1<i<tn,i¢In

to be the number of bonds in the path over the time interval (0, ¢,) \ I, that fall in a (+1)-layer.

Next, we do the reflection in the middle line at height —d,, /2, which gives
r.hs. (4.64) = p(Cr,)(w) (4.66)

with
exp{H/" ; (w,8) = 2A(1 — h)N{"(5)}2N ()

> gee exp{HtI:, 4, (@, 8) = 2X\(1 = B)N{(S)}2N ()’

p(S) S € B%Y, (4.67)
where we recall (4.57).
Our next step is to remove the N JIF”(S ) with the help of the Holley-inequality (see Holley [8]).
To that end, let
Kn ={S: NI*(S) =0} (4.68)

and define

1{S € Kn} exp{H]" ; (w,5)}2")

- . SeBp. (4.69)
S sepev 1{S € Kn} exp{H," ; (w,S)}2N ()

p(S)

We observe that p is stochastically larger than p in the partial ordering defined by (4.58), i.e.,
p(S1V S2)p(S1 A S2) > p(S1)p(S2), vV 51, Ss. (4.70)

Indeed, if Sy € K,,, then S; A Sy € K, and NJIF”(Sl V Sy) = NJIF”(Sl). Together with (4.59), this
proves (4.70). Since S — 1{S € Cr,} is non-decreasing in the partial ordering, as was noted
below (4.60), it follows from the Holley-inequality that

p(Cr,) > p(Cr,). (4.71)
Finally, we undo the reflection by removing the weight factor 2V(%), to obtain

A ZSeclnnBﬁ’ymlcn exp{HtI:,dn (w, S)}
p(Cr,) = I : (4.72)
ZSeBﬁ’ymKn exp{th’dn (w,S)}

which is equal to the right-hand side of (4.61)(a).

(b) The effect of “switching off” the interaction outside I,, is that the path measure in (0,¢,) \ I,
is that of simple random walk. As we will see shortly, this fact will allow us to control the

conditioning that appears in (4.62).
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Recall (4.31). Define

DL = {S: 3 € /2~ (/D logn,tnf2]: S € {0,—dn}},
D2 = {S: i€ [tnf2+ (30) logn, tn/2 + (70/2)logn]: §i € {0, ~du}},
[tn/2,tn /2 + (¢/2)logn] 37 € [t,/2 + (5¢/2)logn, t,/2 + (3() logn]:

Dy, = {S: 3Jie
S; € {0, —dn}, S; € {0, —dy}}.
(4.73)
Then
(A;, NA? NA;, NDE ND; NDp,) C A, C (AL NAZ NApL) (4.74)

with A} the event that no excursion in the left-half (i = 1) resp. the right-half (i = 2) of

(0,tn) \ I, exceeds (logmn, and Az, the same in I,,. With this observation we can estimate

: 5(0,tn),In
o2 o P 1) @)

Yty ei-dn0) Pol(AL, N Bl 0D}, N {S;, )2 =2'})
x Pl (Cr, 0 Az, 0 Br, N D1, 0 {8y, 2sciogn = D)
- x Py (A7 N B}, 0D} N {8y, =y}) (4.75)
Z min n n ;L - I
T,y €[—dn,0] fo’yle[fdn’o] Py(A;, NB; N {Stn/2 =2'})
XPl{;tdn ('AIn N BIn n {Stn/2+3ﬁlogn = y'})(w)
x Py (A7, N BE, N {S,, =y})

with B] the event that the path stays confined to [—d,,0] in the left-half (i = 1) resp. the
right-half (¢ = 2) of (0,%,) \ I, and By, the same in I,,. Here, P,(S) is the path measure for
simple random walk and Pﬁln(S) (w) is the path measure for the heteropolymer in I, (as in
(1.9)), both for the path starting from z.

Next, we estimate

rhs. (4.75) > I x II(w) x IIT (4.76)
with
I = m’m,g[li}én’o] Py(Dy, | AL, NBE N {S,, ;o =a'}),
) =, min Pl (Co 0 Dr | An 0B 0 Sy iacign =y D) (477
Irr = yﬂ/g[lirémo} Py (D} | A7 nBE N{Si, =y}).

