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Abstract

We characterize in this paper parallelepipeds in Rm within the family
of all convex bodies by a property of special measures on its boundary.
We show that these measures are related to weak derivatives (in the sense
of [5] and [8]) of convex-valued functions. The results can be applied (see
[9]) to derive a generalization of a theorem of Lehmann (see [4]) on the
comparison of uniform location experiments.
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1 Introduction

The investigation of special convex bodies and especially their characterization
is a main topic in classical convex geometry (see [2] chapter 1.11). There exist
several characterizations of parallelepipeds, simplexes and ellipsoids within the
family of convex bodies (see [3], [1], [7] and [2]). In section 2 of this paper we
give a new characterization of parallelepipeds by a property of certain measures
on the boundary of convex sets. In section 3 we define measure valued weak
derivatives of convex valued mappings. We show that the measures used to
characterize parallelepipeds in section 2 are related to the derivatives of convex
valued mappings given by shifts of the parallelepiped (convex body) in the di-
rections of its 1-dimensional edges. We note that the results of section 3 can be
used to prove a theorem on the comparison of uniform location experiments [9]
which generalizes Theorem 3.1 of [4].

We denote by N = {1, 2, . . . } the set of positive integers. By Sm−1 we denote
the unit sphere in Rm, by 〈., .〉 we denote the euclidean scalar product on Rm
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and by ‖.‖2 we denote the norm associated with 〈., .〉. By V we denote the
closure of a set V , by 1B we denote the indicator function of a set B and by δx

we denote the Dirac measure at a point x. Given a countable set M we denote
by δM the counting measure on M , i.e. δM (A) =

∑
m∈M δm(A). Given two

measures µ and ν on Rm we denote by µ ∗ ν the convolution of µ and ν. If ν is
absolutely continuous with respect to µ we write ν << µ and we denote by dν

dµ
the Radon-Nykodim derivative of ν with respect to µ. By λ we denote Lebesgue
measure on Rm. Given a measure µ and a function f we denote by f · µ the
measure defined by [f · µ](A) :=

∫
A

f dµ. We denote by aff(C) the affine Hull
of a set C. We say that a convex set C is parallel to a convex set D and write
C‖D if aff(C) ⊆ aff(D)+v or aff(D) ⊆ aff(C)+v for some v ∈ Rm. Given
a measure µ and a µ-measurable set Y we let µ |Y (A) := µ(A ∩ Y ) denote the
restriction of µ to the µ-measurable subsets of Y .

2 The characterization Theorem

We state and prove in this section Theorem 1 which says that a convex body C
(a convex compact subset of Rm with nonempty interior) is a parallelepiped if
and only if certain measures on the boundary ∂C of C possess a certain property.

Definition 1 Given a convex body C ⊂ Rm and x ∈ ∂C we denote by ∇xC the
set of all hyper planes of support to C at x. We denote by η : ∂C → Sm an
arbitrary mapping which maps the point x ∈ ∂C to a vector η(x) which is an
outward unit normal vector to C in x, i.e., 〈η(x), y − x〉 ≤ 0 and ‖η(x)‖2 = 1.
Given a convex body C we denote by o∂C the surface area measure on ∂C.

Remark 1 By an application of Theorem 1.17 of [6] (which is a special case of
Rademachers Theorem (Theorem 1.18 of [6]) there exists a set D with o∂C(D) =
0 such that η(.) is uniquely defined on ∂C \D.

Definition 2 Given a vector w ∈ Rm and a convex body C ⊂ Rm we denote
by ςC

w the unique measure for which dςC
w

do∂C
= 〈η(.), w〉 · o∂C . By Remark 1 this

definition is independent of the special choice of the function η in Definition 1.

