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Abstract: Standard variance components method for mapping quantitative trait loci is derived
on the assumption of normality. Unsurprisingly, statistical tests based on this method do not
perform so well if this assumption is not satisfied. We use statistical concept of copulas to relax
this assumption and derive a test that can perform well under any distribution of continuous trait.
In particular, we discuss bivariate normal copulas in the context of sib-pair studies. Our approach
is illustrated with a linkage analysis of lipoprotein(a) levels, which are highly skewed in dizygotic
twins. We demonstrate that the asymptotic critical levels of the test can still be calculated using
the interval mapping approach of Lander and Botstein (1989). The new method can be extended
to more general pedigrees and multivariate phenotypes in a similar way as the original variance
components method.
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Copulas in QTL Mapping

1 Introduction

In human genetics the linkage analysisgofantitative trait loci— QTL tries to detect a
connection between genetic similarity at a given marker (commonly measuriei@y

tity by descent IBD status) and similarity of phenotypes (measured in many different
ways). Performing a statistical analysis in such a study, we typically cannot influence the
way genetic similarity is measured, but we can choose the way to measure similarity of
phenotypes. Most popular procedures use the notion of linear correlation to do so. The
correlation is the canonical measure of dependence in the world of (multivariate) normal
distributions, but it can be less suitable when the normality assumption is not met. The
most general way of expressing stochastic dependence between variablesoisws

We show how this well established statistical tool can be applied in QTL linkage analysis
with a little extra effort and potentially many benefits. One particular copula, namely
the bivariate normal copul@ discussed in some detail below. In particular, we demon-
strate how a statistical analysis based on the normal copula model deals with problems of
non-normality that appear in many practical studies.

Suppose we are given data from a study basead sib-pairs. We denote the trait
values of sib-pairs (phenotypes) bY; ,,Y;2) with i = 1,...,n. Their IBD status at a
markert is a random variable with values {0, 1, 2} denoted byX;(¢) withi =1,...,n
again. Observe that in the genetics literatiigt) are frequently denoted a&sr;(¢). In
the sequel we concentrate on one fixed marker (hence we ignore the varaatngust
write X;). Moreover, we ignore uncertainties concerning the measurements af;‘the
The classical method of QTL linkage analysis is due to Haseman and Elston (1972).
It suggests regressing the squared differefi¢e — Y;2)? on X; and declarindinkage
whenever one finds evidence for a negative slope of the regression line. One can easily
see (as in Sham (1998) for instance) that this boils down to a test wether the correlation
corr(Y;1,Y; 2| X;) can be linearly regressed 0§} with a positive coefficient.

In the last decade likelihood models have been introduced to obtain more powerful
tests for the presence of QTLs when data satisfy additional assumptions. An example
of the univariate likelihood model is given in Kruglyak and Lander (1995). Somewhat
later, Fulker and Cherny (1996) showed an example of a bivariate model; this approach is
commonly known as theariance components methdgloth of these likelihood methods
test essentially for the very same regression as the Haseman-Elston method, but assum-
ing more about the data, namely univariate or multivariate normality of the trait values.
Naturally, these methods have more power when their assumptions are met. However,
when the trait distribution deviates from normality neither their power nor their signifi-
cance level can be guaranteed anymore unless some adjustments are made. This has been
an important topic of research in the last couple of years, see for instance Blangero et al.
(2000) and Sham et al. (2000). For an interesting viewpoint that relates Haseman-Elston
and similar methods with variance components see Putter et al. (2002).



Remark 1.1 Observe that all of the methods above consider it safe to assume that the
marginal distribution of the phenotypes does not change with IBD status, and that it is
only dependencbetween them that does. And it is this change in dependence between
traits that we want to detect. Moreover, in sib-pair studies it is reasonable to assume
that the marginal distributions of the traits are equal, ¥¢; andY;, have the same
distribution function.