Since t,, > d2 by (4.25), the minimum over z in I and y in I1] is not felt in the limit of large
n. Therefore we get

IIIT > exp{—c(d,/2)?/2(¢/2) log n} for some ¢ > 0, (4.78)

the right-hand side being the probability that simple random walk travels a distance d,, /2 within
time ({/2) logn in order to hit the interface as required in (4.73). Since d,, < logn by (1.16)(II),
the latter is much larger than the bound in the right-hand side of (4.61)(b).
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Thus, it remains to bound E(II(w)). This is a quantity for the heteropolymer in I, where

all the interaction with (0,¢,) \ I,, has vanished. First, we estimate
I1(w) > exp{—c(dn/2)?/2(¢/2) logn} Py (Cr, | Az, N Br, N {Si, j243105n = 0}) (w)  (4.79)

by an argument similar to that in the proof of Lemma 2.1. (The event Dy, is realized when the
path hits 0 at both ends of I,,.) Second, we use that d,, > log|I,,| ~ loglogn by (1.16)(I), to
obtain that

lim B [Py (Cr, | Ar, N Br, N {8y, /213100 = 0}) ()] = 1. (4.80)

n— 00
Indeed, this follows from the result in Albeverio and Zhou [1] cited at the end of Section 1.2,
namely, in P-probability the maximal length and the maximal height of an excursion in the
interval I, are of order log|I,|. (In [1], Theorem 5.3 and Theorem 6.1, this result was proved
only for h = 0, but it carries over to 0 < h < h.()\) by similar arguments; see in particular
Biskup and den Hollander [2], Theorem 3(e) and Lemma 4.) This, together with (1.16(II)),
finishes the proof.

5 Proof of Theorem 1.4

In this section we prove Theorem 1.4, which is our main result for the path behavior in the

localized regime L£. The proof is based on an upper bound (Lemma 5.1) and a lower bound

(Lemma 5.2) for the quantity defined in (1.14). The proof relies on Lemmas 3.2-3.3 and 4.3-4.4.

Recall (1.12-1.15). It is clear that, under the annealed measure E ® Péf)d’:), (gt)te[o,n] is a
simple random walk on d,Z with i.i.d. random waiting times, since the jump process

Np—1

(STk°9+(+l)+'f(+1) - STk—1°9+(+1)+'f'(+1))k:1 (5.1)

is an i.i.d. sequence of random variables taking the values +d,, with probability 1/2 each and

the medium D,, is symmetric with respect to the middle lines dD,, + d,,/2. So it remains to

prove (1.17). Since

Va (Sun) =E® BV[82,] = d2 E® By [Nun — 1], (5.2)

T .
E@B{™

the proof of (1.17) amounts to analyzing the asymptotic behavior of the expected number of
jumps Nyy,. This will be done in Lemmas 5.1-5.2 below and involves the quantity x(\, h) defined
in (4.19).

Lemma 5.1 Let (A, h) € L. Assume (1.16)(I) and (1.16)(IT). For all e4 > 0 and u € (0, 1),

E® B [Nun) < unexp{—x(\h)dn +ead}, 0 oo, (5.3)
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Proof of Lemma 5.1. Throughout the proof we assume that n is large enough. Let us first
resume what we know from Lemmas 3.2 and 4.3. Choose k£ > 0 and ¢y > 0 according to Lemma
23,0 >0,¢=(24+¢)/xk >2/kand e5 € (0,x_1(A, k) A x4+1(X, k). Then for all N € N and
l; €N (0 <4 < N) with "N (I + Clogn) < n we have

N
E® B [{#(+1) < 1o} N ({7 0 041y — Ti1 0 Bz(41) < li}] (5.4)
=1
0 if inf;l; < dpn/2,

<
< On + inf liexp{—x(_pi(A, h)d, + e5d, A1l otherwise,
( INC{O,...N}Z-EI_I[N (liexp { X(-1)i (A, h) 5 }))

where &, = can! ™" = ¢z exp{—(1 + (1) logn}. Let us next define

Xp {XU(Aa h)dn - 85dn} + dn/27

eon = Lo
1 (5.5)
Pon 5 (1 +exp{—xo(A h)d, + e5d, +logdy,}) .
If we put = {0 <i<N: [; < 6(_1)i7n}, then for all ¢ € I](\}) we have
l; exp {—X(,l)i()\, h)dy + e5dp } < P-1)in < (1= o)L, n — 0. (5.6)

Therefore (5.4) yields

N
{7(+1) <lh}n ﬂ{Ti 0 0x41) — Ti-10 0241y < i}
i=1

N
< <5n1{ll(vl)¢@} + 11) (li exp { —x(—1)i (A h)dn + e5dy } Lierw + 1i¢,](V1>)) Liint1;>d, /2)
1=

E® Po(f’d’:”)

N
= 5"1{I§)¢0, infli>dn/2) T H (p(*l)i’”l{d"/2§li<e(71>i,n} + 1{li26(—1>i,n}) ' (5:7)
i i=0

For N € Ny, let (Xg,...,Xn) be the random vector in NV*+! with distribution P given by

P r]\ﬁ{XZ <Il;}| = rhs. (5.7). (5.8)
i=0
Define TSII) =0 and Tk(l) = Ef:[] X;, k> 0. For t > 0, define
N = sup {k eNy: T, < t} . (5.9)
For k € {—1,...,K(n,t)} with K(n,t) = L%J, we have (recall (1.14))
E@ PN [N > k+1] = E@PY" [rpo ) +7(1) <1 (5.10)

