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Abstract

We consider a discrete-time bulk service queueing model. The mean and variance of
the stationary queue length can be expressed by means of moment series: series over the
zeros in the closed unit disk of the characteristic equation. We represent these moment
series in terms of moments of random variables related to the unused service capacity and
use these representations to prove simple and sharp bounds on the moment series. We
pay considerable attention to the case in which the arrivals follow a Poisson distribution,
for which additional properties are proved leading to even sharper bounds. The Poisson
case serves as a pilot study for a broader range of distributions.

keywords: bulk service queue, discrete-time, zeros, moment inequalities

1 Introduction and motivation

We consider a discrete-time queueing model with bulk service as defined by the recursion

Xn+1 = max{Xn − s, 0} + An. (1)

Here, time is assumed to be slotted, Xn denotes the queue length at the beginning of slot
n, An denotes the number of newly arriving customers during slot n, and s ≥ 2 denotes the
fixed number of customers that can be served during one slot. The number of new customers
arriving per slot is assumed to be i.i.d. according to a discrete random variable A with
aj = P (A = j), and probability generating function (pgf)

A(z) =
∞

∑

j=0

ajz
j , (2)

that we assume to be analytic in an open set containing the closed unit disk |z| ≤ 1. The model
described by (1) has a wide range of applications, including ATM switching elements [3], data
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transmission over satellites [13], high performance serial busses [9], and cable access-networks
[4].

Let X denote the random variable following the stationary distribution of the Markov chain
defined by the recursion (1), with

xj = P (X = j) = lim
n→∞

P (Xn = j), j = 0, 1, 2, . . . , (3)

that exists under the assumption that E(A) < s. It follows that the pgf of X is given by (see
e.g. [3])

X(z) =
A(z)

∑s−1
j=0 xj(z

s − zj)

zs − A(z)
, (4)

as an analytic function in an open set containing the closed unit disk |z| ≤ 1. The expression
(4) is of indeterminate form, but the s unknowns x0, . . . , xs−1 can be determined by consid-
eration of the zeros of the denominator in (4) that lie in the closed unit disk (see e.g. [2, 14]).
With Rouché’s theorem, it can be shown that there are exactly s of these zeros. Thus by an-
alyticity, the numerator of X(z) should vanish at each of the zeros, yielding s equations. One
of the zeros equals 1, and leads to a trivial equation. However, the normalization condition
X(1) = 1 provides an additional equation. Using l’Hôpital’s rule, this condition is found to
be (µA = E(A))

s − µA =

s−1
∑

j=0

xj(s − j), (5)

which equates two expressions for the mean unused service capacity.
The s roots of A(z) = zs in |z| ≤ 1 are denoted by z0 = 1, z1, . . . , zs−1. By writing the

summation in (4) as C(z − 1)
∏s−1

k=1(z − zk) with C a constant, and using (5) to derive the
value of C, it follows that

s−1
∏

k=1

z − zk

1 − zk
=

1

s − µA

s−1
∑

j=0

xj
zs − zj

z − 1
, (6)

so that (4) can be written as

X(z) =
A(z)(s − µA)

zs − A(z)
(z − 1)

s−1
∏

k=1

z − zk

1 − zk
, |z| ≤ 1. (7)

Expectations and variances are denoted throughout by appending the involved random vari-
able to µ and σ2, respectively. Accordingly,

E(A) = µA = A′(1); σ2
A = A′′(1) + A′(1) − (A′(1))2, (8)

and similarly for X. Explicit expressions for the mean and variance of the steady-state queue
length can be obtained by taking derivatives of X(z). There holds (see e.g. [8])

µX =
σ2

A

2(s − µA)
+

1

2
µA − 1

2
(s − 1) +

s−1
∑

k=1

1

1 − zk
, (9)

σ2
X = σ2

A +
A′′′(1) − s(s − 1)(s − 2)

3(s − µA)
+

A′′(1) − s(s − 1)

2(s − µA)

+

(

A′′(1) − s(s − 1)

2(s − µA)

)2

−
s−1
∑

k=1

zk

(1 − zk)2
. (10)
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In this study we are interested in bounding the moment series

s−1
∑

k=1

1

1 − zk
,

s−1
∑

k=1

zk

(1 − zk)2
, (11)

which we call µ-series and σ2-series, respectively. Evidently, both series are real since the
zeros zk are either real or come in conjugate pairs.

