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Abstract

We characterize in this paper parallelepipeds in R™ within the family
of all convex bodies by a property of special measures on its boundary.
We show that these measures are related to weak derivatives (in the sense
of [5] and [8]) of convex-valued functions. The results can be applied (see
[9]) to derive a generalization of a theorem of Lehmann (see [4]) on the
comparison of uniform location experiments.
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1 Introduction

The investigation of special convex bodies and especially their characterization
is a main topic in classical convex geometry (see [2] chapter 1.11). There exist
several characterizations of parallelepipeds, simplexes and ellipsoids within the
family of convex bodies (see [3], [1], [7] and [2]). In section 2 of this paper we
give a new characterization of parallelepipeds by a property of certain measures
on the boundary of convex sets. In section 3 we define measure valued weak
derivatives of convex valued mappings. We show that the measures used to
characterize parallelepipeds in section 2 are related to the derivatives of convex
valued mappings given by shifts of the parallelepiped (convex body) in the di-
rections of its 1-dimensional edges. We note that the results of section 3 can be
used to prove a theorem on the comparison of uniform location experiments [9]
which generalizes Theorem 3.1 of [4].

We denote by N = {1,2,...} the set of positive integers. By S™~! we denote
the unit sphere in R™, by (.,.) we denote the euclidean scalar product on R™



and by ||.|[2 we denote the norm associated with (.,.). By V we denote the
closure of a set V', by 15 we denote the indicator function of a set B and by &,
we denote the Dirac measure at a point z. Given a countable set M we denote
by dps the counting measure on M, ie. dp(A) = > cp0m(A). Given two
measures g and v on R™ we denote by g * v the convolution of 4 and v. If v is
absolutely continuous with respect to p we write ¥ << p and we denote by g—z
the Radon-Nykodim derivative of v with respect to u. By A we denote Lebesgue
measure on R". Given a measure y and a function f we denote by f - u the
measure defined by [f - u](A) := [, f du. We denote by af f(C) the affine Hull
of a set C. We say that a convex set C is parallel to a convex set D and write
Cl|Ditaff(C)Caff(D)+voraff(D)Caff(C)+v for some v € R™. Given
a measure p and a p-measurable set Y we let p |y (A) := u(ANY) denote the
restriction of p to the y-measurable subsets of Y.

2 The characterization Theorem

We state and prove in this section Theorem 1 which says that a convex body C
(a convex compact subset of R™ with nonempty interior) is a parallelepiped if
and only if certain measures on the boundary 9C of C possess a certain property.

Definition 1 Given a convez body C C R™ and x € 9C we denote by V,C the
set of all hyper planes of support to C at x. We denote by n : 0C — S™ an
arbitrary mapping which maps the point x € OC to a vector n(xz) which is an
outward unit normal vector to C in x, i.e., (n(z),y —x) <0 and ||n(x)|2 = 1.
Given a convex body C we denote by osc the surface area measure on OC.

Remark 1 By an application of Theorem 1.17 of [6] (which is a special case of
Rademachers Theorem (Theorem 1.18 of [6]) there exists a set D with ogc (D) =
0 such that n(.) is uniquely defined on OC'\ D.

Definition 2 Given a vector w € R™ and a convex body C C R™ we denote

C
by <C the unique measure for which dd;(;”c = (n(.),w) - ogpc. By Remark 1 this

definition is independent of the special choice of the function n in Definition 1.

Theorem 1 A convex body C C R™ is a parallelepiped with one dimensional
edges parallel {w1,...,wy,} if and only if there exists a linearly independent set
{wi,...,wn} of vectors w; € R™ such that for any j € {1,...,m} there exists
a countable set R C R and an rg € R such that

[Cuc)j * 5{T'wj\r€R}](B) =0

for any Borel measurable set B C 9(C+ro-wj), i.e. if and only ifggj *0 (7w, |reR)
vanishes on the Borel measurable subsets of 0(C + 1o - wj).