2 Copulas

We have explained how the classical methods of linkage analysis measure dependence
between the traits in linkage analysis using correlation coefficients. If the multivariate
normality assumption does not hold this is not such a natural idea anymore. Since it is
(almost always) reasonable to assume that we do not have to worry about a change in
marginal distribution we can apply an extremely useful tool which statistical theory uses
to separate the marginal distributions and the dependence structure, namely copulas.

We restrict attention to the sib-pair studies and hence to the case of bivariate distribu-
tions and bivariate copulas (for the more general theory see Joe (1997) or Nelsen (1999)).
Let us denote by the joint distribution function of the random variablEsandY;

F(y1,y2) = P(Yr <y, Yo <o), y1,y2 € R.

It completely describes the dependence structure as well as the marginal distributions of
the pair(Y3, Y3).

Assume now that the random variablsandY; have marginal distribution functions
F; and F; respectively. The copula of the pdir;, Y3) is defined as the joint distribution
function C' of the pair(F; (Y1), F5(Y2)). Recall that if the distribution function’; and
Fy are continuous (which we will assume throughout) the transformed random variables
F1(Yy) and F5(Y;) both have a uniform distribution on the intervyal 1]. Consequently,
any distribution function of a random vector with values in the unit sqlarg x [0, 1]
and with uniform marginal distributions can be viewed as a copula. Note that

(1) F(y1,y2) = C(F1(y1), Fa(y2)) y1,%2 € R.

From this formula we can see how a joint distribution function "splits up into” three parts:
the copulaC’ and the marginal distribution functiorf§ and Fs.

Remark 2.1 It is straightforward to show that the copula does not change if we trans-
form each component by a strictly increasing function. In other words, the copula of the
random vecto(h, (Y7), ho(Y3)) is the same as the copula @f;, Y3) for strictly increas-

ing functionsh; andh,. The marginal distributions change however, frof, F;,) to
(Fiohy', Fyohyt).

One of the most important copulas is the independence copula

Co(uy,uz) = uquz , uy,ug € [0,1],



which is obtained whenever the two random variabfeandY; are independent. On the
opposite end of the spectrum we have the copula of positive dependence

Cy(uy,uz) = min{uy, us}, uy,ug € [0,1],

which, for instance, can be obtained whén= ¢(Y>) for some strictly increasing func-
tion g. Similarly we can define the copula of negative dependerice Observe that
copulaCy has constant (uniform) density on the unit square. On the other hand, copu-
las C';, andC_ do not have densities. Their distributions concentrate on the diagonals
uy = uy anduy = 1 — uy respectively.

As stated earlier, one can frequently assume that the phenotypic traits of a pair of sibs
have the same marginal distribution, which means that we calf setF;. This restricts
the class of copulas we have to consider in our applications even further to the case of the
so called exchangeable copulas. Their distributions are symmetric around the diagonal
Uy = Uq.

Roughly speaking, in sib-pair studies we expect (in the vicinity of QTLs) that the
copula of a pair of phenotypé¥7, Y;) conditioned on their IBD statu¥ = x gets closer
and closer ta”, (and more distant frond’y) asz increases from 0 to 2. But it is still
not obvious how to measure this distance in general. This is one of the reasons why we
restrict our attention to parametric families of copulas.

The most prominent place in our applications is dedicated to the famityafiate
normal copulas They arise, in the way explained above, from a random veg&for;)
that has a multivariate normal distribution. These copulas do not depend on the mean
and variance of th&;’s but only on their mutual correlation coefficiemt They are equal
to C_ andC, whenp = —1 or 1 respectively. For1 < p < 1, we denote them by

C%(y1,y2) and observe that by (1)
2 _ 2
s 2p8t+t>>dsdt,

2) C° 7 (y1) 27 l(y2) 1 _(
, = —————eX
(2) N(yl y2) /_oO /_OO N 2 p ( 2(1 — pQ)

where byd we denote the standard normal distribution function. This copula has a density
as well. Two examples of this density are shown in Figure 1, namely fer1/4 and
p=4/5.