Theorem 1 A convex body C ⊂ Rm is a parallelepiped with one dimensional
edges parallel {w1, . . . , wm} if and only if there exists a linearly independent set
{w1, . . . , wm} of vectors wj ∈ Rm such that for any j ∈ {1, . . . ,m} there exists
a countable set R ⊂ R and an r0 ∈ R such that

[ςC
wj
∗ δ{r·wj |r∈R}](B) = 0

for any Borel measurable set B ⊆ ∂(C+r0·wj), i.e. if and only if ςC
wj
∗δ{r·wj |r∈R}

vanishes on the Borel measurable subsets of ∂(C + r0 · wj).
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Proof: If C is a parallelepiped we just have to choose wi such that ‖wi‖
equals the length of the one dimensional edge of C which is parallel to wi,
R = {−1, 0, 1} and r0 = 0 independent of j. Then

[ςC
wj
∗ δ{r·wj |r∈R}](B) = 0 for all Borel measurable sets B ⊆ ∂(C + r0 · wj)

which proves the only if part. The only if part is the consequence of the lemmas
1, 2 and 3 which we state and prove below. 2

Proposition 1 Given a convex body C, a vector w 6= 0, a real number β1 and
a point x ∈ ∂C + β1w. If for arbitrary hyper planes H

H‖w ⇒ H 6∈ ∇x[C + β1w]

then there exists one and only one β2 6= β1 such that x ∈ ∂C + β2w.

Proof. We show that x + Rw ∩ int(C + β1w) 6= ∅. Otherwise there would
exist a hyperplane H which separates x + Rw and C + β1w. This hyperplane
would fulfill H ∈ ∇x[C+β1w] and H‖w which contradicts our hypothesis. Thus
there exists y ∈ (x + Rw) ∩ int(C + β1w). By compactness and convexity of C
we get that (x+ Rw)∩ (∂C +β1w) = (y + Rw)∩ (∂C +β1w) consists of exactly
two points. One of them is x the other one is x + γw for some γ ∈ R. Thus for
β2 6= β1 we have x ∈ C + β2w if and only if β2 = β1 − γ. 2

Proposition 2 Given a vector w 6= 0. Suppose that the intersection of a convex
body C and its translate C + αw (with α 6= 0) is again a convex body, i.e.,
int(C ∩ (C + αw)) 6= ∅. Then

o∂C({x | x ∈ ∂C ∩ (∂C + αw) s.t. [H‖w ⇒ H 6∈ ∇xC]}) = 0 (1)

and

o∂C+αw({x | x ∈ ∂C ∩ (∂C + αw) s.t. [H‖w ⇒ H 6∈ ∇xC]}) = 0 (2)

Proof. We prove only (1), since the proof of (2) is completely analogous.
Let

X = {x | x ∈ ∂C ∩ (∂C + αw) s.t. [H‖w ⇒ H 6∈ ∇xC]}.

We have to show that o∂C(X) = 0. We show first that x ∈ X implies that

(x + Rw) ∩X = x. (3)

We prove (3) indirect: Suppose that ∃y 6= x such that y ∈ (x + Rw) ∩ X.
Then y − x = γw with γ 6= 0 and we obtain from the definition of X that

y ∈ ∂C + 0, y ∈ ∂C + αw, y ∈ ∂C + γw, y ∈ ∂C + (α + γ)w .

Since 0 6= α 6= γ 6= 0 three of the four numbers 0, α, γ, γ + α must be pairwise
different which contradicts together with the fact that y ∈ X Proposition 1. So
(3) has been proved.
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Let Z := {z ∈ Rm | inf{x|z−x∈Rw} ‖x‖2 = 1} and let S := {z ∈ Z | ‖z‖2 =
1}. We suppose without loss of generality that 0 ∈ int(C ∩ (C + αw)). Then
X ∩ Rw = ∅ and thus X \ Rw = X. We denote by pr : X → Z the projection
of X along the rays from the origin to Z. By the fact that X \ Rw = X the
mapping pr is well defined. We identify Z = S + Rw with S × R and denote
by µ := oS ⊗ λ1 the measure on Z which is the product of the surface area
measure oS on S and the Lebesgue measure λ1 on R. Note that by (3) we get
for x, x̃ ∈ X that

x 6= x̃ implies that for (s, r), (s̃, r̃) ∈ S × R with
(s, r) = pr(x) and (s̃, r̃) = pr(x̃) we have s 6= s̃.