In [4] the bounds

1

2
(s − 1) ≤

s−1
∑

k=1

1

1 − zk
≤ 1

2
(s − 1) +

1

2
min{µA, s − 1}, (12)

have been shown to hold for the µ-series. The proof of these bounds was based on the
representation

s−1
∑

k=1

1

1 − zk
=

1

2
(s − 1) +

s−1
∑

j=0

xj
j(s − j)

2(s − µA)
, (13)

and identity (5). In this paper we extend and complete the approach adopted in [4] and derive
relatively simple bounds for the µ-series and the σ2-series.

These bounds have a number of advantages over the series: they provide insight, depend on
the arrival distribution only through the first three moments, and do not require numerical
procedures. Moreover, the bounds on the series yield bounds on the mean and variance of
the queue length with the same advantages. As such, there is an obvious connection with
bounds obtained in the context of the G/G/1 queue. More precisely, one can think of Xn

as being the sojourn time of the n-th customer in the G/G/1 queue, with An−1 its service
requirement, and s the deterministic and integer-valued interarrival time between customer n
and n + 1. This model is also referred to as the D/G/1 queue (see e.g. Servi [10]). As such,
the discrete-time bulk service queueing model fits into the framework of the more general
G/G/1 queue (see e.g. Wolff [12]). A result for the G/G/1 queue, known as Kingman’s upper
bound (see [6]), would for the D/G/1 queue, comparing with (12), yield the first two terms
of the upper bound on the µ-series, i.e. 1

2(s − 1) + 1
2µA. The min{µA, s − 1} term at the

right-hand side of (12) is due to the discreteness of A. Moreover, the discreteness of s makes
that explicit expressions for the moments of X can be derived, and relations between bounds
and moment series can be established.

The main purpose of this paper is to exploit both the discreteness of the process in (1) and
the explicit expressions for the moment series to obtain results that are sharper than those
obtained for the more general G/G/1 queue. In particular, for the Poisson distribution, the
general bounds are combined with specific properties of the zeros leading to even sharper
bounds. Additionally, the results give insight as to exactly when the bounds are attained. In
Section 2, we give a detailed account of the main results, along with an overview of the paper.

We use this opportunity to alert the reader to some other results concerning the model in
(1) obtained by us recently. In [5] we present analytic expressions of the Spitzer type (that
is, involving the power series coefficients of Al(z) for l = 1, 2, . . ., see [1], formulas (8)-(9)) for
both µX −µA and σ2

X −σ2
A and for the boundary probabilities xj , j = 0, 1, . . . , s. This allows

us to give analytic formulas for the µ-series, σ2-series, as well as to present a recursive scheme,
based on (4) and the boundary probabilities, to compute all xj with j > s. Furthermore, for
a wide class of allowed distributions, among which the Poisson case in Sec. 6, we present in
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[5] an explicit Fourier series representation for the roots zk, k = 0, 1, . . . , s. These results are
useful from various, including the numerical, point of view, but they shed not much light on
the actual behaviour of the two series in terms of the first few moments of the distribution of
A. The present paper is entirely focussed on establishing results of the latter type.

2 Overview and results

We first define two auxiliary random variables Y and W that take values in {0, 1, . . . , s} as

P (Y = j) =
xj

∑s
i=0 xi

, P (W = j) =
(s − j)xj

s − µA
, j = 0, 1, . . . , s, (14)

and P (Y = j) = P (W = j) = 0, j = s + 1, s + 2, . . .. These random variables are studied in
detail in Sec. 3. There holds, in particular,

µY ≤ µA; 0 ≤ µW ≤ s − 1, (15)

with equality in the first inequality if and only if A is concentrated on {0, 1, . . . , s}. We also
prove in Sec. 3 the representations

s−1
∑

k=1

1

1 − zk
=

1

2
(s − 1) +

1

2
µA − σ2

A

2(s − µA)
+ (µX − µA), (16)

=
1

2
(s − 1) +

1

2
µY − σ2

Y

2(s − µY )
(17)

=
s(s − 1) − Y ′′(1)

2(s − µY )
=

s2 − E(Y 2)

2(s − µY )
− 1

2
(18)

=
1

2
(s − 1) +

1

2
µW , (19)

for the µ-series. We note here that (13) and (19) are identical.
From (16-19) one can obtain various inequalities for the µ-series, as well as insights into

the matter when equality occurs in these. For instance, in (12) the first inequality follows at
once from (19) and the fact that µW ≥ 0. Also, the second inequality in (12) follows from
(17) and (19) and the fact that µY ≤ µA, µW ≤ s − 1. Furthermore, the cases of equality
in either bound in (12) can easily be settled by using results, given in Sec. 3, on the relation
between concentration properties of Y and W on the one hand, and of A on the other.