Recall that the variance components method assumes that the pherofypés.)
conditioned on the IBD values have a bivariate normal distribution. For simplicity we
assume further that the random varialdleg i =1,...,n, j = 1,2, are standardized so
that they all have mean zero and variance one. It can be shown (see Tang and Siegmund
(2002)) that if we estimate expectation and variance of the traits in real-life studies this
does not influence the asymptotic theory of the test statistic (see also Appendix). To make
the assumptions behind the variance components approach more precise, we denote by
F(-,-|z) the conditional distribution of the phenotyp@§, Y>) given that their IBD status
X equalse, i.e. F(y1, yo|z) = P(Y7 <y, Ys < 4| X = x) and assume

Condition (A) The conditional distribution functiod’(-, -|x) is a bivariate normal dis-
tribution function with mean 0, variane€’ (assumed to be equal to 1 unless stated other-
wise), and a correlation coefficient that dependsc@sp(z) = p+y(z—1), x =0, 1, 2.
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Figure 1: Contour plots of densities for coputa$* andC%®

Consequently, there is a straightforward likelihood ratio test for the null hypothesis
~v = 0 against the alternative > 0. To makep(z) a proper correlation coefficient we
need|p| + 7| < 1.

In real life studies however, the normality assumption frequently fails to hold even
for the univariate variable¥; ;, Y;,. Trying to correct for this, researchers frequently
apply some (usually continuous but non-linear, for instance logarithmic) transformation
to the data to bring them more in line with this assumption. By doing so, they implicitly
assume that the bivariate distribution of the traits comes fronméinemal copula model
In other words, they assume that there is a (strictly monotone) transforngegiach that
(Y. Yi2) = (97" (Win), g7 (Wi2)) where the pairgIV;,, W) satisfy condition (A).

This leads to the following generalization of the previous condition

Condition (B) There exists a strictly monotone functigsuch that the distribution func-
tion of the random vectors

(3 (Wia, Wiz) = (9(Yin),9(Yi2)) -
conditional onX; = z satisfies Condition (A).

It follows that the copul&y |, of the pair(Y;;,Y;.) when conditioned otX; = x is the
same as the one fQiV; ;, W, »), i.e. using the notation of (2) we can write

(4) Cype = O
The marginal distribution of botl; ; andY; » has the form

(5) Fi(y)=PY1 <y)=2(g(y), yeR.

By (1), the last two formulas completely specify the joint distributior{f;, Y; ») con-
ditioned onkX;.



Hence the bivariate normal copula model is widely used already. We make it our main
assumption in the rest of the article. Note that this model includes the standard variance
components model whey{x) = z. But it also allows any continuous marginal distribu-
tion of the phenotypes. The only assumption it makes, concerns the dependence structure
between them. Still, there are situations when such an assumption may not be appropri-
ate. In such circumstances the dependence between traits should be better modelled by
some other family of copulas, many examples can be found in Nelsen (1999)).

Observe further that by choosing this one-parameter family of copulas, we can mea-
sure similarity between phenotyp&s;, andY;, given X; = z; by one number again,
namelyp;, = p + ~v(X; — 1). However,p; represents the correlation betwddhvalues
and not betweeny” values. For the latter ones it has an interpretation as the maximum
correlation coefficient (for the precise definition see Appendix).

In real-life studies the function in (3) is unknown. One may try to guegsas one
frequently does in practice, but there is another option. If we would know the marginal
distribution F; of the trait we could use relation (5) to obtain

(6) gy) =2 '(Fi(y), yeR.

Hence knowingF; means knowingy too. In some cases, assuming that we knigws

not unrealistic since the marginal distribution of the traits can be estimated from the larger
population which contains the sibs and not only from the data in the study. Frequently
I is not known and has to be estimated from the data. An obvious estimaktpri®the
empirical distribution of all of th@n valuesY; ;, Y; 2,7 = 1, ..., n of the phenotypic trait.
Details of this procedure will be explained in the next section.