(4)

Then µ(pr(X)) =
∫

S

∫
R 1pr(X) dλ1 doS = 0 by Fubinis theorem and (4).

Since oC is absolutely continuous with respect to µ◦pr we obtain that oC(X) = 0
which proves the proposition. 2

We state now two further propositions without proofs.

Proposition 3 Given a convex body C and a vector w ∈ Rm \ {0}, then there
exist two numbers α1 and α2 ∈ R such that C ∩ (C + αi) 6= ∅ and int(C ∩ (C +
αi)) = ∅. Further there exists a hyperplane F such that F‖C ∩ (C + αi).

Proposition 4 Given a convex body C and a vector w 6= 0 then

o∂C{x ∈ ∂C s.t. [H‖w ⇒ H 6∈ ∇xC]} > 0

Lemma 1 Given a countable set R ⊂ R, an element α0 ∈ R, a convex body C,
and a vector w ∈ Rm \ {0}. Suppose that

[ςC
w ∗ δR](B) = 0 for all Borel measurable sets B ⊆ ∂(C + α0w) . (5)

Then the following conclusion holds:
There exists a hyperplane F 6 ‖w such that

x ∈ ∂C ⇒ [∃H ∈ ∇xC s.t. H‖w or ∃H ∈ ∇xC s.t. H‖F ]

Proof. We suppose without loss of generality that α0 = 0. Let

Y = {x ∈ ∂C s.t. [H‖w ⇒ H 6∈ ∇xC]}.

Then o∂C(Y ) > 0 by Proposition 4. Since there exists a version of dςC
w

do∂C
(y) such

that 0 6= dςC
w

do∂C
(y) for all y ∈ Y we get that

ςC
w |Y 6= 0. (6)

By Proposition 2 we obtain that if C ∩ (C + αw) is a convex body and 0 6= α
then

o∂(C+αw)(Y ) = o∂(C+αw)(Y ∩ (C + αw)) =

o∂(C+αw)({x | x ∈ ∂C ∩ (∂C + αw) s.t. [H‖w ⇒ H 6∈ ∇xC]}) = 0 .
(7)
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Since ςC
w ∗ δαw = ςC+αw

w << o∂(C+αw) we obtain from (7) that ςC
w ∗ δαw|Y = 0 if

C ∩ (C + αw) is a convex body and 0 6= α. Of course ςC
w ∗ δαw|Y = 0 holds also

if C ∩ (C + αw) = ∅. Thus we obtain for α 6= 0 that

ςC
w ∗ δαw|Y = 0 if C ∩ (C + αw) = ∅ or int(C ∩ (C + αw)) 6= ∅ . (8)

Since R is countable we obtain from (5), (6) and since we supposed α0 = 0 that∑
α∈R\{0}

ςC+αw
w |Y =

∑
α∈R\{0}

ςC
w ∗ δαw|Y = ςC

w ∗ δR\{0}|Y = −ςC
w |Y 6= 0 (9)

By Proposition 3 we obtain that there exist exactly two values α1, α2 ∈ R
such that C ∩ (C + αiw) 6= ∅ and int(C ∩ (C + αiw)) = ∅ with i ∈ {1, 2}. This
implies together with (8) and (9) that∑

i∈{1,2}

ςC+αiw
w |Y =

∑
i∈{1,2}

ςC
w ∗ δαiw|Y >> −ςC

w |Y . (10)

Since o∂C |Y << −ςC
w |Y we obtain from (10) that o∂C almost all points

of Y must be contained in the union of C ∩ (C + α1w) and C ∩ (C + α2w).
Further the sets C ∩ (C + α1w) and C ∩ (C + α2w) are by Proposition 3 par-
allel to one hyperplane F . The remaining null set A ⊂ Y with respect to oC

can not contain an open subset of ∂C. Thus y ∈ A must be an element of
C ∩ (C + α1w), C ∩ (C + α2w), or {x ∈ ∂C | ∃H ∈ ∇xC s.t. H‖w}. In the
first two cases there exists H ∈ ∇yC s.t. H‖F and in the third case there exists
H ∈ ∇yC s.t. H‖w. This concludes the proof. 2.