< Plr{ <]

- P[Nt(l)Zk—lrl].
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Therefore we obtain from (5.10) that, for u € (0, 1),

) lun/(dn/2)]
E@E Y [Nul = Y. E@PY [Nun > k]
k=0
K(nyun)A|lun/(dn/2)|
- > BeRGNu>H
k=0
Lun/(dn /2)]
+ 3 E® B" [Nun > K] (5.11)
k=K (nun)A|un/(dn/2)]+1

< kZOP [Nz%) > k} + <(d:T/L2) - K(n,un))Jr P [ngl) > K(n,un)]

< (1 TR 1) 7 |~

< (logn)E [Nﬂ)} : (5.12)

un

Thus we are left with proving an upper bound for the expectation on the right-hand side of
(5.11), which only contains the random variables Xj.

To handle E[N&)], note that the X;’s do not have the same distribution: even 4 corresponds
to 0 = 41, odd 7 to ¢ = —1. Therefore we need to further simplify the problem. Let Yy = 0
and Y; = Xo;_9 + Xo;_1, ¢ € N. Then we have

NO = sup{k eNpy: T,Ei)l < un}

un

< 2sup{kEN0: T2(k 1<un}
k

= 2sup{kEN0: Zngun} (5.13)
i=1

and

N
() {Xai—2 + Xoi1 <1}

N
PN1{vi< li}] = P
i=1 i=1
N
= 6"1{11(3)750, infli>d,} T H (PLid<ticen) + Ltizen)) (5.14)
i i=1
where we introduce
1>p> lim [p—l—l,n + P — p-l—l,np—l,n] = 3/4, (5.15)
n—oo
en =€t +e_1p=dp+ Z %exp {X(,I)i()\, h)d, — 65dn} , (5.16)
i=0,1
IO ={i>1: l;<ey}. (5.17)

30



For N € Ny, let (Zy,...,Zx) be the random vector in NV with distribution

N

P|{z< li}] = r.hs. (5.14). (5.18)

1=1

Define Té ) =0 and T Zl 1 Zk, k € N. For u € (0,1), define
N?) = sup {k €eNp: T,§2) < un} . (5.19)
Using (5.10-5.14), we see that for u € (0,1),
E® B [Nun] < 2(logn) E [N&,%)] . (5.20)

Therefore it remains to calculate
E [Ngg] - Y PN > k}
= ZP -Tk(Jr)l < un]

- ZP'T,Q1 (k + 1)d, <un—(k+1)d]

un—(k+1)dpn
lun/dy—1] |5 570

= ¥ > P[Tk(j1 (k + 1)dy l(en_dn)] (5.21)
k=0 =0

Lun—(k‘+l)dnJ

en—dn

k41 _
ot > ( l )p’““ ‘(1= p)

k=0 =0

M |

|lun/en]+1

coun~S /dy, + Z Z <k + 1) PP~ py!

=0 k: k+1>1

< cun ' /d, + <% + 2) (1-p) L.
e

n

IA

Inserting this into (5.20) and recalling (5.16), we obtain that
E® E§" [Nun] < unexp {~x(A, h)dy + 2es5dy}, (5.22)

which completes the proof since e5 is arbitrary.

Lemma 5.2 Let (A, h) € L. Assume (1.16)(I) and (1.16)(IT). For all e¢ > 0 and u € (0, 1),

E® E’é?d’z) [Nun] > unexp {—x(X\, h)d, — e¢dp}, n — 00. (5.23)
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Proof of Lemma 5.2. Let us first resume what we know from Lemmas 3.3 and 4.4. Choose k > 0
and cg > 0 according to Lemma 2.3, {1 >0, (= (2+ (1)/k > 2/k, e7 > 0 and § > 0. Then for
all N e Nand [; € N (0 <7 < N) we have

N
E® A()(Si:) {7A'(+1) An > Lo} N ﬂ{(Tz o 9¢(+1)) An — (Ti—l o 0%(4,1)) An > Li} (5.24)
i=1
N )
< ((5n + I ((1 — exp {—X(,l)i()\,h)dn - 67dn})lz + 5n>> AT if (%),
=0
1 otherwise,

where L; = I; exp{dd,} —(logn, 6, = can' "¢ = cyexp{—(1+4¢;)logn}, and (%) is the condition

E L;<n and inf L; exp{—x(_l)i()\, h)d, — 2e7d, — dd,} > 1. (5.25)
N (2
(2

Again, our goal is to simplify the expression on the right-hand side of (5.25). Under (*) we have