One can give an alternative explanation for the procedure we advocate using the con-
cept of van der Waerden normal scores rank correlation coefficient. Readers familiar with
this notion will realize that we essentially use this coefficient now to measure similarity
between phenotypic traits given their IBD status and not the linear correlation. Apart
from that we leave the variance component approach basically unaltered.

There are other families of copulas that one could, and in some cases should, use in
practice. However, the bivariate normal copulas have some obvious advantages: most
researchers are familiar with them, even more, they implicitly use them in many studies.
Moreover, the commonly used procedures, software and significance levels can be applied
directly.

3 Copulasinlinkage

Recall that the variance components method assumes that the data satisfy condition (A)
and that it tests the hypothesis> 0 using the log likelihood ratio test statistic

(7 2 (H;gxl(p, 7) — max(p, 0)>

wherel denotes the logarithm of the likelihood of the phenotypes given the values of
their IBD status. Since sib-pairs are assumed to be independenthe sum of the
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contributions of each pair

Up,y) =D 1Yl Xisp,7)
=1
Let us denote by, (-|-; p, v) the score function of the log likelihood (i.e. its partial deriva-
tive with respect tay). It is known (see van der Vaart (1998) for instance) that the like-
lihood ratio test in (7) is locally asymptotically equivalent to the test based on the score
statistic

1 ¢ .
Zy = %ZZW(YJX@';,%, 0)/v 1y,
i=1

wherep,, is the maximum likelihood estimator gfand I, denotes the diagonal entry of

the Fisher information matrix corresponding to the paramefgsee Putter et al. (2002)

or Tang and Siegmund (2002)).. In practi¢e above is also replaced by an appropriate
estimate. It gives a suitable normalization when the assumptions of the model hold. How-
ever, in practice it may be advisable to use a "robustified” version of the stafjstithat

is

I ) 1 )
®) Zn = =3 L YilXii 0,0/ | 1 DYl X35 0)
=1 i=1

For a detailed derivation of this statistic see for instance Tang (2000) or Putter et al.
(2002). Observe that the statisti, has a standard normal distribution asymptotically,
even if condition (A) does not hold, as long gshas finite variance and the same mean
for each valuer; of the IBD status. Linkage is now concluded whene¥gis sufficiently
large.

Under the bivariate normal copula model, i.e. condition (B), this same procedure can
be applied to appropriately transformed phenotypes, that is to the values (cf. (6))

i = (V5 Y) = (@ (A(Y). e (A(Y), =1,

Observe that the valugd’’, Y;;) and X; satisfy assumption (A) directly since by Re-
mark 2.1 they have the same copula and the same marginal distribution as the values
(Wi1, W;2) givenin (3).

As mentioned eatrlier, if the marginal distributiéh of theY’s has to be estimated, it
is natural to take",, the empirical distribution function of alln trait values (multiplied
by 2n/(2n + 1) to avoid that it takes the value 1, sinée!(1) = oo) as the estimator. It
has the form

Fo(t) #{Y; <t:i=1,...,n k=12}.

T+l
Under our conditions we have with probability one

Fon(y) — Fi(y) forally e R, asn — oo,

which follows by the strong law of large numbers for instance. This justifies the applica-
tion of the variance component method on the transformed phenotypes

Q) Y= (YY) = (@ (Fa(Yin), @ (Fa(Yin),  i=1,....n.
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It is important to stress that if any of the statistics introduced in (7) or (8) is calculated
with these new values, asymptotic significance levels (as those in Dupuis and Siegmund
(1999)) stay the same as in the original variance component model, see Proposition 6.3 in
the Appendix. They will also give us efficient tests asymptotically. We demonstrate ap-
plicability and usefulness of this approach by a small simulation study in the next section.