Proof: If C is a parallelepiped we just have to choose w; such that |jw;]|
equals the length of the one dimensional edge of C' which is parallel to w;,
R ={-1,0,1} and ro = 0 independent of j. Then

[guc,j * 0pw;|rery](B) = 0 for all Borel measurable sets B C 9(C + 7o - w;)

which proves the only if part. The only if part is the consequence of the lemmas
1, 2 and 3 which we state and prove below. O

Proposition 1 Given a convexr body C, a vector w # 0, a real number 51 and
a point © € 0C + Srw. If for arbitrary hyper planes H

Hlw = H ¢V,[C + fu]
then there exists one and only one By # (1 such that x € 0C + Gow.

Proof. We show that z + Rw Nint(C + B1w) # (. Otherwise there would
exist a hyperplane H which separates x + Rw and C + Byw. This hyperplane
would fulfill H € V,[C'+ S1w] and H||lw which contradicts our hypothesis. Thus
there exists y € (x + Rw) Nint(C + f1w). By compactness and convexity of C'
we get that (x 4+ Rw) N (0C + f1w) = (y +Rw) N (0C + B1w) consists of exactly
two points. One of them is x the other one is x + yw for some v € R. Thus for
B2 # 1 we have x € C + [ow if and only if 85 = 5y — . O

Proposition 2 Given a vector w # 0. Suppose that the intersection of a convex
body C and its translate C' + aw (with o # 0) is again a convex body, i.e.,
int(CN(C+aw)) #0. Then

opc({z |2 €9CN(IC + aw) s.t. [Hl|lw=H¢V,C|})=0 (1)
and
080+aw({x |2 €0CN(IC+ aw) st [H|lw=HgV.C]})=0 (2)

Proof. We prove only (1), since the proof of (2) is completely analogous.
Let
X=A{z|z€0Cn(OC+aw) st. [H|w=H¢V,C]}.

We have to show that opc(X) = 0. We show first that € X implies that
(z+Rw)NX ==z (3)

We prove (3) indirect: Suppose that 3y # = such that y € (z + Rw) N X.
Then y — x = yw with v # 0 and we obtain from the definition of X that

yeIC+0, yedC+aw, y € 0C +~yw, y € IC + (a+y)w .

Since 0 # « # v # 0 three of the four numbers 0, «, 7y, + o must be pairwise
different which contradicts together with the fact that y € X Proposition 1. So
(3) has been proved.



Let Z := {2 € R™ | inf,._perwy [|2]]2 = 1} and let S :={z € Z | |2|]2 =
1}. We suppose without loss of generality that 0 € int(C N (C' + aw)). Then
X NRw = 0 and thus X \ Rw = X. We denote by pr : X — Z the projection
of X along the rays from the origin to Z. By the fact that X \ Rw = X the
mapping pr is well defined. We identify Z = S + Rw with S x R and denote
by p := og ® A1 the measure on Z which is the product of the surface area
measure og on S and the Lebesgue measure A\; on R. Note that by (3) we get
for z,z € X that

x # & implies that for (s,7),(5,7) € S x R with (@)
(s,7) =pr(x) and (§,7)=pr(Z) we have s# 3.

Then pu(pr(X)) = [4 [z 1pr(x) dA1 dos = 0 by Fubinis theorem and (4).
Since o¢ is absolutely continuous with respect to popr we obtain that oo (X) =0
which proves the proposition. O

We state now two further propositions without proofs.

Proposition 3 Given a convez body C and a vector w € R™ \ {0}, then there
exist two numbers ag and ag € R such that C N (C + «;) # 0 and int(C N (C +
a;)) = 0. Further there exists a hyperplane F' such that F||C N (C + ;).

Proposition 4 Given a convexr body C and a vector w # 0 then

osc{x € 0C s.t. [H|lw= H ¢ V,C]} >0

Lemma 1 Given a countable set R C R, an element ag € R, a convex body C,
and a vector w € R™ \ {0}. Suppose that

(< % 6R](B) =0 for all Borel measurable sets B C 0(C' + apw) . (5)

Then the following conclusion holds:
There exists a hyperplane F ffw such that

x€dC=[3H € V,C st. H||w or 3H € V,C s.t. H|F]
Proof. We suppose without loss of generality that ag = 0. Let
Y={x€0C st. [H|lw= H ¢ V,Cl}.

