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Abstract

We analyze some aspects of Scan statistics, which have been proposed to help detect
weak signals in linkage analysis. For dense markers we derive approximations for the
thresholds to control the genome wide false positive rate and for the power of a test
based on moving averages of the identity-by-descent (IBD) allele sharing proportions for
pairs of relatives at several contiguous markers. We use these results, which we confirm
by simulation, to show that when there is a single trait gene on a chromosome this scan
statistic is generally slightly less powerful than the customary allele sharing statistic, but
if two genes having a moderate affect on the same trait lie close to each other on the same
chromosome, this test can be more powerful than that based on the original statistic.

1. Introduction. Motivated by Terwilliger et. al. (1997), who claimed that “true
peaks” in the sample paths of allele sharing statistics were wider than “false peaks,” and
that this information might be used profitably in linkage analysis, Hoh and Ott (2000)
suggest that the power to detect genetic linkage could be improved by combining the
information on several contiguous markers. In particular they propose to use a moving
sum (or equivalently a moving average) of the values at several consecutive markers of a
statistic instead of the statistic itself. Such a statistic might be, for example, the propor-
tion of alleles shared identical-by- descent (IBD) for pairs of relatives or the logarithm of
odds (LOD) score in pedigrees. Hoh and Ott call these moving averages scan statistics,
and compute the corresponding p-values by Monte Carlo permutation tests. Although
they do not make a systematic study of these statistics, in an application to autism
families they find a region that was missed with the standard approach. The value of
this approach has been disputed by Lander and Kruglyak (1995) and Siegmund (2001),
although neither of these papers contains a sytematic analysis.

The purpose of this paper is twofold: (i) for dense markers we derive approximations
for the significance level and power of tests based on scan statistics for IBD proportions
of affected relative pairs and use these results to show that in the situation envisaged by
Hoh and Ott (2001) the scan statistics do not have increased power, and (ii) we study an
alternative situation, where two trait loci are closely linked, where one would expect to
find a “wide peak.”

In human genetics the possibility of more than one trait locus on the same chromosome
has received relatively little attention. An exception can be found in Farrall (1997).
However, some multigene families, presumably derived from one original gene via various
mutations during the course of evolution suggest that genes affecting the same trait may
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be located near each other (cf. Strachan and Read (1996)). Our results suggest that
using the scan statistic may help to detect linkage in these cases, although the increase
in power is modest.

In order to get to what we think is the essence of the problem we assume data from
a dense set of completely informative markers and samples that are large enough that
normal approximations are valid. We discuss later how the results change for a discrete
set of markers and for markers that are only partially informative. To simplify our
exposition of the genetics background, we discuss primarily the simple case of independent
half-sibling pairs, and discuss later how the minor changes that occur for other types of
relatives.

Our analysis in this paper is confined to a simple genome scan designed to detect
relatively weak linkage signals. A complementary conditional approach would be useful
in situations where there is an easily detected trait locus with a large effect and another
tightly linked trait locus with a minor effect, which may be masked by the major gene.
We will discuss this topic in a future paper.

2. Models. For a pair of half siblings, and a locus situated on chromosome c at
position t, we define the variable Dc,t as

Dc,t =
{

1 if the half-sibling pair is i.b.d. at locus t,
0 otherwise. (1)

The location t indicates genetic distance in centimorgans (cM) from a fixed end of the
chromosome. Let Lc denote the genetic length of chromosome c. For a randomly chosen
pair of half-siblings, Mendel’s laws imply that

P [Dc,t = 1] = P [Dc,t = 0] =
1
2

(2)

for all t in [0, Lc], and that for chromosomes c 6= c′, the variables Dc,t and Dc′,s are
independent for all t in [0, Lc] and s in [0, Lc′ ]. If we use the Haldane mapping function,
which specifies that the number of crossovers during meiosis follows a Poisson process,
then for loci located at position t and s in the same chromosome,

P [Dc,s = 1|Dc,t = 1] = P [Dc,s = 0|Dc,t = 0] =
1 + e−β|t−s|

2
, (3)

where β = 0.04 for half sibling pairs if the units of genetic distance are centimorgans.
Let us suppose now that our pair is chosen among the population of pairs of half

siblings that are both affected by a particular trait of interest. We will consider three
possible situations:

(A) If there is no locus in the genome predisposing for the trait, or if all trait loci
have very weak effects that cannot cannot be detected without an unacceptable
level of false positive errors, then (2) will be approximately valid for all loci and
chromosomes.

(B) If at chromosome c0 there is a locus τ which predisposes for inheritance of the
trait and there is no other trait-locus on the same chromosome, then

P [Dc0,τ = 1] =
1 + α

2
>

1
2
. (4)

The parameter α > 0 measures the increase of likelihood of sharing an allele identical
by descent at the trait locus for pairs of half siblings who share the trait of interest.
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A description of α in terms of allele frequencies and penetrances of the trait has
been give by a number of authors, e.g., Risch (1990a, 1990b), Feingold et al. (1993),
Dupuis et al. (1995). Under the Haldane mapping function, for a locus at position
t on the same chromosome as τ ,

P [Dc0,t = 1] =
1 + α e−β|τ−t|

2
,

while (2) continues to hold for loci located in chromosomes that do not contain any
trait loci.
(C) If chromosome c0 contains two trait loci that do not interact, located at positions
τ1 and τ2, then the probability of identity by descent at a locus t ∈ c0 can be
expressed as

P [Dc0,t = 1] =
1 + α1 e−β|τ1−t| + α2 e−β|τ2−t|

2
, (5)

with α1, α2 > 0 (see Dupuis et al., 1995) and (2) is again valid for t in chromosomes
without trait-loci.

The main goal is to determine whether the trait is of a genetic nature or not, that is to
discriminate between cases (B) or (C) versus case (A). If a genetic nature is established
for the trait it would also be of interest to clarify whether there is only one trait-locus in
chromosome c0 –case (B)– or whether there are several linked trait-loci –case (C)– and
to find the approximate location of the trait-locus or loci.

A similar approach can be applied to other kinds of pairs of relatives. Depending on
the type of kinship, different modifications are required. The most important case is pairs
of siblings, for which β = 0.04 and the essential ingredient of a commonly used statistic
is Mc,t, which denotes the number of allels, 0,1,or 2, shared IBD by a sib pair on the cth
chromosome at the locus t. Note that this statistic can be expressed as the sum of two
terms of the form of Dc,t, if we think of each pair of siblings as two pairs of half siblings,
one related through their maternally and the other through their paternally inherited
alleles. On unlinked chromosomes these half sib pairs are independent, and on linked
chromsomes they behave conditionally independently given the IBD counts at trait loci.
As a consequence the asymptotic results given below for the significance level and power
do not change, although the representation of the over all noncentrality parameter of the
test statistic in terms of a genetically interpretable parameter—which we denoted α in
(4)—does change. See, for example, Risch (1990a,b).

