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Abstract

We generalize a result of Lehmann on the comparison of location ex-
periments with uniform distributions on intervals. We compare in this
paper a location experiment consisting of uniform distributions on paral-
lelepipeds with a location experiment consisting of uniform distributions
on convex bodies. We show that the first experiment can only be more
informative than the second one if the convex bodies in the second exper-
iment are themselves parallelepipeds. Further we show that the length of
the edges of these parallelepipeds must fulfill a condition similar to the
condition on the length of the intervals in Lehmann’s result.
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1 Introduction

We define a statistical experiment E as a random quantity X for which an
indexed family (Pϑ)θ∈Θ of possible distributions of X on a measurable space
(Ω,A) is given. Let F = ((Qϑ)ϑ∈Θ, (Ω2,A2)) be a second statistical experiment
with the same index set Θ. We say that the experiment F is more informative
than the experiment E (or that E is a randomization of F), if there exists a
Markov kernel K : Ω×A2 7→ [0, 1] with the property that EPϑ

K(X, A) = Qϑ(A)
with EPϑ

the expectation under the condition that X is Pϑ distributed. (For
the general definition of randomization and the general theory concerned with
the comparison of statistical Experiments see [1] and [2].)

Let M ⊂ Rm be a Borel measurable set of finite Lebesgue measure. We
denote by U(M) the uniform distribution on M , i.e., U(M) := λ|M

λ(M) , where λ

denotes Lebesgue measure and λ |M (A) = λ(M ∩ A) for all Borel measurable
A ⊂ Rm. We denote especially by U([a, b]) the uniform Distribution on an
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arbitrary bounded interval [a, b] ⊂ R. Given two measures µ and ν we denote
by µ ∗ ν the convolution of µ and ν. We denote by δx the Dirac measure at x.
We restate now the result of Lehmann (Theorem 3.1 of [3]) which is the starting
point of our investigations.

Theorem 1 Let two uniform location experiments

F = (U([0, 1]) ∗ δϑ)ϑ∈R, (R,B)) and E = (U([0, r] ∗ δϑ)ϑ∈R, (R,B))

be given. The experiment F is more informative than the experiment E if and
only if r is an integer ≥ 1.

Instead of U([0, r])∗ δϑ or more general U(V )∗ δϑ we also write U([0, r]+ϑ)
respectively U(V + ϑ) since this notation is for the description of differentials
of the function t → U(C + t) more convenient.

The purpose of the paper is to extend Theorem 1. This extension compares a
location experiment consisting of uniform distributions on parallelepipeds with
a location experiment consisting of uniform distributions on convex bodies (con-
vex compact subsets of Rm which possess nonempty interior). The precise result
is displayed by Theorem 2 following the introduction. To establish the result
we make use of weak derivatives of measure-valued (set-valued) functions as
defined in [4] and [5]. As in [3] we establish the result without using the Theo-
rem of Boll which says that in the case of a location experiment we can always
take a convolution kernel instead of a general Markov kernel in the definition
of randomization. For simplicity of notation we introduce the stochastic oper-
ator S associated with the Markov kernel K by [S(µ)](A) :=

∫
K(x, A) dµ for

arbitrary measurable sets A, i.e., S is a linear mapping from a space of signed
measures to a space of signed measures, which maps probability measures onto
probability measures.

The paper is organized as follows. In section 2 we display the result (Theo-
rem 2) of the paper. Further we display Theorem 3 which characterizes paral-
lelepipeds within the space of convex bodies. A proof of this theorem is given in
[6]. In section 3 we prove Theorem 2 using Theorem 3. In section 4 we sketch
a proof of Theorem 2 which uses the theorem of Boll.

2 The main Theorem

We denote by N = {1, 2, . . . } the set of positive integers. By V we denote
the closure of a set V . By 1B we denote the indicator function of B. Given
a function f and a measure µ we denote by f ·µ the measure [f ·µ](A) :=

∫
A

f dµ.

Definition 1 Given a set {v1, . . . , vn} of linearly independent vectors in Rm

then we call the set V := {v =
∑

αi
αivi | 0 ≤ αi < 1} the parallelepiped
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spanned by {v1, . . . , vn}. A set C is called a (closed) parallelepiped if C = V + ξ
for some arbitrary ξ ∈ Rm.

Remark 1 Since the sets V + j · vi with j ∈ N ∪ {0} are pairwise disjoint we
get that for ` ∈ N

1(
⋃`

j=0(V +j·vi))
=

∑̀
j=0

1(V +j·vi),

and, for 0 < h < 1, we get by the special relative location the parallelepipeds
V + j · vi have to one another that

1V ∪(V +(`+h)·vi) · µ ≥ |
∑̀
j=0

1(V +(j+h))·vi) · µ−
∑̀
j=0

1(V +j·vi) · µ|

Theorem 2 Let V ⊂ Rm be a parallelepiped with nonempty interior, spanned
by the vectors v1, . . . , vm. Let C ⊂ Rm be a convex body. Let f : Rm → Rm be
a bijective linear mapping and let the experiments

F = ((U(V + ϑ))ϑ∈Rm , (Rm,Bm))

and
E = (U(C + f(ϑ)))ϑ∈Rm , (Rm,Bm))

be given. Then F is more informative than E if and only if there exists a ξ ∈ Rm

such that C is a parallelepiped of the form

C := {x | x =
m∑

i=1

ζi · γi · f(vi) | ζi ∈ [0, 1]}+ ξ with γi ∈ N. (1)

Remark 2 We will prove Theorem 2 in 3 steps. First we show that if C is of
the form described by formula (1), then E is a randomization of F. This is done
by writing down the Markov kernel without any difficulty.

