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Abstract

In this paper we consider a multi-class, multi-server queueing system with non-preemptive

priorities. We distinguish two groups of priority classes that consist of multiple items, each hav-

ing their own arrival and service rate. We assume Poisson arrival processes and exponentially

distributed service times. We derive an approximation method to estimate the steady state prob-

abilities with an approximation error that can be made as small as desired at the expense of some

more numerical matrix iterations. Based on these probabilities, we can derive approximations for

a wide range of relevant performance characteristics, such as the expected postponement time for

each item class and the first and second moment of the number of items of a certain type in the

system.

Keywords: multi-server, multi-class queue; non-preemptive priority

1 Introduction.

This paper continues our studies on multi-class multi-server (MCMS) queues. In previous papers we

have studied MCMS queues without priorities [9], with preemptive priority and two priority groups

[10] and with two priority groups and outsourcing of high priority items which can not find a free

server (preemptive and non-preemptive rules) [11]. In this paper we study MCMS queues with two

priority groups and non-preemptive priority.
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Multi-server priority queueing systems arise normally in the performance analysis of multi-server

communication networks with differentiated services.

There is quite some literature on single server priority queueing systems. However, multi-server

priority queueing systems have received much less attention. Such models have been studied by

Mitrani et al. [8], Gail et al. [2, 3], Kao et al. [5, 6], Kella and Yechiali [7] and Wagner [12, 13, 14].

Results are available both if preemption is allowed, so high priority items may interrupt the service of

low priority items, or not. The non-preemptive queues are analyzed most extensively by Wagner [13],

who considers multi-server non-preemptive priority systems with a Markovian arrival process, service

times having phase type distributions and both finite or infinite queueing space.

To analyze multi-class, multi-server queues with two priority groups each containing several item

classes, we proceed as follows. First we construct the equilibrium state equations (section 2). In

section 3 we solve the equilibrium equations for the states with high priority items in the queue. We

show how to deal with the remaining equations (no high priority items in the queue) in section 4. For

these equations, we can only approximate the system state probabilities. Using the (approximate)

state probabilities, we can derive various system performance characteristics: expected waiting times

per type, expected queue length per type and even correlations between types, expected postponement

time per type. In section 5, we show as an example how to derive the first two moments of the number

of items in the system for each type and the expected postponement time per type.

2 The Model.

2.1 Definitions and notation.

We consider a multi-class system with k servers and unlimited waiting room. As mentioned before,

customers are processed according to a non-preemptive priority rule; high priority (hp) items form a

queue if there is no server available upon arrival. We denote the number of item classes with high (low)

priority by Nh (N l). High priority jobs from subclass i arrive according to a Poisson process with

rate λh
i and low priority jobs from subclass j arrive with rate λl

j . The service times of the subclasses
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are exponentially distributed with rates µh
i and µl

j for high and low priority item classes, respectively.

All servers are equal, and if multiple servers are available to process a job, each available server has

an equal chance to get this job. We use ρh
i , ρl

j to denote the utilization rates of high and low priority

item classes in the system. We denote the total number of high priority items in the queue by n and

the number of items in high priority type i by ni. For the low priority items in the queue, we will use

the notation m and mj respectively.

We characterize the system state by four vectors of dimensions Nh and N l, where the components

of each vector refer to the (high and low priority) subclasses:

sh and sl – vectors containing the number of high and low priority items in service per item class.

wh and wl – vectors containing the number of high and low priority items in the queue waiting for

first service per item class.

Then the systems state probabilities are denoted by Pn,m

(
wh, sh, wl, sl

)
.

Other general notations used throughout the paper are:

Λh, Λl, µh, µl – sums of the arrival rates and service rates for each class, i.e. Λh =
∑Nh

i=1 λh
i ,

Λl =
∑N l

i=1 λl
i and µh = Λh

/∑Nh

i=1
λh

i

µh
i

= Λh

kρh , µl = Λl
/∑N l

i=1
λl

i

µl
i

= Λl

kρl , where general utilization

rates for each class are ρh = Λh

kµh , ρl = Λl

kµl , and the total utilization rate is ρ = ρh + ρl.

ah
i , al

i – fractions of arrival rates, i.e. ah
i = λh

i

Λh , al
i = λl

i

Λl .