3. Methods. Here we discuss the single locus search approach, i.e., we restrict our
attention to methods based on the model with a unique trait-locus described in (B) of
the previous section. Such methods can also be useful to detect the presence of several
trait loci (cf. Section 6). We assume that we observe identity by descent data from N
independent pairs of affected half-siblings and introduce the new parameter ξ =

√
Nα.

For the model defined in (B) to test for genetic linkage means to test the null hypothesis
of non-existence of a trait-locus, H0 : ξ = 0, versus the alternative of genetic linkage,
H1 : ξ > 0, at some trait-locus τ . The score statistic (see for instance Cox and Hinkley,
1974) for testing the hypothesis of no trait-locus at a putative trait locus t on chromosome
c is

Vc,t = N−1/2
N∑

j=1

(
2 Dj

c,t − 1
)
, (6)

where Dj
c,t denotes the IBD indicator at locus t on chromosome c for the pair j; the

hypothesis of no trait-locus at such a position is rejected when Vc,t is large. Since the po-
sition of the possible trait-locus is unknown the test for linkage is based on the maximum
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of Vc,t over the entire genome, and H0 is rejected if we observe large enough values of

max
genome

Vc,t = max
1≤c≤C

max
0≤t≤Lc

Vc,t,

where C denotes the number of pairs of chromosomes.
Alternatively we can follow the proposal of Hoh and Ott (2000) and use the scan

statistic based on Vc,t to test whether there exists a trait-locus or not. For dense markers
the scan of bandwidth ε > 0 is defined as

Sε
c,t =

1
2ε

∫ t+ε

t−ε

Vc,s ds, (7)

which after standardizing to have unit variance under the null hypothesis becomes (see
Appendix I)

Qε
c,t = κεβ

∫ t+ε

t−ε

Vc,s ds, (8)

where κε = [2(2βε − 1 + e−2βε)]−1/2. This statistic is a smoothed version of Vc,t which
combines the information coming from several contiguous markers. Note that, for a
chromosome of genetic length Lc, Qε

c,t is only defined at positions t ∈ [ε, Lc − ε]. A test
based on this scan statistic should reject the hypothesis of no linkage when

max
genome

Qε
c,t = max

1≤c≤C
max

ε≤t≤Lc−ε
Qε

c,t

is sufficiently large.
We want to compare the power of the tests based on Qε

c,t and on Vc,t to detect linkage
under situations (B) and (C).

4. Significance levels and power. The first step is to determine which values
of the maximum of each statistic are big enough to state evidence for genetic linkage,
which implies that the genome-wide false-positive error rates

P0[ max
genome

Vc,t > b] and P0[ max
genome

Qε
c,t > b],

have to be evaluated, where the subscript 0 indicates that the probabilities are computed
under ξ = 0. Because of the independent assortment of the chromosomes during meiosis,

P0[ max
genome

Vc,t > b] = 1−
C∏

c=1

P0[ max
0≤t≤Lc

Vc,t ≤ b],

and similarly

P0[ max
genome

Qε
c,t > b] = 1−

C∏
c=1

P0[ max
ε≤t≤Lc−ε

Qε
c,t ≤ b].

Hence it is sufficient to look at the false-positive error rate of individual chromosomes.
In what follows we will omit the index c in Vc,t, S

ε
c,t, Q

ε
c,t, and Lc, and write Vt, S

ε
t , Q

ε
t,

and L respectively when we consider only one chromosome.
Let us assume that data are available from a dense set of fully informative markers.

Under this assumption, Feingold et al. (1993) suggest the following approximation to the
probability that the maximum of Vt over a chromosome of length L exceeds a threshold
b when there is no trait-locus

P0

[
max

0≤t≤L
Vt > b

]
' 1− Φ(b) + βLbφ(b), (9)
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where φ and Φ denote the standard normal density and distribution function, respectively.
We show in Appendix II that as a consequence of Rice’s formula for the expected

number of upcrossings of a level by a smooth random process the false-positive rate of
the test based on the smoothed statistic Qε

t is approximately given by

P0

[
max

ε≤t≤L−ε
Qε

t > b

]
' 1− Φ(b) + κεβ(L− 2ε)φ(b)

√
1− e−2βε

π
. (10)

Formulae (9) and (10) are Gaussian approximations based on the central limit theorem,
and hence they are valid only for large sample sizes.

As a numerical illustration we consider a genome consisting of 23 pairs of chromosomes
of average length 140 cM. In order to obtain the conventional genome-wide significance
level of 0.05 we need a significance level of about 0.0022 for each chromosome. For the non-
smoothed statistic Vt according to formula (9) this corresponds to the threshold b = 4.08.
By using formula (10) we find that the thresholds corresponding to the smoothed statistic
Qε

t with ε = 5, 10, 15, 20, 25, 30, 35, and 40 are b = 3.68, 3.56, 3.48, 3.14, 3.36, 3.30, 3.25,
and 3.20, respectively. Note that as ε increases the appropriate threshold to provide the
same false-positive error rate becomes smaller. This is in part a consequence of the range
of values of t over which we take maxima becoming narrower, but also of the larger degree
of smoothness.

Power when there is one trait-locus. Suppose that the model with a unique
trait-locus described in case (B) is valid for some locus position τ and some ξ > 0.
The approximation to the power of the test based on the score statistic Vt suggested by
Feingold et al. (1993) for large b, ξ, and N is

Pξ[ max
0≤t≤L

Vt > b] ' 1− Φ(b− ξ) + φ(b− ξ)
(

2
ξ
− 1

b + ξ

)
. (11)

In Appendix III we obtain the following asymptotic approximation to the power to detect
linkage of the test based on the scan statistic

Pξ

[
max

ε≤t≤L−ε
Qε

t > b

]
(12)

' 1− Φ(b−mε
ξ) +

φ(b−mε
ξ)

b−mε
ξ

√1 +
mε

ξ(b−mε
ξ) (1 + eβε)

2ξ2
− 1

 ,

where mε
ξ = 2ξκε

(
1− e−βε

)
is the expected value of the scan statistic at the trait-locus.

The first term on the right-hand side of (11) and of (12) equal the probability that the scan
statistic exceeds b at the trait-locus, while the last term approximates the probability of
being below the threshold b at t = τ but above b at some other locus t close to τ .
Simulations show that this approximation is quite good for large sample sizes, although
the second term should be divided by 2 if τ is close to either end of the chromosome.