4 Real data and simulations

We apply the method introduced in the previous section on one particular data set. The
phenotypic trait measured is lipoprotein level Lp(a) and the sibs involved are dizygotic
twins. This data set is a part of a larger data set produced in an international study involv-
ing twins from Australia, The Netherlands, and Sweden. Details of the study can be found
in Beekman et al. (2002). To illustrate the normal copula method we restrict ourselves
to the Australian sample and chromosomes 1 and 6. We ignore the sex of the sibs, since
Lp(a) levels and variances do not systematically vary with sex. The first histogram in
Figure 2 shows that the Lp(a) levels have a distribution that is extremely skewed. There-
fore, the levels have been transformed by a classical device — the natural logarithm. The
resulting histogram (see Figure 2) seems to indicate that skewness is not a serious prob-
lem anymore, but the distribution of the transformed values is still far from normal. This
can be checked by a rigorous test but it is also clear just from looking @dhelot in

Figure 2. If we perform the transformation by the empirical distribution function given in
(9) the marginal distribution of the data looks very close to normal; see the histogram at
the bottom right corner of Figure 2.

We have performed three tests over a given set of markers. The first one is the classical
Haseman-Elston test performed on the logarithms of the original data, the second one is
the log-likelihood ratio test performed on the same values, and finally, the third test is the
same as the second one but it uses the normal copula approach to transform the data. For
this illustration, we have used the estimated expectation of the IBD status (usually called
7 values) of the twins and not the estimated IBD probabilities.

For both chromosomes all three tests achieve their maximum at approximately the
same location, as can be seen in Figure 3. In both cases the copula based test has the
highest LOD score at the location of suspected QTL (i.e. the location of the maximum).
Note that it also gives less significance (i.e. the smaller LOD score) to the second largest
local maximum of the LOD score based on the usual variance component test. Loosely
speaking, this might mean that the copula based test distinguishes better between "true”
and "false” QTLs. We would like to stress that these results change if we calculate LOD
scores conditionally on the QTL at the other chromosome. In that case only QTL at
chromosome 6 appears to be significant.

We have also constructed a small simulation study to compare the powers of the dif-
ferent test procedures. It is based on 500 simulations of 200 pairs of phenotypes and their
IBD values at the fixed QTL. They are generated from the standard variance components
model. More precisely, the distribution of the pairs satisfies Condition (A) with3/5
and~y = 1/5. After that we have performed the usual tests: the log-likelihood ratio test,
see (7), the Haseman-Elston test, and the score test, see (8). We represent the results
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Figure 2: Histograms of lipoprotein levels, histogram of their logarith@{g;plot of the
logarithms against normal distribution and (at the bottom right corner) histogram of the
values transformed nonparametrically using formula (9).
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based on the 500 simulation runs in the shape of box-plots in Figure 4.

Finally we have transformed these data using two nonlinear transformations. We did
this by taking the cube and the cubed root of the generated phenotypes and renormalizing
them to have mean 0 and variance 1. Observe that the transformed phenotypes come
from the bivariate copula model, i.e. they satisfy Condition (B). On the transformed data
we have applied the Haseman-Elston method and the "robustified” score test (8). They
both exhibit a significant decrease in power to detect this QTL now. However, for the
copula based approach this is not a problem. One can see this by comparing box-plots of
the original log-likelihood ratio test statistic (LLR) and the same statistic applied on the
nonparametrically transformed phenotypes (C-LLR), see (9).
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Figure 4: Boxplots from 500 independent simulations. All test statistics are plotted on
the LOD scale. LLR is the log-likelihood ratio statistic (7); C-LLR is the copula based
log-likelihood ratio statisticZ, Zq¢,, Zg» H, Hg:, and H g, are the score test statistics

(8) and the Haseman-Elston test statistics calculated on the original data and the same
data after two nonlinear transformationg,and g,. For comparison, the dashed line at

the level 3 is added to the plot.

5 Discussion

The bivariate normal copula model suggested in Condition (B) is well studied in the statis-
tics literature (see Nelsen (1999)). We are convinced that it can be successfully applied in
practical quantitative trait linkage analysis in particular when the traits have marginal dis-
tributions that are very far from normal. Researchers who perform ad hoc transformations
of the traits in order to make them comply with the model behind the variance components
method, in fact, implicitly accept the validity of normal copula model. The normal cop-
ula model includes the variance components model but it also allows any (continuous)
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marginal distribution of the phenotypes. Its only restrictions concern the dependence
structure between traits.