δh
i , δl

i – perturbations of service rates, i.e.
(
1 + δh

i

)
= µh

i

µh ,
(
1 + δl

i

)
= µl

i

µh , where µh is average service

rate of high priority items µh = Λh

kρh .

γ – ratio between service rates of high and low priority items γ = µl

µh

µ
(
sh, sl

)
– sum of service rates of all items in service, i.e. µ

(
sh, sl

)
=

∑Nh

i=1 sh
i µh

i +
∑N l

i=1 sl
iµ

l
i

δ
(
sh, sl

)
– sum of perturbations of service rate of all items in service,

i.e. δ
(
sh, sl

)
= 1

k

(∑Nh

i=1 sh
i δh

i +
∑N l

i=1 sl
iδ

l
i

)
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xi – the ith component of any vector x.

eh
i (el

i) – a vector of dimension Nh (N l) with component i equal to 1 and all other components equal

to 0; this vector is used to indicate the changes in vectors wh and sh (wl, rl and sl) during

transitions from state to state.

eh
ij (el

ij) – denotes the jth component of the vector eh
i (el

i), so eh
ij (el

ij) = 1 if i = j and 0 otherwise.

|x| – denotes the sum of all components of any vector x.

We will introduce the remaining notation later on.

2.2 Stationary state equations.

We divide the equilibrium equations into three groups:

I. there is at least one high priority item in the queue (n > 0, m ≥ 0),

II. all servers are busy, but there is no high priority item and at least one low priority item in the

queue (n = 0, m > 0),

III. there is no queue (n = m = 0),

All these subspaces have different equilibrium equations. Besides, we have to consider the equations

for the two boundaries between the regions separately.

In area I (n > 0, m ≥ 0), we have states with all servers occupied and high priority items in the

queue.

The equilibrium equations in this area are :(
Λh + Λl + µ

(
sh, sl

))
Pn,m

(
wh, sh, wl, sl

)
=

Nh∑
i=1

λh
i Pn−1,m

(
wh − eh

i , sh, wl, sl
)

+
N l∑
i=1

λl
iPn,m−1

(
wh, sh, wl − el

i, s
l
)

(1)

+
Nh∑
i=1

Nh∑
j=1

wh
j + 1∣∣wh
∣∣ + 1

(
sh
i + 1− eh

ij

)
µh

i Pn+1,m

(
wh + eh

j , sh + eh
i − eh

j , wl, sl
)

+
N l∑
i=1

Nh∑
j=1

wh
j + 1∣∣wh
∣∣ + 1

(
sl
i + 1

)
µl

iPn+1,m

(
wh + eh

j , sh − eh
j , wl, sl + el

i

)
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where
wh

j +1

|wh|+1
characterizes the probability that the high priority item with class j is in front of the

queue.

In area II (n = 0,m > 0) all servers are busy, low priority items are in service and no high priority

items are in the queue (i.e. wh = 0). Then, the equilibrium equations are:

(
Λh + Λl + µ

(
sh, sl

))
P0,m

(
0, sh, wl, sl

)
=

N l∑
i=1

λl
iP0,m−1

(
0, sh, wl − el

i, s
l
)

+
Nh∑
i=1

N l∑
j=1

wl
j + 1∣∣wl
∣∣ + 1

(
sh
i + 1

)
µh

i P0,m+1

(
0, sh + eh

i , wl + el
j , s

l − el
j

)

+
N l∑
i=1

N l∑
j=1

wl
j + 1∣∣wl
∣∣ + 1

(
sl
i + 1− el

ij

)
µl

iP0,m+1

(
0, sh, wl + el

j , s
l + el

i − el
j

)
(2)