To obtain some insight into how the power changes as the bandwidth ε increases we
have numerically evaluated the case ξ = N1/2α = 5 for the genome described above and
for an overall significance level of 0.05. Table 1 displays the approximated values of the
power of the tests based on Qε

t for ε = 0, 5, 10, 15, 20, 25, 30, 35 and 40. Note that the case
ε = 0 corresponds to the non-smoothed statistic Vt and its approximated power has been
calculated using (11), while (12) has been used for the other cases. The table shows that
the power to detect linkage slowly decreases as ε increases, but the loss in power when
using Qε

t with ε ∈ (0, 25] instead of Vt is not large. Similar results were obtained for other
values of ξ.
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Table 1. Approximations to the power for one trait-locus with effect ξ = 5.

bandwidth (ε) statistic threshold (b) power
0 Vt 4.08 0.90
5 Q5

t 3.68 0.90
10 Q10

t 3.56 0.89
15 Q15

t 3.48 0.88
20 Q20

t 3.41 0.86
25 Q25

t 3.36 0.85
30 Q30

t 3.30 0.82
35 Q35

t 3.25 0.81
40 Q40

t 3.20 0.79

Power when there are two linked trait-loci. We now assume that chromo-
some c0 contains two trait-loci at unknown positions τ1 and τ2 with additive effects α1

and α2, as in the model described in case (C). We set ξi = N1/2αi for i = 1, 2. In the
first subsection of Appendix IV we give an asymptotic approximation for the power of the
test based on the score statistic, Pξ1,ξ2,τ1,τ2 [max0≤t≤L Vt > b]. The approximation has
a rather complicated expression and requires numerical computation of several integrals
(see Proposition 3).

In the second subsection of Appendix IV we obtain an explicit approximation for
the power of the scan statistic, Pξ1,ξ2,τ1,τ2 [maxε≤t≤L−ε Qε

t > b], whose expression varies
depending on the relation between all the parameters (see Proposition 4). This approx-
imation is quite accurate provided that ε ≥ ε∗, where ε∗ is half the genetic distance
between the two trait-loci plus a term which depends on the ratio ξ1/ξ2 –see (35) in
Appendix IV.

Table 2 displays the approximated power to detect linkage corresponding to the case
ξ1 = 3 and ξ2 = 2 for different distances between τ1 and τ2 and the same bandwidths ε as
in Table 1. We have used the result in Proposition 3 to evaluate the power corresponding
to ε = 0 and the formulae in Proposition 4 for the cases with ε ≥ ε∗. The numbers in
italics correspond to situations in which 0 < ε < ε∗. Since our approximations do not
apply in such cases, these values have been computed by Monte Carlo simulations.

The table shows that in cases with two trait-loci on a chromosome the smoothed
statistic Qε

t provides a modest increase in power. The bandwidth ε that gives the largest
power depends on the distance between the two trait loci. In all cases the maximum
power corresponds to the test based on the scan statistic with a bandwidth close to the
distance between the two trait-loci.

Table 2. Approximations to the power for two trait-loci with effects ξ1 = 3 and ξ2 = 2.

ε b |τ2 − τ1| = 10 |τ2 − τ1| = 20 |τ2 − τ1| = 30 |τ2 − τ1| = 40
0 4.08 0.824 0.727 0.600 0.495
5 3.68 0.840 0.730 0.624 0.531
10 3.56 0.854 0.752 0.646 0.543
15 3.48 0.856 0.766 0.660 0.557
20 3.41 0.848 0.789 0.667 0.581
25 3.36 0.834 0.789 0.705 0.563
30 3.30 0.819 0.786 0.724 0.624
35 3.25 0.804 0.777 0.729 0.653
40 3.20 0.790 0.767 0.728 0.669
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5. Corrections for discrete sets of markers. In previous sections we have
assumed that a completely dense set of markers is available, namely that it is possible to
look at the IBD status of a pair of relatives at every location along the genome. In practice
the information about the IBD status is limited to a discrete set of genetic markers.

Since the sample paths of the scan statistics are smooth, the differences between a
dense set of markers and discrete set of markers are much smaller for Qε

t than for the
non-smoothed score statistic, Vt. Hence, for the tests based on the scan statistics Qε

t it is
usually not necessary to apply corrections for discrete markers unless the markers are very
widely spaced. For example, for an intermarker distance of 5 cM and ε = 20, so the scan
statistic involves moving averages of 8 markers, simulations indicate that the threshold
and power when ξ = 5 are the same as the values given in Table 1, and there is almost
no difference in power whether the trait locus is at a marker or midway between markers.
For an intermarker distance of 10 cM and ε = 25, so the scan statistic involves moving
averages of 5 markers, simulations indicate a threshold of 3.34, and power of 0.85 or 0.82
according as the trait locus is at or midway between two markers. Thus it appears that
scan statistics with a moderate to large window size have sufficiently smooth behavior
that corrections for discrete sampling are rarely required.

Since the sample paths of Vt fluctuate much more rapidly, the formulae for the false-
positive error rate and the power of the test based on the non-smoothed score statistic
Vt need to be modified. Feingold et al. (1993) give the following approximation for the
false-positive error rate for equally spaced markers at intermarker distance ∆

P0

[
max

0≤i∆≤L
Vi∆ > b

]
' 1− Φ(b) + βLb φ(b) ν[b(2β∆)1/2], (13)

where ν(x) is the special function defined in Siegmund (1985) and in the range 0 < x < 2
is very well approximated by exp(−%x) with % ' 0.583. For the genome of our example
and intermarker distances ∆ = 0.1, 1, 5, and 10, the 0.05 false positive approximate
thresholds are b =4.03, 3.91, 3.73, and 3.60, respectively.

Siegmund (1998) derives the following approximate formula for the power of the test
based on Vt for cases with one trait locus provided that the trait locus τ is itself a marker
locus

Pξ

[
max

0≤i∆≤L
Vi∆ > b

]
' 1− Φ(b− ξ) + φ(b− ξ)

(
2ν

ξ
− ν2

b + ξ

)
, (14)

where ν = ν[b(2β∆)1/2], as above. For our example with ξ = 5 and a genome-wide
significance level of 0.05, if τ is one of the genetic markers, then the power corresponding
to equally spaced markers at intermarker distances ∆ = 0.1, 1, 5, and 10 has approximate
values 0.90, 0.90, 0.92, and 0.93 respectively. A somewhat more complicated formula
applies when the trait locus is between markers. When it is exactly midway between
markers, the corresponding values of the power are approximately 0.89, 0.89, 0.87, and
0.82, respectively.