We show the following bounds on the µ-series in Sec. 4.

Theorem 2.1. (i) We have

s−1
∑

k=1

1

1 − zk
≥ 1

2
(s − 1) +

1

2
µA − σ2

A

2(s − µA)
, (20)

and there is equality if and only if A is concentrated on {0, 1, . . . , s}.
(ii) Define f : [0, s) → [0,∞) by

f(µ) =
1

2
(s − 1) +

1

2
µ − 〈µ〉 − 〈µ〉2

2(s − µ)
, (21)
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Figure 1: Universal bounds for the µ-series, s = 5.

where we have defined 〈µ〉 = µ − bµc and bµc = largest integer ≤ µ. Then we have

s−1
∑

k=1

1

1 − zk
≤ f(µA), (22)

and there is equality if and only if A is concentrated on {j, j + 1} with j = 0, 1, . . . , s − 2 or
A is concentrated on {s − 1, s, s + 1, . . .}.

In Sec. 4 we present somewhat sharper forms of Thm. 2.1 that explicitly involve µY and
σ2

Y . The result in Thm. 2.1(i) presents a sharpening of the first inequality in (12) in case
that σ2

A ≤ µA(s−µA). The inequality in Thm. 2.1(ii) is a refinement of the second inequality
in (12) in which the discrete nature of the involved random variables is taken into account.
In Fig. 1, we have plotted the graphs of both f(µ) and µ → 1

2(s − 1) + 1
2 min{µ, s − 1} for

s = 5. As one sees, the graph of f hangs down from the second graph as a sort of guirlande
with nodes at all integers µ = 0, 1, . . . , s − 1.

We show in Sec. 3 the representations

s−1
∑

k=1

zk

(1 − zk)2
=

A′′′(1) − s(s − 1)(s − 2)

3(s − µA)
+

A′′(1) − s(s − 1)

2(s − µA)

+

(

A′′(1) − s(s − 1)

2(s − µA)

)2

− (σ2
X − σ2

A) (23)

=
Y ′′′(1) − s(s − 1)(s − 2)

3(s − µY )
+

Y ′′(1) − s(s − 1)

2(s − µY )
+

(

Y ′′(1) − s(s − 1)

2(s − µY )

)2

(24)

=
1

4

(

s2 − E(Y 2)

s − µY

)2

− 1

3

s3 − E(Y 3)

s − µY
+

1

12
(25)

= − 1

12
(s − µW )2 − 1

3
σ2

W +
1

12
, (26)
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for the σ2-series. In Sec. 5 we show the following result.

Theorem 2.2. We have

−s2

3(4 − µA/s)
+

1

12
≤

s−1
∑

k=1

zk

(1 − zk)2
≤ − 1

12
(s − µA)2 +

1

12
. (27)

Theorem 2.2 should be considered as a counterpart of the bounds in (12) for the µ-series.
In Sec. 5 we present a more precise and sharper result in which the σ2-series is bounded
in terms of µY and σ2

Y , and from which one can infer the cases of equality in (27). This
requires a result, communicated to us by E. Verbitskiy, on the extreme values of the third
central moment of a random variable taking all real values between 0 and s, whose mean and
variance are prescribed. The bounds in Thm. 2.2 disregard the discrete nature of the involved
random variable, and, indeed, there is again a guirlande phenomenon that is detailed in Sec.
5. The bounds in (27) can be sharpened somewhat by using (26). Indeed, we have

−1

9
(s − 1

2
)2 ≤

s−1
∑

k=1

zk

(1 − zk)2
≤ 0, (28)

and this improves the bounds in (27) when µA ↑ s.

Theorem 2.3. (i) We have

s−1
∑

k=1

zk

(1 − zk)2
≤ A′′′(1) − s(s − 1)(s − 2)

3(s − µA)
+

A′′(1) − s(s − 1)

2(s − µA)
+

(

A′′(1) − s(s − 1)

2(s − µA)

)2

, (29)

and there is equality if and only if A is concentrated on {0, 1, . . . , s}.
(ii) Defining h : [0, s) → [0,∞) by

h(µ) =

{

0, 0 ≤ µ ≤ 2,
µ(µ − 1)(µ − 2), µ > 2,

(30)

there holds

s−1
∑

k=1

zk

(1 − zk)2
≥ h(µA) − h(s)

3(s − µA)
+

A′′(1) − s(s − 1)

2(s − µA)
+

(

A′′(1) − s(s − 1)

2(s − µA)

)2

. (31)

Here σ2
A and µA must be constrained according to

σ2
A ≤ (s − µA)(µA + 2s − 4). (32)

There is equality in (31) if and only if A is concentrated on {0, 1, 2} or on {j} with j =
2, . . . , s − 1.