+
Nh∑
i=1

Nh∑
j=1

(
sh
i + 1− eh

ij

)
µh

i P1,m

(
eh
j , sh + eh

i − eh
j , wl, sl

)

+
N l∑
i=1

Nh∑
j=1

(
sl
i + 1

)
µl

iP1,m

(
eh
j , sh − eh

j , wl, sl + el
i

)
Finally, we write down the equilibrium equations for the states without queue. We denote these

states as P−r

(
0, sh, 0, sl

)
where r is equal to the number of empty servers: r = k −

∣∣sh
∣∣ +

∣∣sl
∣∣. Note

that P−r

(
0, sh, 0, sl

)
≡ P0,0

(
0, sh, 0, sl

)
.

The equilibrium equations on the border between the areas II and III (
∣∣sh

∣∣ +
∣∣sl

∣∣ = k,

m = n = 0) have states from both areas II and III. That is:

(
Λh + Λl + µ

(
sh, sl

))
P0

(
0, sh, 0, sl

)
=

Nh∑
i=1

λh
i P−1,

(
0, sh − eh

i , 0, sl
)

+
N l∑
i=1

λl
iP−1

(
0, sh, 0, sl − el

i

)

+
Nh∑
i=1

N l∑
j=1

(
sh
i + 1

)
µh

i P0,1

(
0, sh + eh

i , el
j , s

l
)

+
N l∑
i=1

N l∑
j=1

(
sl
i + 1

)
µl

iP0,1

(
0, sh, el

j , s
l + el

i

)
(3)

+
Nh∑
i=1

Nh∑
j=1

(
sh
i + 1

)
µh

i P1,0

(
eh
j , sh + eh

i , 0, sl
)

+
N l∑
i=1

Nh∑
j=1

(
sl
i + 1

)
µh

i P1,0

(
eh
i , sh, 0, sl + el

j

)
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For the inner probability states in area III we find:

(
Λh + Λl + µ

(
sh, sl

))
P−r

(
0, sh, 0, sl

)
=

Nh∑
i=1

λh
i P−r−1

(
0, sh − eh

i , 0, sl
)

+
N l∑
i=1

λl
iP−r−1

(
0, sh, 0, sl − el

i

)

+
Nh∑
i=1

(
sh
i + 1

)
µh

i P−r+1

(
0, sh + eh

i , 0, sl
)

+
N l∑
i=1

(
sl
i + 1

)
µl

iP−r+1

(
0, sh, 0, sl + el

i

)

In the next sections, we will show how we can solve these equilibrium equations thereby obtaining

the exact system state probabilities. We will address the areas I, II and III in Section 3 and Section

4.

3 System states with high priority items in queue (n > k).

In this section we focus on area I, so there is at least one high priority item in the queue.

3.1 Reducing the set of equations

This reduction can be done using the assumption that, given the total numbers of high and low priority

items in the queue, the items are distributed over the item subclasses according to a multinomial

distribution (cf. van Harten, Sleptchenko[9] and Sleptchenko et al.[10]):

Pn,m

(
wh, sh, wl, sl

)
= n!

Nh∏
i=1

(
ah

i

)wh
i

wh
i !

m!
N l∏
j=1

(
al

j

)wl
j

wl
j !

P ′
n,m

(
sh, sl

)
. (4)

In this way, we reduce the number of state probabilities to be solved.

We substitute the relation (4) in equation (1) and we divide both sides by kµh to obtain equations

that can be transformed in matrix form. That is, all equilibrium equations with the same n and m

can be written in a matrix form as:

((
1 + ρh + γρl

)
I + δ

h
)
Pn,m = ρhPn−1,m + ρlPn,m−1 + APn+1,m (5)

where Pn+1,m are vectors containing probabilities P ′
n,m

(
sh, sl

)
from (4) as components. The dimension

of vectors Pn+1,m is equal to the amount of different server states given that all servers are occupied,
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i.e. this dimension is equal to d
(
Nh + N l, k

)
, with d (x, y) =

(
x+y+1

y

)
. δ

h and A are linear operators

on a d
(
Nh + N l, k

)
– dimensional linear space:

δ
h
Pn+1,m[sh, sl] =

(
1 + δ

(
sh, sl

)
+ ρh + γρl

)
Pn+1,m[sh, sl]

APn+1,m[sh, sl] =
1
k

Nh∑
i=1

Nh∑
j=1

(
sh
i + 1− eh

ij

) (
1 + δh

i

)
ah

j Pn+1,m[sh + eh
i − eh

j , sl]

+
1
k

N l∑
i=1

Nh∑
j=1

(
sl
i + 1

) (
1 + δl

i

)
ah

j Pn+1,m[sh − eh
j , sl + el

i].

Solving this matrix equation we can find all state probabilities with (n > 0). In the next lemma the

structure of the solution of this equation is explained.

Lemma 1

Define the matrix-function Z (ξ) as solution of

((
1 + ρh + γρl

)
I + δ

h
)

= ρhZ + ρlξ + AZ−1, s.t. |σ (Z)| > 1 (6)

Then

Pn,m

(
wh, sh, wl, sl

)
(7)

= n!
Nh∏
i=1

(
ah

i

)wh
i

wh
i !

 N l∏
j=1

(
al

j

)wl
j

wl
j !

 (
d

dξ

)|wl| [(
Z−1 (ξ)

)n−k C (ξ)
]
ξ=0

[
sh, sl

]

satisfies all equations for m ≥ 0, n > k.

Note that
∑

wh,wl P
(
wh, sh, wl, sl

)
=

[(
Z−1 (ξ)

)n−k C (ξ)
]
ξ=1

[
sh, sl

]
. The notation

[
sh, sl

]
in the

right hand side refers to the indicated vector component.

The proof of this lemma is similar to the one presented in [10], and can be presented on request.

The probabilities of the system states constructed in this section have a differential form, therefore

we will need derivatives of the matrix Z. To find these derivatives is not an easy task since we can

not derive an analytical form of the matrix Z, but we can use the equation (6) to find such derivatives

iteratively (cf. [10]).
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4 System states with no high priority items in queue (n = 0).

In this section we describe the solution of the equilibrium equations for the states with no high priority

items in the queue (n = 0).

4.1 Reducing the set of equations

As in the previous section, we can reduce the set of equations rewriting:

P0,m

(
0, sh, wl, sl

)
= m!

N l∏
i=1

(
al

i

)wl
i

wl
i!

P ′
0,m

(
sh, sl

)
.

Note that we can omit two parameters, namely the number of high priority items in the queue per

subclass (these are always zero) and the number of low priority items in the queue m.

Again, this results in a matrix equation for n = k, m ≥ 0, namely:

DmP0,m = EmP0,m−1 + BmP1,m + GmP0,m+1

where the operators Dm, Em, Bm and Gm on the vectors ζ
[
sh, sl

]
are respectively defined as:

Dmζ
[
sh, sl

]
def
=

(
1 + δ

(
sh, sl

)
+ ρh + ρl

)
ζ

[
sh, sl

]
Emζ

[
sh, sl

]
def
= ρlζ

[
sh, sl

]

Bmζ
[
sh, sl

]
def
=


1
k

Nh∑
i=1

N l∑
j=1

ah
i

(
sh
j + 1− eh

ij

) (
1 + δh

j

)
ζ

[
sh − eh

i + el
j , s

l
]

1
k

Nh∑
i=1

N l∑
j=1

ah
i

(
sl
j + 1

) (
1 + δl

j

)
ζ

[
sh − eh

i , sl + el
j

]

Gmζ
[
sh, sl

]
def
=


1
k

Nh∑
i=1

N l∑
j=1

al
j

(
sh
i + 1

) (
1 + δh

i

)
ζ

[
sh + el

i, s
l − el

j

]
1
k

N l∑
i=1

N l∑
j=1

al
j

(
sl
i + 1− el

ij

) (
1 + δl

i

)
ζ

[
sh, sl + el

i − el
j

]
The matrix Bm corresponds to probability states with one high priority item in the queue (n = 1),

which are equal to 1
m

(
d
dξ

)m [
Z−1 (ξ)C (ξ)

]
. So, we can write these matrix equations as:

DmP0,m = EmP0,m−1 + Bm
1
m!