In Proposition 3∗ we give a modified version valid for discrete equally spaced markers
of the approximation in Proposition 3 for the power when the chromosome contains two
trait loci. We assume that both trait loci are located at the sites of markers. Table 3
shows the approximate power for discrete markers for ∆ = 0.1, 1, 5, and 10 corresponding
to our example with ξ1 = 3 and ξ2 = 2 and a false positive error rate of 0.05, provided
that τ1 and τ2 are both marker loci.
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Table 3. Approximations to the power of the test based on Vt

for discrete equally spaced markers at intermarker distance ∆
when there are two trait loci with effects ξ1 = 3 and ξ2 = 2.

∆ b |τ2 − τ1| =10 |τ2 − τ1| =20 |τ2 − τ1| =30 |τ2 − τ1| =40
0 4.08 0.843 0.727 0.600 0.497

0.1 4.03 0.843 0.728 0.612 0.497
1 3.91 0.850 0.737 0.613 0.509
5 3.73 0.869 0.759 0.639 0.538
10 3.60 0.890 0.787 0.672 0.574

We see in the examples that the power increases slightly with ∆, but as in the case of
a single trait locus we expect it to decrease by roughly an equal amount when the trait
loci are between genetic markers.

6. Discussion. In this paper we have examined some aspects of scan statistics
(moving averages of the values at contiguous markers of an initial statistic). Assuming
that data about the identity by descent status of pairs of affected relatives are available,
we have compared the performance of the test based on the classical score statistic with
that of the scan statistic.

We have determined the thresholds to control the genome-wide false positive rate
of the tests based on scan statistics and have derived approximated formulae for the
power to detect linkage in situations with one trait-locus and with two trait-loci in a
chromosome. We have also presented approximations to the power of the test based on
the non-smoothed score statistic when there are several loci affecting the trait for both
dense and discrete markers.

A numerical evaluation of these formulas indicates that in the case of a single trait
locus, the smoothed statistic has slightly less power than the original. This contradicts the
suggestion (Hoh and Ott (2000) that power would increase because of the “true peaks are
wider than false peaks” argument of Terwilliger et al. (1996). In the case that there are
two trait loci in the same chromosomal region, the smoothed statistic provides a modest
increase in the power to detect linkage. Since computation of the scan statistics requires
very little extra effort, we can say that in order to increase the chances to detect linkage it
is worthwhile to consider the tests based on the scan statistic with different bandwidths.
Moreover, a comparison of the p-values from the test based on the non-smoothed score
statistic with those of the tests based on the scan statistic with a few bandwidths may be
useful to discriminate between cases with only one trait locus versus cases with several
trait loci on a given chromosome.

Although the moving averge statistic appears to lose a small amount of power in
comparison with the score statistic when there is only one linked gene, its power is not
as sensitive to the location of the gene with respect to flanking markers.

In cases with two linked trait loci the bandwidth that gives the largest power depends
on the distance between the loci. The numerical results indicate that the maximum
power corresponds to the test based in the scan statistic with a bandwidth close to the
distance between the two trait loci. This suggests (as do Hoh and Ott (2000)) that the
bandwidth ε be selected adaptively. Siegmund and Worsley (1995) describe appropriate
modifications for the p-value. Since a higher threshold is required, and since even an
optimal choice of ε produces only a modest increase in power, it is not clear how useful
this idea is, although it might also allow one to get some idea of the distance between
linked trait loci.
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In this paper we have considered smoothing with the uniform kernel, so our results
could be directly compared with those of Hoh and Ott (2000). It is possible and perhaps
advantageous to consider smoothing with other kernels, e.g., a Gaussian kernel, which
would produce smoother sample paths and not lead to discontinuous behavior in the
approximation to the power function that occurs with the uniform kernel when ε is half
the distance between the two trait loci.

We have assumed throughout that markers are completely informative. When markers
are less than fully informative, multi-point analysis to maximize information recovery is
itself a kind of smoothing, but it is nonlinear smoothing conducted at the level of the
pedigree, not at the level of the statistic. If one uses only single point analysis, i.e., IBD
status at any particular marker is inferred only from genotypes and allele frequencies
for that marker, then the linear smoothing discussed in this paper is a weak form of
multipoint analysis, which will improve power to detect genes located near markers with
low information content.

The method here described seems to be a useful tool in cases where the linked trait
loci have a rather modest effect and none of them can easily be detected by the standard
approach. A complementary situation happens when one of the two linked trait-loci has
an strong effect and is easy to detect, while the effect of the second one is relatively
small and is masked by the major gene. We will analyze how a conditional approach for
sequential detection of trait-loci performs in such situations in a future paper.

Appendix

(I) Variance of the scan statistic. Under the null hypothesis of no trait-loci,
the process Dc,t defined by (2) and (3) satisfies

E0 [Dc,t] =
1
2

and Cov0 [Dc,t, Dc,s] =
e−β|t−s|

4
,

and consequently for the score statistic Vc,t defined in (6), E0 [Vc,t] = 0 and Cov0 [Vc,t, Vc,s] =
e−β|t−s|. This implies that the variance of the scan statistic Sε

c,t defined in (7) is given by

Var0
[
Sε

c,t

]
= E0

[
1

4ε2

∫ ε

−ε

∫ ε

−ε

Vc,v Vc,u du dv

]
=

1
4ε2

∫ ε

−ε

∫ ε

−ε

E0 [Vc,v Vc,u] du dv

=
1

4ε2

∫ ε

−ε

∫ ε

−ε

e−β|u−v| du dv

=
2βε− 1 + e−2βε

2β2ε2

= (2εκεβ)−2
. (15)

Hence the standardized version of the scan statistic is

Qε
c,t =

Sε
c,t√

Var0
[
Sε

c,t

] = κεβ

∫ t+ε

t−ε

Vc,s ds,

as defined in (8).
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(II) False positive error rates. It follows from the central limit theorem that,
under the hypothesis of absence of trait-loci, as N → ∞ the process Vt defined in (6)
converges in distribution to a stationary Ornstein-Uhlenbeck process, Zt, with mean value
0 and covariance function

Cov[Zt, Zt+s] = e−β|s|. (16)

This implies that the standardized scan process Qε
t defined in (8) converges weakly to the

smoothed process

Xε
t = κεβ

∫ t+ε

t−ε

Zsds.

Xε
t is a stationary Gaussian process with mean value 0 and covariance function, R(s) =

Cov
(
Xε

t , X
ε
t+s

)
, given by

R(s) = (κε)2 β2

∫ ε

−ε

∫ s+ε

s−ε

e−β|u−v| du dv (17)

=

 (κε)2
(
e−β(2ε−|s|) + e−β(2ε+|s|) − 2e−β|s| + 2(2ε− |s|)β

)
if |s| ≤ 2ε,

(κε)2
(
e−β(|s|+2ε) + e−β(|s|−2ε) − 2e−β|s|) if |s| > 2ε.