The proof of this result uses the representation (23) together with σ2
X ≥ σ2

A for Thm. 2.3(i),
and representation (24) in conjunction with Jensen’s inequality and µY ≤ µA for Thm. 2.3(ii).

In Sec. 6 we study in considerable detail the Poisson distribution, for which

aj = e−λ λj

j!
, j = 0, 1, . . . ; A(z) = eλ(z−1), (33)
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where 0 ≤ λ < s. The roots z0, z1, . . . , zs−1 now occur on, what we call, the generalized Szegö
curve

Sθ = {z ∈ C | |z| ≤ 1, |z| = |eθ(z−1)|}, θ := λ/s, (34)

see [5, 11]. It is shown in Sec. 6 that Re[z(1 − z)−2] ≤ 0 for z ∈ Sθ. Moreover, Sθ allows a
parametrization zθ(α), α ∈ [0, 2π], with zθ(α) the unique solution z in |z| ≤ 1 of the equation

z = eiαeθ(z−1). (35)

Consequently, we have zk = zθ(2πk/s), k = 0, 1, . . . , s − 1, and in Sec. 6 we give an explicit
Fourier series representation of zθ(α), α ∈ [0, 2π], which allows convenient computation of
all zk’s. It is shown, furthermore, in Sec. 6 that both the µ-series and σ2-series increase in
θ ∈ [0, 1). The Thms. 2.1 and 2.3 lead in this case to the inequalities

1

2
(s − 1) +

1

2
λ − λ

2(s − λ)
≤

s−1
∑

k=1

1

1 − zk
≤ 1

2
(s − 1) +

1

2
λ, 0 ≤ λ < s, (36)

and

s−1
∑

k=1

zk

(1 − zk)2
≥ − 1

12
(s − λ)2 − 1

2
λ +

(s + 2λ)s

12(s − λ)2
− λ(λ − 2/3)

s − λ
, (37)

s−1
∑

k=1

zk

(1 − zk)2
≤ − 1

12
(s − λ)2 − 1

2
λ +

(s + 2λ)s

12(s − λ)2
, (38)

where the inequality in (37) holds for a range of λ slightly smaller than [0, s). In particular,
it can be shown from these bounds that the µ-series and σ2-series exhibit to leading order
a 1

2(s − 1) + 1
2λ and a − 1

12(s − λ)2 − 1
2λ behaviour, respectively, on λ-ranges [0, λ1(s)] and

[0, λ2(s)] where s − λ1(s) = O(s1/2), s − λ2(s) = O(s2/3) as s → ∞.
In Sec. 7 we display the sets

1

2
≤ Re

[

1

1 − z

]

≤ 1; Re

[

z

(1 − z)2

]

≤ 0, (39)

where we restrict to z with |z| ≤ 1. The bounds (12) on the µ-series and (28) on the σ2-series
give rise to the somewhat imprecise statement that the zeros z1, . . . , zs−1 of zs −A(z) exhibit
on the average a preference for the two regions in (39). However, this statement cannot be
made more pertinent since we will show that there are no universal zero-free regions.

In Sec. 8 we present further examples of distributions A to illustrate the bounds on the
µ-series and σ2-series.

3 Representations of the µ-series and σ
2-series

In this section we take a closer look at the random variables Y and W as defined by (14),
and we show the representations (16-19) and (23-26) of the µ-series and σ2-series they give
rise to.

We note that Y (z) has degree s and that the roots of Y (z) = zs are precisely z0 =
1, z1, . . . , zs−1. The latter statement follows from the fact that the numerator A(z)

∑s
j=0 xj(z

s−
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zj) at the right-hand side of (4) has to cancel the s zeros of the denominator zs −A(z) within
the closed unit disk |z| ≤ 1 (when A(0) = 0 some trivial modifications are required). As a
consequence, the random variables Y and A give rise to the same µ-series and σ2-series while
P (Y > s) = 0. It follows from (5) that

s − µA = (s − µY )P (X ≤ s), (40)

and thus µY ≤ µA with equality if and only if P (X > s) = 0. From the process definition we
see furthermore that

A = X = Y ⇔ P (A > s) = 0. (41)