Lemma 2 Given a convex body C which fulfills the conclusion of Lemma 1.
Then C = Cw + [0, β] · w for some real number β > 0 and some convex set
Cw 6 ‖w with dim(Cw) = m− 1.

Proof: Of course there exist exactly two hyperplanes G1 and G2 parallel to
F which support C.

Let y ∈ int(C). Then there exist reals αy < βy such that y+αyw, y+βyw ∈
∂C. Since y + αyw and y + βyw can not possess a hyperplane of support which
is parallel w they must by hypotheses possess a hyperplane of support parallel
F . So we get, probably by an interchange of G1 and G2, that

y + αyw ∈ G1 ∩ C and y + βyw ∈ G2 ∩ C. (11)

By (11) it is clear that γ = βy − αy is independent of y and G2 = G1 + γw.
Let D1 = G1 ∩ C and let D2 = G2 ∩ C. Note that

D1 = G1 ∩ C = {y + αyw | y ∈ int(C)}

D2 = G1 ∩ C = {y + βyw | y ∈ int(C)}.
(12)
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Thus D1 and D2 are compact convex sets of dimension m− 1 with

D2 = D1 + γw. (13)

So we get by (11), (13), (12) and the compactness of C that

int(C) ⊂ conv(D1 ∪D2) = D1 + [0, β]w ⊆ C = C. (14)

Since D1 + [0, β] is compact we get from (14) that D1 + [0, β]w = C. This
completes the proof if we let Cw = D1. 2

Lemma 3 Let C = Ci+[0, γi]·wi for (w1, . . . , wm) linearly independent vectors
in Rm and Ci 6 ‖wi convex compact sets with dim(Ci) = m − 1. Then C is a
parallelepiped with 1-dimensional edges parallel with wi.

Proof. Note that ∀i ∈ {1, · · · ,m}

x ∈ ∂C ⇒ (x ∈ Ci or x ∈ Ci + γi or [H ∈ ∇x(C) ⇒ H‖wi]). (15)

From (15) we derive

x ∈ ∂C ⇒ ∃i s.t. [x ∈ Ci or x ∈ Ci + γi]. (16)

Indirect: Otherwise by (15) H ∈ ∇x(C) fulfills H‖wi ∀i ∈ {1, . . . ,m}. Since
{wi | i = 1, . . . ,m} spans by hypotheses Rm no hyperplane can be parallel with
all wi. Thus we obtained a contradiction and (16) is proved.

Let pri be the projection along H onto Rwi, i.e., let pri(x) = y ∈ Rwi s.t.
x− y ∈ H. Then C ⊆

⋂m
n=1 pr−1

i (pri(C)) =: D and D is a parallelepiped which
can for all i = 1, . . . ,m be written as D = Di + [0, γi]wi with Di ⊃ Ci.

So the lemma is proved if we show that C = D. We proceed indirect: Since
C is a convex body C 6= D implies that there exists x ∈ ∂C with x 6∈ ∂D.
But by (16) there exists an i ∈ {1, . . . m} such that x ∈ Ci ⊆ Di ⊂ ∂D or
x ∈ Ci + γiwi ⊆ Di + γiwi ⊂ ∂D which contradicts the fact that x 6∈ ∂D and
thus completes the proof of the lemma.2

3 Weak differentiation and a second Version of
the Characterization Theorem

Definition 3 We denote by Cc the space of continuous real valued functions
with compact support on Rm. We remark that a signed measure µ is determined
by the integrals

∫
φ dµ with φ ∈ Cc. Thus we can define the derivative of a set

valued function as follows: Let D : [0,∞) → P(Rm). If there exists a measure
µ such that for any φ ∈ Cc∫

φ dµ = lim
h↓0

∫
φ

1D(h) − 1D(0)

h
dλ

6



then we say that µ is the derivative from the right of D(.) at 0. (We also say

that µ is the weak limit limh↓0
1D(h)−1D(0)

h · λ.)