The approximate formula (10) for false positive rate of the test based on Qε
t is an asymp-

totic approximation which comes from replacing the process Qε
t by Xε

t and applying the
following result.

Proposition 1. Let Xε
t be a Gaussian process with mean 0 and covariance function

(17). For 0 < ε < L/2 and large b,

P0

[
max

ε≤t≤L−ε
Xε

t > b

]
≤ 1− Φ(b) + κεβ(L− 2ε)φ(b)

√
1− e−2βε

π
.

Proof. The results in section 3 of Davies (1977), imply that

P0

[
max

ε≤t≤L−ε
Xε

t > b

]
≤ 1− Φ(b) +

(L− 2ε)
√
−R′′(0) φ(b)√
2π

.

By taking second derivative of (17) at 0 we get,

−R′′(0) = 2 (κε)2 β2
(
1− e−2βε

)
,

from which the result follows.

(III) One trait-locus. Now we assume that the model with a unique locus trait
at chromosome c0 described in case (B) is valid for some locus position τ and α > 0.
Then, for t ∈ c0, as N →∞ and α → 0 in such as way that N1/2α → ξ, the scan process
Vt converges to a Gaussian process, which we will denote again by Zt. It has covariance
function given by (16) and mean function

E[Zt] = ξe−β|t−τ |. (18)

Approximation (11) for the power of the score statistic is based on the process Zt (see
Feingold et al., 1993 for details).
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The limit in distribution of the scan process Qε
t is the Gaussian process Xε

t = κεβ
∫ t+ε

t−ε
Zsds,

with covariance function (17) and expectation function

µε
ξ(t) = κεβξ

∫ t+ε

t−ε

e−β|s−τ | ds (19)

=


κεξ

(
e−β(τ−ε−t) − e−β(τ+ε−t)

)
if t < τ − ε,

κεξ
(
2− e−β(τ+ε−t) − e−β(t+ε−τ)

)
if τ − ε ≤ t ≤ τ + ε,

κεξ
(
e−β(t−ε−τ) − e−β(t+ε−τ)

)
if t > τ + ε.

This function reaches its maximum at τ with maximum value

mε
ξ = µε

ξ(τ) = 2κεξ
(
1− e−βε

)
. (20)

For large N , the power of the test based on the scan statistic, Pξ [maxε≤t≤L−ε Qε
t ≥ b],

will be close to Pξ [maxε≤t≤L−ε Xε
t ≥ b]. The next proposition gives an approximate

formula for this last probability, from which (12) follows.

Proposition 2. Let Xε
t be a Gaussian process with covariance function (17) and

mean value (19). If ε < τ < L − ε then for 0 < ε < L/2 and large b and ξ the
approximation

Pξ

[
max

ε≤t≤L−ε
Xε

t ≥ b

]
' 1− Φ(b−mε

ξ) +
φ(b−mε

ξ)
b−mε

ξ

√1 +
mε

ξ(b−mε
ξ)(1 + eβε)

2ξ2
− 1

 ,

holds with mε
ξ defined by (20).

Proof. The target probability can be written as

Pξ

[
max

ε≤t≤L−ε
Xε

t ≥ b

]
= Pξ [Xε

τ ≥ b] + Pξ

[
Xε

τ < b, max
t

Xε
t ≥ b

]
= 1− Φ(b−mε

ξ) +
∫ ∞

0

Pξ

[
max

t
Xε

t ≥ b |Xε
τ = b− s

]
φ(b− s−mε

ξ)ds. (21)

We approximate the integral by an approach similar to that in Section 5 of Siegmund and
Worsley (1995). They reason that, conditional on Xε

τ = b − s with s ≈ 0, for t − τ ' 0
the process Xε

t satisfies

Xε
t ≈ b− s + (t− τ)Ẋε

τ +
(t− τ)2

2
E
[
Ẍε

τ |Xε
τ = b− s

]
, (22)

and a maximization of the right-hand side of (22) yields

max
t

Xε
t ≈ b− s−

(
Ẋε

τ

)2

2E
[
Ẍε

τ |Xε
τ = b− s

] . (23)

Let gε = −R′′(0) = 2 (κε)2 β2(1−e−2βε). For our process, E[Ẍε
τ ] = µε

ξ
′′(τ) = −2κεβ2e−βεξ,

and Cov(Xε
τ , Ẍε

τ ) = R′′(0) = −gε, and hence by joint normality

E
[
Ẍε

τ |Xε
τ = b− s

]
= E

[
Ẍε

τ

]
+ Cov

(
Xε

τ , Ẍε
τ

) (
b− s−mε

ξ

)
= −

[
2 κεβ2e−βεξ + gε

(
b− s−mε

ξ

)]
' −

[
2 κεβ2e−βεξ + gε

(
b−mε

ξ

)]
. (24)

11



The last approximation comes from the fact that we are assuming that b is large and the
relevant values of s are close to 0. Let lεξ = 2 κεβ2e−βεξ + gε(b −mε

ξ) and wε
ξ = 2lεξ/gε.

Because of (23) we have

max
t

Xε
t ' b− s +

(
Ẋε

τ

)2

2lεξ
,

and thus

Pξ

[
max

ε≤t≤L−ε
Xε

t ≥ b |Xε
τ = b− s

]
' Pξ


(
Ẋε

τ

)2

2lεξ
≥ s

 = Pξ


(
Ẋε

τ

)2

gε
≥

2lεξ
gε

s

 = P
[
χ2

1 ≥ wε
ξs
]
.

If we neglect the term involving s2 in φ(b− s−mε
ξ), we get∫ ∞

0

Pξ

[
max

ε≤t≤L−ε
Xε

t ≥ b |Xτ = b− s

]
φ(b− s−mε

ξ)ds

'
∫ ∞

0

P
[
χ2

1 ≥ wε
ξs
]
φ(b− s−mε

ξ) ds

' φ(b−mε
ξ)
∫ ∞

0

P
[
χ2

1 ≥ wε
ξs
]
exp

(
(b−mε

ξ)s
)

ds

= φ(b−mε
ξ)
∫ ∞

0

exp
(
(b−mε

ξ)s
)( ∫ ∞

wε
ξ
s

1√
2π

y−1/2 e−y/2dy

)
ds

= φ(b−mε
ξ)
∫ ∞

0

1√
2π

y−1/2 e−y/2

( ∫ y/wε
ξ

0

exp
(
(b−mε

ξ)s
)
ds

)
dy

=
φ(b−mε

ξ)
b−mε

ξ

(∫ ∞

0

1√
2π

y−1/2 exp

(
−y

wε
ξ + 2(mε

ξ − b)
2wε

ξ

)
dy − 1

)

=
φ(b−mε

ξ)
b−mε

ξ

(√
wε

ξ

wε
ξ + 2(mε

ξ − b)
− 1

)
.