In the second step we show that if E is a randomization of F then C is of
the form

C = {x | x =
m∑

i=1

ζi · γi · f(vi) | ζi ∈ [0, 1]}+ ξ with γi ∈ R+ fixed. (2)

This is the main part of the proof. It uses a characterization of parallelepipeds
within the space of convex bodies displayed as Theorem 3.

Finally we show that the γi which occur in the formula (2) describing C are
positive integers. We derive easily this fact from (2) and Theorem 1 (Theorem
3.1 of [3]). (It is also possible to prove ki ∈ N by differentiation of measure
valued functions, but by using Theorem 3.1 of [3] we obtain a very quick and
easy proof.)
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Definition 2 We denote by Cc the space of continuous real valued functions
with compact support on Rm. We remark that a finite signed measure µ is
determined by the integrals

∫
φ dµ with φ ∈ Cc. Let C be a convex set, then we

denote by limh→0
U(C+h·w)−U(C)

h the measure τ determined by∫
φ dτ = lim

h→0

∫
φ d

U(C + h · w)−U(C)
h

.

In the proof of Theorem 2 we make use of the following characterization of
parallelepipeds, which has been proved in [6].

Theorem 3 A convex body C ⊂ Rm is a parallelepiped with one dimensional
edges parallel {w1, . . . , wm} if and only if there exists a linearly independent set
{w1, . . . , wm} of vectors wi ∈ Rm such that for any i ∈ {1, . . . ,m} there exists
a countable set R ⊂ R and an r0 ∈ R such that

[λ(C) · lim
h→0

U(C + h · wi)−U(C)
h

∗ δ{r·wi|r∈R}](B) = 0

for any Borel measurable set B ⊆ C + r0 · wi.

3 Proof of Theorem 2

Remark 3 Given a finite signed measure µ we denote by |µ| the measure defined
by |µ|(B) := sup{µ(A1)− µ(A2) | A1 ∪A2 = B and A1 ∩A2 = ∅}.

Note the following two properties of stochastic operators S:

S(|µ|) ≥ |S(µ)| for any finite signed measure µ (3)

and, for bounded functions f, g with f ≥ g

S(f · µ) ≥ S(g · µ) for any finite positive measure µ. (4)

Definition 3 We say that a signed measure µ vanishes on a set D ⊆ Rm if
µ(B) = 0 for all Borel measurable sets B ⊆ D

Proof of Theorem 2. First Step: We prove the if part first. Suppose that
C fulfills (1), i.e., C = g ◦ f(V ) + ξ with g(f(vi)) = ki · f(vi). We define a
Markov kernel ρ : Rm × B(Rm) → [0, 1] by

ρ(x, B) :=
1

γ1 · · · · · γm

γ1−1∑
j1=0

· · ·
γm−1∑
jm=0

δ(
∑m

i=1 ji·f(vi)+ξ)(B) .

It is easily seen, that the stochastic operator S defined by [S(µ)](B) :=
∫

ρ(x,B) dµ(x)
fulfills S(U(V + ϑ)) = U(C + f(ϑ)), which proves the if part.
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Second Step: Now we prove the only if part. Let S be a stochastic operator
such that

S(U(V + ϑ)) = U(C + f(ϑ)). (5)

Let µ = λ · [λ(V )]−1 and let ν = λ · [λ(C)]−1. Let i ∈ {1, . . . ,m} and ` ∈ 2N be
minimal such that

C ∩ (C +
`

2
· f(vi)) = ∅ and (C +

`

2
· f(vi)) ∩ (C + ` · f(vi)) = ∅. (6)

By convexity of C we obtain from (6) that for h > 0

C ∩ (C + (` + h) · f(vi)) = ∅. (7)

Let 0 < h < 1 then

1C∪(C+(`+h)·f(vi)) · ν = 1C · ν + 1C+(`+h)·f(vi) · ν (8)

= U(C) + U(C + (` + h) · f(vi)) = S(U(V )) + S(U(V + (` + h) · vi)) (9)

= S(1V · µ) + S(1V +(`+h)·vi
· µ) = S(1V ∪(V +(`+h)·vi) · µ) (10)

≥ S(|
∑̀
j=0

[1(V +(j+h)·vi) − 1(V +j·vi)] · µ|) (11)

≥ |
∑̀
j=0

S([1(V +(j+h)·vi) − 1(V +j·vi)] · µ)| (12)

= |
∑̀
j=0

S([U(V + (j + h) · vi)−U(V + j · vi)])| (13)

= |
∑̀
j=0

[U(C + f((j + h) · vi))−U(C + f(j · vi))]| (14)

The equality sign in equation (8) follows from (7), equality in equation (9) from
(5) and the equality sign in (10) from the disjointness of V and V + (` + h)vi

(see Remark 1) and the linearity of stochastic operators. The equality signs
between the equations (8), (9) and (10) follow from the definitions of ν and
µ. The inequality between (10) and (11) follows from (4) and Remark 1. The
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inequality between (11) and (12) follows from (3). The equalities between (12),
(13) and (14) follows from the definition of µ and (5).