Remark 2 The measure ςC
w can also be described as follows: Let H be the

hyperplane perpendicular to w. Let λH denote the m− 1-dimensional Lebesgue
measure on H. Let

Y + := {x ∈ ∂C | 〈η(x), w〉 > 0}

and
Y − := {x ∈ ∂C | 〈η(x), w〉 < 0}

Let pr+ : Y + → H respectively pr− : Y − → H be the orthogonal projections
onto H. Then we have for any Lebesgue measurable B ∈ Rm that∫

x∈P

‖w‖2 · φ(pr−1
+ (x))dλH(x)−

∫
x∈P

‖w‖2 · φ(pr−1
− (x))dλH(x) =

∫
φ dςC

w

We note further that pr+(Y +) = pr−(Y −) and let P := pr+(Y +) = pr−(Y −).
These facts can be established easily for Polytopes or convex bodies with differ-
entiable boundary and then extend without difficulties to arbitrary convex bodies.

We calculate now the derivative from the right at 0 of the special set valued
function D(h) = C + h, for a convex body C. (Compare with [8] Example 1.)

Proposition 5 Let C be a convex body then the derivative from the right of
h 7→ (C + h · w) equals ςC

w , i.e.∫
φ dςC

w = lim
h↓0

∫
φ

1(C+h·w) − 1C

h
dλ

Proof: We use the notation of Remark 2. Further we denote by λ1 the
Lebesgue measure on R. Then we have for Borel measurable sets H̃ ⊂ H and
R ⊂ R that

λ(H̃ +
ω

‖ω‖
R) = λ1 ⊗ λH(R× H̃) (17)

We obtain that
lim
h↓0

∫
Rm

φ
1(C+h·w) − 1C

h
dλ =

lim
h↓0

∫
ξ,x∈R×H

φ(x + ξ
w

‖w‖2
)

1(C+h·w) − 1C

h
(x + ξ

w

‖w‖2
) d[λ1 ⊗ λH ](ξ, x) =

lim
h↓0

∫
x∈H

∫
ξ∈R

φ(x + ξ
w

‖w‖2
)

1(C+h·w) − 1C

h
(x + ξ

w

‖w‖2
) dλ1(ξ) dλH(x) =

∫
x∈P

[
limh↓0

1
h

∫
ξ∈[0,h·‖w‖2] φ(pr−1

+ (x) + ξ w
‖w‖2 ) dλ1(ξ)

]
dλH(x)−

−
∫

x∈P

[
limh↓0

1
h

∫
ξ∈[0,h·‖w‖2] φ(pr−1

− (x) + ξ w
‖w‖2 ) dλ1(ξ)

]
dλH(x) =
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∫
x∈P

‖w‖2 · φ(pr−1
+ (x))dλH(x)−

∫
x∈P

‖w‖2 · φ(pr−1
− (x))dλH(x) =

∫
φ dςC

w

The first equality sign holds by (17), the second by Fubinis Theorem, the
fourth by the main theorem of calculus and the last equality sign follows by
Remark 2. 2

If we denote by U(C +h ·w) the uniform probability distribution on C +h ·w
and note that∫

φ
1(C+h·w) − 1C

h
dλ = λ(C) ·

∫
φ d

U(C + h · w)−U(C)
h

then we can reformulate Proposition 5 as follows:

Corollary 1 Let C be a convex body. Then the weak limit λ(C)·limh→0
U(C+h·w)−U(C)

h
equals ςC

w , i.e.,

λ(C) · lim
h→0

∫
φ d

U(C + h · w)−U(C)
h

=
∫

φ dςC
w for all φ ∈ Cc. (18)

With Corollary 1 we can restate Theorem 1 as follows:

Theorem 2 A convex body C ⊂ Rm is a parallelepiped with one dimensional
edges parallel {w1, . . . , wm} if and only if there exists a linearly independent set
{w1, . . . , wm} of vectors wj ∈ Rm such that for any j ∈ {1, . . . ,m} there exists
a countable set R ⊂ R and an r0 ∈ R such that

[λ(C) · lim
h→0

U(C + h · w)−U(C)
h

∗ δ{r·wj |r∈R}](B) = 0.

for any Borel measurable set B ⊆ ∂C + r0 · wj.
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