Combining this with (21) we obtain the proposition.

(IV) Two trait-loci on the same chromosome. Finally we will analyse the
model described in (C), where a chromosome c0 of genetic length L contains two trait-loci
at positions 0 < τ1 < τ2 < L with additive effects α1, α2 > 0. Let d = |τ2 − τ1| denote
the distance between the two trait-loci, ρ = e−βd the correlation between Zτ1 and Zτ2 ,
ξi =

√
N αi for i = 1, 2, and h the density function of a bivariate normal distribution
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with mean vector (ξ1 + ρ ξ2, ρ ξ1 + ξ2)
′, variances equal to 1, and correlation ρ, that is,

h(x, y) =
1√

1− ρ2
φ(x− ξ1 − ρ ξ2)φ

(
y − ρ ξ1 − ξ2 − ρ (x− ξ1 − ρξ2)√

1− ρ2

)
,

We assume, without loss of generality, that ξ1 > ξ2.

[(IV) - 1] Power of the test based on the score statistic. Under this model
Vt converges in distribution to a Gaussian process, Zt, with covariance function given by
(16) and mean function

E[Zt] = ξ1e
−β|t−τ1| + ξ2e

−β|t−τ2|. (25)

For large N the power to detect linkage to chromosome c0 of the test based on the scan
statistic will be close to the probability that the maximum of the process Zt over the
interval [0, L] exceeds the threshold b.

Proposition 3. Let Zt be a Gaussian process with covariance function (16) and
mean function (25). For L > τ2, and large values of b, ξ1 and ξ2,

Pξ1,ξ2,τ1,τ2

[
max

0≤t≤L
Zt > b

]
' 1−

∫ ∞

0

Φ

(
b− ρ(b− x)− ξ2(1− ρ2)√

1− ρ2

)
φ (b− x− ξ1 − ρξ2) dx

+
∫ ∞

0

∫ ∞

0

q(x, y) h(b− x, b− y)dx dy,

where
q(x, y) =

(
e−bx + e−by − e−b(x+y)

)
(1− qc(x, y)) + qc(x, y),

with
qc(x, y) = pc(x) + pc(y)− pc(x)pc(y),

and

pc(x) = 1− Φ
(

b(1− ρ)
√

βd

2(1 + ρ)
+

x√
βd

)
+ Φ

(
b(1− ρ)

√
βd

2(1 + ρ)
− x√

βd

)
e−bx(1−ρ)/(1+ρ).

Proof. The target probability can be written as

Pξ1,ξ2,τ1,τ2

[
max

0≤t≤L
Zt > b

]
(26)

= Pξ1,ξ2,τ1,τ2 [max {Zτ1 , Zτ2} > b] + Pξ1,ξ2,τ1,τ2

[
max

0≤t≤L
Zt > b,max {Zτ1 , Zτ2} ≤ b

]
.

For the first term in the right-hand side of (26) we have the identities

Pξ1,ξ2,τ1,τ2 [max {Zτ1 , Zτ2} > b]
= 1− Pξ1,ξ2,τ1,τ2 [Zτ1 ≤ b, Zτ2 ≤ b]

= 1−
∫ ∞

0

Pξ1,ξ2,τ1,τ2 [Zτ2 ≤ b |Zτ1 = b− x ]φ (b− x− ξ1 − ρξ2) dx

= 1−
∫ ∞

0

Φ

(
b− ρ(b− x)− ξ2(1− ρ2)√

1− ρ2

)
φ (b− x− ξ1 − ρξ2) dx. (27)
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On the other hand, the second term in the right-hand side of (26) can be expressed as

Pξ1,ξ2,τ1,τ2

[
max

0≤t≤L
Zt > b,max {Zτ1 , Zτ2 } ≤ b

]
(28)

=
∫ ∞

0

∫ ∞

0

Pξ1,ξ2,τ1,τ2

[
max

0≤t≤L
Zt > b

∣∣∣∣Zτ1 = b− x,Zτ2 = b− y

]
h(b− x, b− y)dx dy.

Since the events {maxt<τ1 Zt > b}, {maxt>τ2 Zt > b} and {maxτ1<t<τ2 Zt > b} are con-
ditionally independent given Zτ1 and Zτ2 , the conditional probability in the integral at
the right-hand side of (28) can be expressed, for each value of x and y, as

Pξ1,ξ2,τ1,τ2

[
max

0≤t≤L
Zt > b

∣∣∣∣Zτ1 = b− x,Zτ2 = b− y

]
= (1− qd(x, y)) (ql(x, y) + qh(x, y)− ql(x, y)qh(x, y)) + qd(x, y), (29)

where

ql(x, y) = Pξ1,ξ2,τ1,τ2

[
max
t<τ1

Zt > b

∣∣∣∣Zτ1 = b− x,Zτ2 = b− y

]
,

qh(x, y) = Pξ1,ξ2,τ1,τ2

[
max
t>τ2

Zt > b

∣∣∣∣Zτ1 = b− x,Zτ2 = b− y

]
,

and

qd(x, y) = Pξ1,ξ2,τ1,τ2

[
max

τ1<t<τ2
Zt > b

∣∣∣∣Zτ1 = b− x, Zτ2 = b− y

]
.

The conditional probability

Pξ1,ξ2,τ1,τ2

[
max
t<τ1

Zt > b |Zτ1 = b− x, Zτ2 = b− y

]
= Pξ1,ξ2,τ1,τ2

[
max
t<τ1

Zt > b | Zτ1 = b− x

]
is negligible unless x is close to 0. For x ≈ 0 and t < τ1 with (t− τ1) ≈ 0,

E [Zt − Zτ1 |Zτ1 = b− x ] =
(
1− e−β(τ1−t)

)
(b− x) ' −βb(τ1 − t),

and
Var [Zt |Zτ1 = b− x ] = 1− e−2β(τ1−t) ' 2β(τ1 − t).