We have illustrated its application in the case of independent sib-pair studies, but the
method is readily extendable to different pedigrees in the same way as the variance com-
ponents method. The assumption of additivity of the trait can be relaxed by including a
dominance effect as well. Since the method performs a simple ranks-based transforma-
tion of the data and then applies the usual test procedures, it can be easily applied using
any statistical software that supports the variance components approach.

In linkage analysis of QTLs we typically need to adjust the critical values because of
multiple testing issues. Recall that we usually test by checkingif; Z,,(t) > b where
Z,(t) are test statistics, where the valddzelong to a given set of markers and wheie
a suitably chosen critical value. For a dense set of markers, the asymptotic theory due to
Lander and Botstein (1989) (see also Dupuis and Siegmund (1999)) relates probabilities
of exceedance of score statistics over large thresholds with the distribution of maxima
of a certain stochastic process (Ornstein-Uhlenbeck process) under usual assumptions.
Because one can show that the convergence in Proposition 6.3 in the Appendix holds
not only for each fixed marker, but also at the level of processes, it follows that these
asymptotic thresholds angvalues apply unaltered to the same statistic applied on the
transformed data. In particular, asymptotic critical values for the score statigtim
Appendix) in the genome wide human studies with significance level 0.05 stay at
b = 4.08 or 3.62 on the LOD scale. Similarly, when the markers are equally spaced, the
theory of Feingold et al. (1993) applies directly. Of course, one can apply Monte Carlo
simulations to obtain more precigevalues empirically.
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6 Appendix

The main result of this section is contained in Proposition 6.3. Roughly speaking it states
that asymptotically the critical values that are used for the test in the variance components
method remain the same if we apply the more general bivariate normal copula method
from Section 3. Observe first that the score funcligiY |z; p, 0) used in the statisti¢Z,
defined in (8) has the following form

L (Y| Xi50,0) = (X; — D)A(Y4, ),
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whereh is defined by

p S? D}
h(Y“p) = h((}/i,h}/;ﬂ)?p) = 1 — ,02 + 2(1 +p)2 B 2(1 _ ,0)2

with S; = (Y;‘J + }/;72)/\/5 andDi = (Y;‘J — Y;,Q)/\/E Write

1 — 1 &
Z,(Y, X, p) = %Zu(wxi;p, 0)/| =~ D B(YilXi:p,0).
=1 =1

and recall thatz,, = Z,(Y,X, p,). Hence, in the statisti&,, we approximate by its
sample versiom,,. Our first lemma claims that this does not influence the asymptotic

behavior of the statistiZ,,. By L we denote convergence in probability.

Lemma 6.1 If the joint distribution of the traitgY;) is independent of their IBD statuses
(X;), and satisfie(Y; ;.)? < oo, then ifp, L p we have

Zo(Y, X, pp) — Zo(Y, X, p) 5 0.
Proof. We observe that the

1 n
- > (Y| Xi5p,0)
i=1

converges to the same constant if we substitubg 5, as long a,, R p becausé, is
differentiable function op. So it suffices to consider the numeratorsHf(-)

Lo p ss D}
ﬁ;<xi_1>(1—02+2(1+,0)2 2(1—'0)2).

Observe now that we have

1 — 9 1 1 P
%E(X" R (2(1 +p) 201 +ﬁn)2> -0

by considering the second moment of this sum and taking into account the null hypoth-
esis of independence betwediy's andY; ;'s. Since the other terms in the difference
Z.(Y, X, pn) — Z,(Y, X, p) can be treated similarly the statement of the lemma follows.

O

Next we need to show that by using the valdeésfrom (9) instead ofY we do not
change the asymptotic behavior of the test statistic.