(e}
Then opc(Y) > 0 by Proposition 4. Since there exists a version of d’ff;’c (y) such

c
that 0 # o

(y) for all y € Y we get that

Sy # 0. (6)

By Proposition 2 we obtain that if C' N (C' + aw) is a convex body and 0 # «
then
09(C+aw) (Y) = 09(C+aw) (Y N (C + aw)) =

(7)
09(Ctaw)({r | £ € 0C N (0C + aw) s.t. [H|w= H¢V,C]})=0.

4



Since ¢§ * daw = 5T << 09(C4aw) We obtain from (7) that ¢§ * dau|y= 0 if
C N (C + aw) is a convex body and 0 # a. Of course & * 44|y = 0 holds also
if C N (C + aw) = 0. Thus we obtain for « # 0 that

€ % 0puly=0 if CN(C+aw)=0 or nt(CN(C+aw))#0. (8

Since R is countable we obtain from (5), (6) and since we supposed ag = 0 that

STty = Y o bauly= <5 #drqoply=—<Sly#0  (9)
acR\{0} a€R\{0}

By Proposition 3 we obtain that there exist exactly two values a;,as € R
such that C' N (C + a;w) # O and int(C N (C + aw)) = O with ¢ € {1,2}. This
implies together with (8) and (9) that

S oG y= > < #bauly>> = |y (10)
ie{1,2} ie{1.2}

Since ogc |[y<< —<$ |y we obtain from (10) that opc almost all points
of Y must be contained in the union of C'N (C' + aqw) and C N (C + azw).
Further the sets C' N (C + aqw) and C' N (C + apw) are by Proposition 3 par-
allel to one hyperplane F'. The remaining null set A C Y with respect to o¢
can not contain an open subset of JC. Thus y € A must be an element of
CN(C+aw), CN(CH+ agw), or {x € 0C |IH € V,C s.t. H|w}. In the
first two cases there exists H € V,,C s.t. H||F and in the third case there exists
H € V,C st. H||w. This concludes the proof. O.

Lemma 2 Given a convex body C' which fulfills the conclusion of Lemma 1.
Then C = Cy, + [0,8] - w for some real number 8 > 0 and some convex set
Cy Jw with dim(Cy,) = m — 1.

Proof: Of course there exist exactly two hyperplanes G' and G2 parallel to
F which support C.

Let y € int(C). Then there exist reals a, < 3, such that y+a,w, y+G,w €
0C'. Since y + a,w and y + B,w can not possess a hyperplane of support which
is parallel w they must by hypotheses possess a hyperplane of support parallel
F. So we get, probably by an interchange of G' and G2, that

y+a,weG'NC and y+ B,we G*NC. (11)

By (11) it is clear that v = 3, — «, is independent of y and G? = G' + yw.
Let D' = G' N C and let D? = G2 N C. Note that

D'=G'NnC={y+ayw|yecint(C)}
(12)

D?=G'nC={y+B,w|yeint(C)}.



Thus D' and D? are compact convex sets of dimension m — 1 with
D? = D' 4+ ~uw. (13)
So we get by (11), (13), (12) and the compactness of C' that
int(C) C conv(D' U D?) = D'+ 10, 8lw C C = C. (14)

Since D! + [0, 3] is compact we get from (14) that D! + [0, 8]w = C. This
completes the proof if we let C,, = D'. O

Lemma 3 Let C = C;+[0,v;]-w; for (w1, ..., wy) linearly independent vectors
in R™ and C; Jlw; convex compact sets with dim(C;) = m — 1. Then C is a
parallelepiped with 1-dimensional edges parallel with w;.

Proof. Note that Vi € {1,--- ,m}
x€dC=(xeC; or z€C;+~; or [HeV,(C) = H|w). (15)
From (15) we derive
z€dC =i st. [reC; or x€C;+yl (16)

Indirect: Otherwise by (15) H € V,(C) fulfills H||w; Vi € {1,...,m}. Since
{w; | i =1,...,m} spans by hypotheses R™ no hyperplane can be parallel with
all w;. Thus we obtained a contradiction and (16) is proved.

Let pr; be the projection along H onto Rw;, i.e., let pri(z) = y € Rw; s.t.
zr—ye€H. Then C C (", pri_l(pri(C)) =: D and D is a parallelepiped which
can for all i = 1,...,m be written as D = D; + [0, v;]Jw; with D; D C;.