Hence, conditional on Zτ1 = b − x with x small, when t is smaller than τ1 and close to
it, the process Zt behaves like a Brownian motion, Wt, with drift coefficient −βb and
diffusion coefficient 2β. Consequently,

ql(x, y) = Pξ1,ξ2,τ1,τ2

[
max
t<τ1

Zt > b

∣∣∣∣ Zτ1 = b− x, Zτ2 = b− y

]
= Pξ1,ξ2,τ1,τ2

[
max
t<τ1

Zt > b |Zτ1 = b− x

]
' P

[
max
t<0

Wt > x

]
= e−bx. (30)

A similar argument leads to the approximation

qh(x, y) = Pξ1,ξ2,τ1,τ2

[
max
t>τ2

Zt > b

∣∣∣∣ Zτ1 = b− x,Zτ2 = b− y

]
' e−by. (31)
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Furthermore, for τ1 < t < τ2,

E [Zt |Zτ1 = b− x, Zτ2 = b− y ]

=
b
(
e−β(t−τ1) + e−β(τ2−t)

)
1 + ρ

− e−β(t−τ1)(x− ρy) + e−β(τ2−t)(y − ρx)
1− ρ2

,

and

Var [Zt |Zτ1 = b− x, Zτ2 = b− y ] = 1− e−2β(t−τ1) + e−2β(τ2−t) − 2ρ2

1− ρ2
.

In order to compute qd(x, y) we will divide the interval (τ1, τ2) into two halves. Let us
define

qd1(x, y) = Pξ1,ξ2,τ1,τ2

[
max

τ1<t<(τ1+τ2)/2
Zt > b

∣∣∣∣Zτ1 = b− x,Zτ1 = b− y

]
and

qd2(x, y) = Pξ1,ξ2,τ1,τ2

[
max

(τ1+τ2)/2<t<τ2

Zt > b

∣∣∣∣Zτ1 = b− x,Zτ1 = b− y

]
.

The events
[
max(τ1<t<(τ1+τ2)/2 Zt > b

]
and

[
max(τ1+τ2)/2<t<τ2 Zt > b

]
are asymptotically

conditionally independent given Zτ1 and Zτ2 , and thus

qd(x, y) ' qd1(x, y) + qd2(x, y)− qd1(x, y)qd2(x, y). (32)

We will restrict attention to the cases where x and y are close to 0, since the con-
ditional probability Pξ1,ξ2,τ1,τ2 [maxτ1<t<τ2 Zt > b |Zτ1 = b− x,Zτ2 = b− y] is negligible
otherwise. If x ≈ 0 and y ≈ 0, then for t > τ1 and (t− τ1) small,

E [Zt − Zτ1 |Zτ1 = b− x,Zτ2 = b− y] ' −βb(t− τ1)
1− ρ

1 + ρ
,

and
Var [Zt |Zτ1 = b− x ] ' 2β(t− τ1).

Hence we can use the approximation

qd1 ' P

[
max

0<t<d/2
Bt > x

]
= pc(x), (33)

say, where Bt denotes a Brownian motion with drift coefficient −βb(1 − ρ)/(1 + ρ) and
diffusion coefficient 2β (see for example (3.15) in Siegmund, 1985). By symmetry, for
t < τ2 and (τ2 − t) ≈ 0 the approximation

qd2(x, y) = pc(y) (34)

holds. The final approximate formula for the probability of exceeding b in the interval
[0, L] is obtained by substituting (33) and (34) in (32); (30), (31) and (32) in (29), and
(27) and (29) in (26).

Suppose now that we look at the discrete set of random variables Zi∆, for 0 ≤ i∆ ≤ L.
Proposition 3∗ gives an approximate formula for

Pξ1,ξ2,τ1,τ2

[
max

0≤i∆≤L
Zt > b

]
.
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Proposition 3∗. Let Zt be the Gaussian process defined in Proposition 3. If b →∞,
∆ → 0 in such a way that b

√
∆ converges to a finite constant, then

P

[
max

0≤i∆≤L
Zt > b

]
' 1−

∫ ∞

0

Φ

(
b− ρ(b− x)− ξ2(1− ρ2)√

1− ρ2

)
φ (b− x− ξ1 − ρξ2) dx

+
∫ ∞

0

∫ ∞

0

q∆(x, y) h(b− x, b− y)dx dy,

where

q∆(x, y)

=
(

e
−b
(
x+%

√
2β∆
)

+ e
−b
(
y+%

√
2β∆
)
− e

−b
(
x+y+2%

√
2β∆
)) (

1− q∆
c (x, y)

)
+ q∆

c (x, y),

with
q∆
c (x, y) = p∆

c (x) + p∆
c (y)− p∆

c (x) p∆
c (y),

and

p∆
c (x) = 1− Φ

(
b(1− ρ)

√
βd

2(1 + ρ)
+

x√
βd

)
+ Φ

(
b(1− ρ)

√
βd

2(1 + ρ)
− x + 2%

√
2β∆√

βd

)
e−b(x+%

√
2β∆)(1−ρ)/(1+ρ),

where % is the constant defined in (3.29) of Siegmund (1985).

Proof. To derive this result we follow similar steps as in the proof of Proposition
3. The necessary changes are to enclose a factor exp

(
−b%

√
2β∆

)
in the approximate

expressions for ql(x, y) and qh(x, y) (see Appendix A of Feingold et al, 1993 for the
details), and to replace (3.15) of Siegmund (1985) by (3.28)-(3.29) of the same book in
the approximate computation of qd1(x, y) and qd2(x, y).

[(IV) - 2] Power of the test based on the scan statistic. The limit in
distribution of the scan statistic, Xε

t = κεβ
∫ t+ε

t−ε
Zsds, is under this situation a Gaussian

process with covariance function given by (17) and its expectation function,

µε(t) = Eξ1,ξ2,τ1,τ2 [Xε
t ] ,

depends on relationships between all parameters in a complicated way. For ε ≥ τ2 − τ1,

µε(t) =

κε
[
ξ1

(
e−β(τ1−t−ε) − e−β(τ1−t+ε)

)
+ ξ2

(
e−β(τ2−t−ε) − e−β(τ2−t+ε)

)]
if t < τ1 − ε,

κε
[
ξ1

(
2− e−β(τ1−t+ε) − e−β(t+ε−τ1)

)
+ ξ2

(
e−β(τ2−t−ε) − e−β(τ2−t+ε)

)]
if τ1 − ε ≤ t < τ2 − ε,

κε
[
ξ1

(
2− e−β(τ1−t+ε) − e−β(t+ε−τ1)

)
+ ξ2

(
2− e−β(τ2−t+ε) − e−β(t+ε−τ2)

)]
if τ2 − ε ≤ t < τ1 + ε,

κε
[
ξ1

(
e−β(t−ε−τ1) − e−β(t+ε−τ1)

)
+ ξ2

(
2− e−β(τ2−t+ε) − e−β(t+ε−τ2)