(
d

dξ

)m [
Z−1 (ξ)C (ξ)

]
ξ=0

+ GmP0,m+1, m > 0 (8)

8



Next, it is easy to see that the equilibrium equations for the probability states with no items in

the queue can be written in matrix form as:

D0P0,0 = E0P−1 + B0

[
Z−1 (ξ)C (ξ)

]
ξ=0

+ G0P0,1, r = 0

D−rP−r = E−rP−r−1 + G−rP−r, 0<r < k (9)

D−kP−k = G−kP−k+1, r = k

where the operators D−r, E−r and G−r on the vectors ζ
[
sh, sl

]
are respectively defined as:

D−rζ
[
sh, sl

]
def
=

(
k − r

k
+ δ

(
sh, sl

)
+ ρh + ρl

)
ζ

[
sh, sl

]

E−rζ
[
sh, sl

]
def
=


1
k

Nh∑
i=1

ζ
[
sh − el

i, s
l
]

1
k

N l∑
j=1

ζ
[
sh, sl − el

i

]

G−rζ
[
sh, sl

]
def
=


1
k

Nh∑
i=1

(
sh
i + 1

) (
1 + δh

i

)
ζ

[
sh + el

i, s
l
]

1
k

N l∑
i=1

(
sl
i + 1

) (
1 + δl

i

)
ζ

[
sh, sl + el

i

]

The dimension of the equations in (8) does not depend on n and m. As in the case with high

priority items in the queue, it can be derived from the number of all combinations of Nh + N l items

on k servers. We find:

dim(L”|sh|+|sl|>=k”) =
(

Nh + N l + k − 1
k

)
. (10)

The dimension of the equations (9) depends on
∣∣sh

∣∣ +
∣∣sl

∣∣ = k− r and should be equal to the number

of all combinations of Nh + N l items on k − r servers (r ≤ k), i.e.

dim(L”|sh|+|sl|<k”) =
(

Nh + N l + k − r − 1
k − r

)
, (11)

4.2 States with only low priority items in queue (m > 0, n = 0).

The probabilities of the system states having only low priority items in queue satisfy the system

of linear inhomogeneous difference equations of second order with fixed coefficients (8). However,

the inhomogeneous term has a differential form, therefore the standard procedure of solving the
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inhomogeneous equations (solution of homogeneous + partial solution of inhomogeneous) is difficult

to apply. Therefore we will look for the solution in a differential form P0,m = 1
m!

(
d
dξ

)m
v (ξ)ξ=0. The

substitution of this solution into the equation (8) gives:

Dm
1
m!

(
d

dξ

)m

v (ξ)ξ=0 = Em
1

(m− 1)!

(
d

dξ

)m−1

v (ξ)ξ=0 + Bm
1
m!

(
d

dξ

)m [
Z−1 (ξ)C (ξ)

]
ξ=0

+ Gm
1

(m + 1)!

(
d

dξ

)m+1

v (ξ)ξ=0 , m > 0

Here we can apply the following equations:
(

d
dx

)t
(xf (x))x=0 = t

[(
d
dx

)t−1
f (x)

]
x=0

and(
d
dx

)t (
x2f (x)

)
x=0

= t (t− 1)
[(

d
dx

)t−2
f (x)

]
x=0

that can be easily proved as shown in the proof of

lemma 1 (Appendix 1). These two equations allow us to remove the derivatives from equation (8) and

to obtain a new expression of the function v (ξ) for any t > 0:

1
(m + 1)!

(
d

dξ

)m+1 [
ξDv (ξ)− ξ2Ev (ξ)−Gv (ξ)− ξBZ−1 (ξ)C (ξ)

]
ξ=0

= 0, m > 0. (12)

Assume now that the function C (ξ) is equal to v (ξ), i.e. C (ξ) = vk (ξ).