From the inequality between (8) and (14) we obtain that for arbitrary h ∈
(0, 1) the measure

∑̀
j=0

[U(C + f((j + h) · vi))−U(C + f(j · vi))]

vanishes on any set B with B ∩ C ∪
⋃

h∈[0,1](C + (` + h) · f(vi)) = ∅. So also
the measures

∑̀
j=0

U(C + f((j + h) · vi))−U(C + f(j · vi))

h
(15)

vanish on such sets B. Since C ∪
⋃

h∈[0,1](C + (` + h) · f(vi)) is closed we get
that also the weak limit of (15) which is given by

limh↓0
∑`

j=0
U(C+f((j+h)·vi))−U(C+f(j·vi))

h

= λ(C) · limh→0
U(C+h·f(vi))−U(C)

h
∗ δ{j·f(vi)|j∈{0,...,`}}

(16)

vanishes on any set B with B ∩ [C ∪ C + ` · f(vi))] = ∅.
Thus by (6)

λ(C) · lim
h→0

U(C + h · f(vi)−U(C)

h
∗ δ{j·f(vi)|j∈{0,...,`}}

vanishes especially on the set ∂C + `
2 · vi. So by Theorem 3 with R =

{0, . . . , `}, r0 = `
2 and wi = f(vi) we obtain that C is a parallelepiped.

Finally it remains to be proved, that the length of the edge of C parallel to
f(vi) is an integer multiple of f(vi), i.e., we have to show that γi ∈ N. This is
done as follows:

By a shift of the experiment F we may suppose without loss of generality
that C possesses a vertex at 0, i.e.,

C = {x | x =
m∑

i=1

ζi · γi · f(vi) | ζi ∈ [0, 1]} with γi ∈ R+. (17)

Let T be the stochastic operator which maps δϑ for ϑ ∈ R to the uniform dis-
tribution Ui on Vi+ϑvi with Vi the parallelepiped spanned by {v1, . . . vi−1, vi+1, . . . , vm},
i.e., T (δϑ) = U(Vi) ∗ δϑ·vi

. We denote by Ci the parallelepiped spanned by
{f(v1), . . . , f(vm)}. Let pri : Rm → R be the unique linear mapping with
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pri(Ci) = 0 and pri(f(vi)) = 1. Let Pri be the stochastic operator which maps
δx to δpri(x). Then the operator Pri ◦ S ◦ T maps the uniform distribution
on [0, 1] + ϑ to the uniform distribution on the interval [0, γi] + ϑ. Thus an
application of Theorem 1 shows that γi ∈ N. 2

4 A proof based on the theorem of Boll

We finally sketch a proof of Theorem 2 based on the theorem of Boll. Note that
this is only a very short sketch!

Without loss of generality we replace the linear mapping f by the identity
mapping id : Rm → Rm. By the theorem of Boll we obtain that U(C) = U(V )∗τ
for some probability measure τ . This equation can be rewritten as

1C(x) = τ∗(x− int(V )) with respect to λ a.e. (18)

with τ∗ a multiple of τ . The measure τ∗ has by boundedness of C compact
support which together with (18) shows that τ∗ must be discrete. So

τ∗ =
n∑

i=1

αiδai for some n ∈ N (19)

From (18) and (19) one obtains that

aj 6∈ ai + int(V ) (20)

Finally one proves using (18), (19) and (20) that
⋃̇n

i=1int(V ) + ai ⊆ C ⊆⋃n
i=1 V + ai, where we denote by

⋃̇
the union if it is taken over a pairwise

disjoint family of sets. From this and the convexity of C it follows that C
must itself be a parallelepiped with 1-dimensional edges in the direction of the
1-dimensional edges of V and with edge-length integer multiples of the edge-
length of V .

References

[1] Le Cam, Lucien Sufficiency and approximate sufficiency Ann. Math. Stat.
35, 1419-1455 (1964).

[2] Le Cam, Lucien Asymptotic methods in statistical decision theory. Springer
Series in Statistics. New York etc.: Springer-Verlag, 1986.

[3] Lehmann, E.L. Comparing location experiments. Ann. Stat. 16, No.2,
521-533 (1988).

[4] Pflug, Georg Optimisation of Stochastic Models. Kluwer Academic Pub-
lishers, Boston, 1996.

7



[5] Weisshaupt, Heinz A measure-valued approach to convex set-valued dy-
namics. Set-Valued Anal. 9, No.4, 337-373 (2001)

[6] Weisshaupt, Heinz A characterization of parallelepipeds related to weak
derivatives
EURANDOM Report series Report 2003-013
http://www.eurandom.tue.nl/publications.htm

8