)]
if τ1 + ε ≤ t < τ2 + ε,

κε
[
ξ1

(
e−β(t−ε−τ1) − e−β(t+ε−τ1)

)
+ ξ2

(
e−β(t−ε−τ2) − e−β(t+ε−τ2)

)]
if t ≥ τ2 + ε,

holds, and for ε < τ2 − τ1
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µε(t) =

κε
[
ξ1

(
e−β(τ1−t−ε) − e−β(τ1−t+ε)

)
+ ξ2

(
e−β(τ2−t−ε) − e−β(τ2−t+ε)

)]
if t < τ1 − ε,

κε
[
ξ1

(
2− e−β(τ1−t+ε) − e−β(t+ε−τ1)

)
+ ξ2

(
e−β(τ2−t−ε) − e−β(τ2−t+ε)

)]
if τ1 − ε ≤ t < τ1 + ε,

κε
[
ξ1

(
e−β(t−ε−τ1) − e−β(t+ε−τ1)

)
+ ξ2

(
e−β(τ2−t−ε) − e−β(τ2−t+ε)

)]
if τ1 + ε ≤ t < τ2 − ε,

κε
[
ξ1

(
e−β(t−ε−τ1) − e−β(t+ε−τ1)

)
+ ξ2

(
2− e−β(τ2−t+ε) − e−β(t+ε−τ2)

)]
if τ2 − ε ≤ t < τ2 + ε,

κε
[
ξ1

(
e−β(t−ε−τ1) − e−β(t+ε−τ1)

)
+ ξ2

(
e−β(t−ε−τ2) − e−β(t+ε−τ2)

)]
if t ≥ τ2 + ε.

Let

tε = tε(ξ1, ξ2, τ1, τ2) = arg max
ε≤t≤L−ε

µε(t),

mε = mε(ξ1, ξ2, τ1, τ2) = max
ε≤t≤L−ε

µε(t) = µε (tε) ,

a∗ = a∗(ξ1, ξ2, τ1, τ2) =
1
2β

log
(

ξ1 + ξ2/ρ

ξ1 + ξ2ρ

)
,

b∗ = bε∗(ξ1, ξ2, τ1, τ2) =
1
2β

log
(

ξ1

ξ1 + ρξ2(1− e2βε)

)
,

and

ε∗ = ε∗(ξ1, ξ2, τ1, τ2) =
d

2
− 1

2β
log
(

ξ1

ξ2

)
. (35)

Note that a∗ does not depends on ε. By using some rather elementary but tiresome
algebra we find

tε =
{

τ1 + a∗ if ε ≥ d− a∗,
τ1 + b∗ if ε < d− a∗,

(36)

and

mε =


2κε

(
ξ1 + ξ2 − e−βε

√
ξ2
1 + ξ2

2 + ξ1ξ2(ρ + 1/ρ)
)

if ε ≥ d− a∗,

2κε
(
ξ1 − e−βε

√
ξ2
1 + ρξ1ξ2 (1− e2βε)

)
if ε < d− a∗,

(37)

and that µε(t) has no other local maximum provided that ε ≥ ε∗. The next result gives
an approximate formula for the probability that the maximum of Xε

t exceeds b for this
case.

Proposition 4. Let Xε
t be a Gaussian process with covariance function (17) and

mean function µε(t). If ε < τ1 < τ2 < L− ε, then for ε ≥ ε∗ and large values of b, ξ1 and
ξ2,

Pξ1,ξ2,τ1,τ2

[
max

ε≤t≤L−ε
Xε

t ≥ b

]

'


1− Φ(b−mε) + φ(b−mε)

b−mε

(√
1 + 2(κε)2(b−mε)(1−e−2βε)

2κε(ξ1+ξ2)−mε − 1
)

if ε ≥ d− a∗,

1− Φ(b−mε) + φ(b−mε)
b−mε

(√
1 + 2(κε)2(b−mε)(1−e−2βε)

2κεξ1−mε − 1
)

if d− a∗ < ε < ε∗,

with mε defined by (37).
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Proof. Since µε(t) has only one maximum when ε > ε∗, an approach similar to
that on Proposition 2 can be used in such cases. If ε ≥ d− a∗, then tε = τ1 + a∗,

mε = 2κε

(
ξ1 + ξ2 − e−βε

√
ξ2
1 + ξ2

2 + ξ1ξ2(ρ + 1/ρ)
)

, (38)

and
E
[
Ẍtε

]
= µε′′ (τ1 + a∗) = −2κεβ2e−βε

√
ξ2
1 + ξ2

2 + ξ1ξ2(ρ + 1/ρ).

By following the same steps as in the proof of Proposition 2 we get

Pξ1,ξ2,τ1,τ2

[
max

ε≤t≤L−ε
Xε

t ≥ b

]
= Pξ1,ξ2,τ1,τ2

[
Xε

τ1+a∗ ≥ b
]
+ Pξ1,ξ2,τ1,τ2

[
Xε

τ1+a∗ < b, max
t

Xε
t ≥ b

]

' 1− Φ(b−mε) +
φ(b−mε)

b−mε

√1 +
2(κε)2 (b−mε)(1− e−2βε)

2κε (ξ1 + ξ2)−mε
− 1

 ,

with mε given by (38).
On the other hand, when ε∗ < ε < d − a∗, µε(t) attains its only maximum at tε =

τ1 + b∗, and hence

mε = 2κε

(
ξ1 − e−βε

√
ξ2
1 + ρξ1ξ2 (1− e2βε)

)
, (39)

and
E
[
Ẍtε

]
= µε′′ (τ1 + b∗) = −2κεβ2e−βε

√
ξ2
1ρξ1ξ2 (1− e2βε),

which leads to the approximation

Pξ1,ξ2,τ1,τ2

[
max

ε≤t≤L−ε
Xε

t ≥ b

]
= Pξ1,ξ2,τ1,τ2

[
Xε

τ1+b∗ ≥ b
]
+ Pξ1,ξ2,τ1,τ2

[
Xε

τ1+b∗ < b, max
t

Xε
t ≥ b

]
' 1− Φ(b−mε) +

φ(b−mε)
b−mε

√1 +
2 (κε)2 (b−mε)(1− e−2βε)

2κεξ1 −mε
− 1

 ,

with mε defined by (39).

Remark. When ε ≤ ε∗, the expectation function µε(t) reaches its maximum value at
tε = τ1 + b∗, but has a second local maximum at τ2 − c∗, where

c∗ = c∗ξ1,ξ2,τ1,τ2,ε =
1
2β

log
(

ξ2

ξ1ρ(1− e2βε) + ξ2

)
.

In this case an approximation based on a unique maximum –as the one used in Proposition
4– is not appropriate.
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