The right part of equation (12) should be a function which becomes zero for any m > 0, i.e.

a linear function. Hence, we obtain another expression for the vector-function v (ξ), that does not

contain derivatives, but that contains unknown vectors C1 and C2:

ξDv (ξ)− ξ2Ev (ξ)−Gv (ξ)− ξBZ−1 (ξ) v (ξ) = C1ξ + C2 (13)

or

H (ξ) v (ξ) = C1ξ + C2 (14)

The constants C1 and C2 can be easily expressed via the probability states P0,0, and P−1 by

differentiating and setting the equation (13) to 0. That is (see also Sleptchenko et al. [10]):

C2 = −GPk,

C1 = E0P−1.

In this way, we have defined a function v (ξ) given the probability vectors P0,0 and P−1 and next all

probability vectors P0,m for m = 1, 2, . . . follow from P0,0 and P−1. However, an essential piece of
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information has not been used up to now. It is clear that we are looking for decaying solutions P0,m

for m −→∞. As a consequence v (ξ) should be analytic on a circle with radius 1 + ε for some ε > 0.

Due to (13) extra conditions have to be satisfied at points ξ inside this circle where H(ξ) is singular.

It turns out that there are several such points in general. For example, ξ = 0 and ξ = 1 are points

of this type. It is easy to check that in case ξ = 0 any vector with 0 entries is in the null space of G.

Using the equilibrium property for subsystems with sh, sl fixed and m arbitrary it is not difficult to

check that 1t = (1, ...., 1) is a left eigenvalue of H (1) for the eigenvalue 0. In the next section we shall

show that the decay requirement boils down to a relation between the initial conditions P0,1 and P0,0

of the following type:

P0,1 = Q0P0,0.

In the next section it will be shown that this can be done by using a direct method without

reference to singular points of H(ξ). This result is crucial in the case with no queue at all.

4.3 Decay of P0,m for m −→∞.

From (13) it follows by differentiating m ≥ 2 times with respect to ξ that:(
m

0

)
H (0)

dm

dξm
v (0) +

(
m

1

)
H′ (0)

dm−1

dξm−1
v (0) + · · ·+

(
m

m

)
dm

dξm
H (0) v (0) = 0.

We can also write this in the form

m∑
i=0

hiP0,m−i = 0,

where P0,i = 1
i!

di

dξi v (0) and hi = 1
i!

di

dξiH (0).

An important consequence of this equation is that

P0,1 = Qm
0 P0,0 + Ωm

0 P0,m (15)

We will derive this result shortly. First we mention that this has the implication that for decaying

solutions P0,m for m −→∞ if Ωm
0 remains bounded:

P0,1 = Q0P0,0 with Q0 = lim
m−→∞

Qm
0

11



Let us now show how the matrices Qm
0 and Ωm

0 can be determined.

Using backward recursion from m to 1 we can show that for any m and m∗ (m > m∗) a relation

Θm∗
0 P0,m +

m∗∑
i=1

Θm∗
i P0,m∗−i = 0 (16)

is valid. That is:

For m∗ = m− 1 it is clear from the equation for Pm that we can take Θm
i = hi.

For m∗ < m− 1 we have the equation derived in the previous induction step and also the original

equation for Pm∗ :

Θm∗+1
0 P0,m + Θm∗+1

1 P0,m∗ + · · ·+ Θm∗+1
m∗+1P0,0 = 0

h0P0,m∗ + · · ·+ hm∗P0,0 = 0

or in other terms

Θm∗
0 P0,m + Θm∗

1 P0,m∗−1 + · · ·+ Θm∗
m∗P0,0 = 0

where the matrices Θm∗
i are equal to

Θm∗
0 = h0

(
Θm∗+1

1

)−1
Θm∗+1

0

Θm∗
i =

(
h0

(
Θm∗+1

1

)−1
Θm∗+1

i+1 − hi

)
, i = 1, . . . , m∗

So, we have shown that for any m and m∗ (m > m∗) the relation (16) is valid. Next, taking m∗ = 2

we obtain

Θ2
0P0,m + Θ2

1P0,1 + Θ2
2P0,0 = 0

which is the desired result if we identify Ωm
k = −

(
Θ2

1

)−1 Θ2
0 and Qm

k = −
(
Θ2

1

)−1 Θ2
2. Herewith the

relation (15) is shown.