IN

(]- — €Xp {_X(—l)i(Aa h)dn - 67dn})li exp {_lz% exp {_X(—l)i (>‘7 h)dn - 57dn}}

exp {—% exp {e7dn}} = 0(dn). (5.26)

IN

Note that lim,_,s 6, = 0.
For N € N, let (Xl, . ,XN) be the random vector in NV with distribution P given by

N 0 if Y. L; >mn,
PN {Xz > Lz}] = { 6, +(26,)N if ¥, L; <nand inf & > 1, (5.27)
. Z "
=1 1 otherwise,
where
en = exp{x(\ h)d, + 2e7dy, + 0d, } . (5.28)

Define Té?’) =0 and Tk(?’) = Zle X,;, k € N. For ¢t > 0, define
N® = sup {k eNy: TV < t} . (5.29)
Using a similar argument as in (5.10), we see that for all k € Ny U {1},
E@ P N> k+1]> P [N > k+1], (5.30)
and so we obtain, for u € (0, 1),
E® B\ [Nu] > E [Né?}} . (5.31)
Thus we are left with proving a lower bound for the expectation on the right-hand side of (5.31).
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We have

E [ng3;>] - Y PN > k}

= ZP :T,gi_)l < un}

= S P[T, — (k+ e, <un — (k+ 1)en] (5.32)

lun/en—1| LWJ

- ¥ S P[T - k dn =en — )]
k=0 =0

un—(k+1)e,

n—en

this term can be explicitly written down, so

o] - 8 (1 (BT ren))

k=0 =1

Since lim,_, = u < 1, only the term with [ = 0 contributes asymptotically. But

un lun/en—1]|
> __5n + Z (1 - 26n)k_1
“n k=0
1— 26,

- = [1 —(- zan)un/en} (1+ o(1)) (5.33)

_ 1‘555“ [1_exp{—ﬂ25n(1+o(1))}]

€n

= (1-26)2(1 + o(1)).

€n

Inserting this into (5.31), we obtain that
E ® B [Nun] > unexp {—x(\,h)dy — 3e7dy, — 8y}, (5.34)

which finishes the proof since 7 and § are arbitrary.
Combining (5.2) and Lemmas 5.1-5.2, we obtain (1.17) in Theorem 1.4. The bounds x (A, h) €
(0,00) were already mentioned in (4.18-4.19).

|
6 Proof of Theorem 1.5
In this section we prove Theorem 1.5. Recall the variational problem in (4.18),
X Ou 1) = inflytio (0 1) + T, (6.1
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where I is the rate function in (4.14) and py (A, h) is the quantity defined in (4.2). Throughout
the proof, A € (0, 00) is fixed.

(i) It is immediate from (4.1-4.2) and the symmetry of PP under the reflection w — —w that
:U‘+1(>‘70) = :U‘fl(>‘70)' ConsequentIY7 X+1(>‘70) = X*1(>‘70) via (61)
(ii) Return to (4.3). Fix 0 < hg < hy < h(\) and write

exp {/\ Y (A(S) — o) (wi + hl)} = 00"™(S) exp {A Y (A(S) = o) (w; + hz)} (6.2)
=1

i=1
with

O™ (S) = exp {A(m —h2) > (A(S;) - a)} : (6.3)
It follows from (6.3) that, for any S,

exp{—2A(h1 — ho)m} < O™ (8) <1,
1< 0%™(S) < exp{2A(hy — ha)m).

Consequently, for any w,
Y(O’m) (wa +1)(>‘a hQ) < Y(O’m) (wa +1)(>‘a hl) < eXp{ZA(hl - h2)m} Y(O’m) (wa +1)(>‘a h2)a

Y Om) (w, —1)(X, ha) exp{—2A(h1 — ha)m} <Y O™ (w, —1)(\, h1) < VO™ (w, —1)(X, ha).
(6.5)
Via (4.5), this shows that h — us (A, h) is continuous for o = %1, non-increasing for o = +1 and
non-decreasing for o = —1. Via (6.1), this proves that h — x,(\, h) is continuous for o = £1,

non-increasing for o = +1 and non-decreasing for ¢ = —1.

(iii) By Jensen, Theorem 1.1 (see also Bolthausen and den Hollander [3], Lemmas 1 and 2), (4.3)

and the strong law of large numbers for w, we have

%logE[Y(O’Q")(w,U)] > %E[log Y(O’Q”)(w,a)],
(6.6)
lim 5 1og[l/Y®?)(w,0) = ¢(A\,h)—cAh P —a.s. and in L}(P).

n—o0

Therefore 115(A, h) < ¢(A, h) —oAh. Hence limpqp, (n) pi41(A, h) = 0. Thus limpyp,x) X+1(A h) =
0, because inf,>q I(y) = I(oo) = 0.
|
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