So the lemma is proved if we show that C = D. We proceed indirect: Since
C is a convex body C' # D implies that there exists x € 0C with x ¢ 0D.
But by (16) there exists an ¢ € {1,...m} such that x € C; C D; C 9D or
x € C; +viw; C D; + vy;w; C 9D which contradicts the fact that x € 9D and
thus completes the proof of the lemma.O

3 Weak differentiation and a second Version of
the Characterization Theorem

Definition 3 We denote by C. the space of continuous real valued functions
with compact support on R™. We remark that a signed measure i is determined
by the integrals [ ¢ dp with ¢ € C.. Thus we can define the derivative of a set
valued function as follows: Let D : [0,00) — P(R™). If there exists a measure
w such that for any ¢ € C,

Y 1o — 1bp(o)
/gbd“_lﬁ?&/ngdA



then we say that p is the derivative from the right of D(.) at 0. (We also say
. T 1 -1

that i is the weak limat limy, o =2—=2 . X.)

Remark 2 The measure ¢$ can also be described as follows: Let H be the

hyperplane perpendicular to w. Let A\ denote the m — 1-dimensional Lebesgue

measure on H. Let

ti={z€aC | (n(z),w) >0}
and
Y™ :={z€dC| (n(z),w) <0}

Let pry : YT — H respectively pr_ : Y~ — H be the orthogonal projections
onto H. Then we have for any Lebesgue measurable B € R™ that

L ol 9(pr (@) A (o) ~ / - 6= () o / 6 dsC

We note further that pr (YT) = pr_(Y ™) and let P :=pr (Y T) = pr_(Y ™).
These facts can be established easily for Polytopes or convex bodies with differ-
entiable boundary and then extend without difficulties to arbitrary convex bodies.

We calculate now the derivative from the right at 0 of the special set valued
function D(h) = C + h, for a convex body C. (Compare with [8] Example 1.)

Proposition 5 Let C be a convex body then the derivative from the right of
hi— (C 4 h-w) equals <C, i.e.

Ticanw — 1
/¢d§5:%%/¢%d>\

Proof: We use the notation of Remark 2. Further we denote by A; the
Lebesgue measure on R. Then we have for Borel measurable sets H C H and
R C R that

HZ—HR) =\ @ A\g(R x H) (17)

Ycrnw) — 1
R1O JRm h

MH +

We obtain that
d\ =

lcinw) — 1o w
T+
o e T

(+§

lim oz +¢&
hi0 Je werx H [[w][2

lim oz +¢&

R0 JoeH Jeer w2

) d[A @ Au(§,2) =

Lcinw) — lo
) h

Jeep 5000 3 fecto o €075 () + ) dA(E) | () -

~Jrep [1010 % Seggo o 90r=" () + ) AN (€) | dAn(a) =



/ - 9(pr (@) (x) - / leollz - (pr=(2))dAn (x) = / 6 dcC

zeP
The first equality sign holds by (17), the second by Fubinis Theorem, the
fourth by the main theorem of calculus and the last equality sign follows by
Remark 2. O
If we denote by U(C'+h-w) the uniform probability distribution on C'+h-w
and note that

/¢1(C+h~;vl)_1C dA:A(C)_/¢dU(C+h-;:1)—U(C)

then we can reformulate Proposition 5 as follows:

Ucc+rw)-U©)

Corollary 1 Let C be a convezx body. Then the weak limit A(C')-limp_.q ”

equals gg, i.e.,

A(C)-}{i;r})/¢dU(C+h'}t”)_U(C) :/qsdgfj forallp €C..  (18)

With Corollary 1 we can restate Theorem 1 as follows:

Theorem 2 A convex body C C R™ is a parallelepiped with one dimensional
edges parallel {w1,...,wy,} if and only if there exists a linearly independent set
{wr,...,wn} of vectors w; € R™ such that for any j € {1,...,m} there exists
a countable set R C R and an rog € R such that

) - im U(C—i—h-;:}) —U(C)

* 5{r-wj\r€R}](B) =0.

for any Borel measurable set B C 0C + 19 - w;.
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