Note that from a computational point of view the matrices Qm
k and Ωm

k can be computed using a

straightforward iteration procedure.
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In the computation of performance measures we shall also need information about the generating

function of the boundary states v(ξ) at ξ = 1. Again due to lack of space in this paper we refer to

the paper by Sleptchenko et al. [10] where the procedure of deriving the function v(ξ) at ξ = 1 was

presented in detail.

4.4 States with empty queue (m = n = 0).

The equilibrium equations for
∣∣sh

∣∣ +
∣∣sl

∣∣ < k do not have an inhomogeneous term:

D0P0,0 = E′0P
′
−1 + B0

[
Z−1 (ξ)C (ξ)

]
ξ=0

+ G0P0,1, r = 0

D′
−rP

′
−r = E′−rP

′
−r−1 + G′

−rP−r, 0<r < k

D′
−kP−k = G′

−kP
′
−k+1, r = k

D′
−rP

′
−r = E′−rP

′
−r−1 + G′

−rP
′
−r

However, now the matrices D′
−r,E

′
−r and G′

−r depend on the value of r. We can find P′
−r for 0 < r < k

using a recurrent expression. The complete solution can be represented as:

P′
−r = Q−r−1P′

−r−1 = Q−r−1Q−r−2 · · ·Q−kP′
−k

where Q−r follows recursively from

Q−r−1 = (D−r−G−rQ−r)
−1 E−r, r = 1, . . . , k

In this recurrent relation, the matrix Q0 was found in the previous section. The free constant P′
−k is

determined by

∑
wh,sh,wl,sl

Pn,m

(
wh, sh, wl, sl

)
= 1

Hence, we found the probability states for t̂ = 0 . . . k + 1 and the values of the first derivative of

the function v (1) that we need to calculate the performance measures for the queueing system.
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5 Performance measures.

In this section we present only the performance criteria for the high and low priority items in the

queue, since the other performance criteria can be derived following the lines presented by Van Harten

and Sleptchenko [9] and by Sleptchenko et al. [10].

The mean number of the low priority item i in the queue can be found as sum of all probability

states with low priority items in the queue (i.e. zones I and II) multiplied by the number of low

priority items i in the queue:

E [q∗i ] =
∞∑

n=0

∞∑
m=0

∑
wh,shwl,sl

|wh|=n,|wl|=m

w∗i Pn,m

(
wh, sh, wl, sl

)
.

In this expression various terms can be simplified via the function v (ξ) and via the matrix Z (ξ) using

Taylor expansion and we have

E
[
qh
i

]
= ah

i

〈
1, (Z (1)− I)−1 Z (1) v (1)

〉
E

[
ql
i

]
= −al

i

〈
1 , (Z (1)− I)−1 Z′ (1) (Z (1)− I)−1 v (1)

〉
+ al

i

〈
1, (Z (1)− I)−1 Z (1) v′ (1)

〉
+ al

i

〈
1, v′ (1)

〉
where vector 1 has all elements equal to 1 and dimension equal to d

(
Nh + N l, k

)
.

6 Conclusions and generalizations.

In this paper we derived a method to analyze multi-class M/M/k priority queues with non-preemptive

priority and two priority groups (high and low). Each group of priority can contain several classes of

items with different arrival and service rates. The proposed method is based on the solution of the

stationary state equations. It uses an iteration algorithm.

Also it can be used for cases where items have hyperexponential (Hr) service times. We can deal

with these cases by representing each class as r classes with exponentially distributed service time and

using the performance estimators for the total number of items in the system among these r classes.
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