Lemma 6.2 Under Condition (B) and the null hypothesis= 0

=1 =1

% <Z(X% - 1)h(Yg,p) - Z(Xz - 1)h(Yj,p)> i 0
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Proof The statement of the lemma follows immediately if we can show that the expres-
sion on the left-hand side above converges toD,inBut if we look at its second moment,
we can see that it equals

E(X; = 1) E(h(Y], p) — h(Y}.p))* =
LB [0 (B (V). 7 (P (Vi) — (@7 (B (¥;.)). 97 (B (Vi)
where we have used that under the null hypothesis the following holds
E[(X: = )X, — D(h(Y} p) = h(Y;, ) (h(Y} p) = h(YG,p)] =0, for i+ j.

To show that the expectation above converges to 0, note agaifithat F, pointwise
with probability 1. Therefore we just need to show the uniform integrability of

B (@7 (Bn(¥)), 7 (Fon(¥:2)))

under the null hypothesis. Because of the form of the fundtiarsuffices to show that
random variables

A

O (Fo (Vi 1)) 2 (Fon(Vin)) and O (Fh, (Vi)
are uniformly square integrable. Let us consider only the first of these since the second
one is easier to analyze. Uniform integrability follows if we can show

2+¢
< 00,

A~

Sup B[ ©71 (P (Vi) @™ (P (Yi2))

for somes > 0. By the Cauchy-Schwarz inequality, it is sufficient to show that
A 2(2+¢)
sup E (@‘1(F2n(Y;71))> < 0.

Observe thatF%(Yi,l) is a random variable with a uniform distribution on the values
{k/(2n+1):k=1,...,2n}. The claim now follows from the fact that

3 (@ (k2 4 1) BN < o

k=1

for a standard normal random varial¥eand anye > 0. O

If we calculate the statisti,, using the value¥; andY respectively it follows from
the two lemmas above that these two statistics have the same limiting behavior. To see
this denote the sample correlations based on the sequé¥iggand(Y)) by

. i YiiYi > VY
VI (V2 i (V) VI (Va2 T (V)

and p, =
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Observe that by a strong law of large numbgfs— p with probability 1. To show that
the same holds fgi#’ we can use a similar argument as in the proof of Lemma 6.2. Note,
for instance, that the sample covariances

and éro=

/ / n * *
g i VY Dim YinYi
Cn n
n n

~x P .
¢t — 0, simply because

n

satisfyc, —
/ ! 2
E’Y;1Yz2 - YZ*1Y;*2’ —0

holds by the proof of Lemma 6.2. A similar result holds for the sample variances. So we
may conclude that/, EiR p-

Proposition 6.3 Under condition (B) and the null hypothesis= 0
(20) Z,(Y*, X, pt) — Z,(Y', X pn) — 0.

Proof As we have shown abov&, 5/, EiR p, SO by the first lemma we can ugenstead

of its estimates in the definition &f* andZ/ . In the second lemma we have shown that
the difference of the numerators in the two statisticsi6,/n). It is enough to show that
the denominators satisfy

1 n n § P
- (Z ROY)IX550,0) = > L2(Y; X5, 0)) = 0.
i=1 i=1

But this follows by exactly the same method as used in the proof of lemma 6.2 O

It is possible to give yet another interpretation of the correlgtitimt is estimated by
o, above. For any pair of random variabl@s§, Y2) by p(Y1, Y2) we denote the correlation
between them. However, we may also consider the correlatio(¥@f andb(Y>) for any
real transformations andb such thatd < var(a(Y;)), var(b(Ys)) < oo. If we take a
supremum over all these transformations we getntlagimum correlation coefficieif
the pair(Y;, Y3)
par(Y1, Ya) = sup p(a(¥1), b(¥2))

It is known that for the bivariate normal copula model given in (3) we haye= |p| =

|p(W71, Ws)|. In other words, the van der Waerden normal scores rank correlation coeffi-
cientp!, is also an estimator of the maximum correlation coefficient between phenotypic
traits. The properties of this estimator are studied in Klaassen and Wellner (1997). They
also show thap/, is an asymptotically efficient estimator of
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