We now show the representations (16-19) and (23-26) in Sec. 2. The representations (16),
(23) follow at once upon rewriting (9), (10). The representations (17), (24) follow from the
observation that A and Y yield the same µ-series and σ2-series, and the fact that P (Y >
s) = 0, so that (17), (24) result from consideration of the process definition and application
of (16), (23) with Y instead of A. The proof of (18) is a straightforward consequence of the
fact that

Y ′′(1) = E[Y (Y − 1)] = σ2
Y + µ2

Y − µY . (42)

Representation (25) follows from (24) and the fact that

Y ′′′(1) − s(s − 1)(s − 2)

3(s − µY )
=

E[Y (Y − 1)(Y − 2) − s(s − 1)(s − 2)]

3(s − µY )

=
E[(Y 3 − s3) − 3(Y 2 − s2) + 2(Y − s)]

3(s − µY )
. (43)

Finally, we show the representations (19), (26). The former follows from

s2 − E(Y 2)

s − µY
=

1

s − µY

s
∑

j=0

(s2 − j2)P (Y = j) =
1

(s − µY )P (X ≤ s)

s
∑

j=0

(s + j)(s − j)xj

=
s − µA

(s − µY )P (X ≤ s)
E(s + W ) = s + µW , (44)

where we have used the definitions of Y and W together with (40). Similarly, we have

s3 − E(Y 3)

s − µY
= E(s2 + sW + W 2) = s2 + sµW + E(W 2), (45)

and (26) follows upon some administration.
We shall now be concerned with the question how certain concentration properties of Y

(and W ) are reflected by corresponding properties of A. The result given below is vital in
Secs. 4, 5 for settling cases of equality in our theorems.

Definition 3.1. Let B be a random variable with values in {0, 1, . . .} and let S be a subset
of {0, 1, . . .}. We say that B is concentrated on S when P (B /∈ S) = 0.

According to this definition we have that Y is concentrated on {0, 1, . . . , s} while W is
concentrated on {0, 1, . . . , s − 1}. Moreover, we have the following result.

Lemma 3.2. (i) Let j = 0, 1, . . . , s − 1. Then Y concentrated on {j} ⇔ A concentrated
on {j}.
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(ii) Let j = 0, 1, . . . , s−2. Then Y concentrated on {j, j+1} ⇔ A concentrated on {j, j+1}.

(iii) Y concentrated on {s − 1, s} ⇔ A concentrated on {s − 1, s, s + 1, . . .}.

(iv) Y concentrated on {0, s} ⇔ W concentrated on {0} ⇔ A concentrated on {0, s, 2s, . . .}.

For reasons of brevity we omit the proof of Lemma 3.2. It follows by a careful analysis from
the process definition.

4 Bounds for the µ-series

In this section we prove (the claims associated with) Thm. 2.1. From the process definition
in (1) we see that µX ≥ µA. So

s−1
∑

k=1

1

1 − zk
≥ 1

2
(s − 1) +

1

2
µA − σ2

A

2(s − µA)
, (46)

with equality if and only if A is concentrated on {0, . . . , s}. We further see from representation
(19) that

s−1
∑

k=1

1

1 − zk
≥ 1

2
(s − 1), (47)

and there is equality if and only if A is concentrated on {0, s, 2s, . . .}. Next we consider the
representation (17) in which the µ-series is expressed in terms of the mean and variance of Y .
Observe that for any random variable B concentrated on {0, . . . , s} with mean µ the smallest
value of σ2

B is given by 〈µ〉 − 〈µ〉2 (as defined in Thm. 2.1), and is assumed when

P (B = bµc) = 1 − 〈µ〉, P (B = bµc + 1) = 〈µ〉. (48)

The function f as defined by (21) is strictly increasing in µ ∈ [0, s − 1], and constant, s − 1,
for µ ∈ [s − 1, s). We thus have

s−1
∑

k=1

1

1 − zk
≤ f(µY ) ≤ f(µA) ≤ 1

2
(s − 1) +

1

2
min{µA, s − 1}. (49)

In the first inequality there is equality if and only if µY = 0, 1, . . . , s−1 and Y is concentrated
on {µY }, or µY is non-integer and Y is concentrated on {bµY c, bµY c + 1}. In the second
inequality there is equality if and only if µY < s − 1 and µA = µY , or s − 1 ≤ µY < s. In
the third inequality there is equality if and only if µA = 0, 1, . . . , s − 2 or µA ≥ s − 1. The
inequalities (46-47) together with the second inequality in (49) prove Theorem 2.1. And also
the case of equality in the second inequality in (12) is settled now: it holds if and only if A
is concentrated on {j} with j = 0, 1, . . . , s − 2 or A is concentrated on {s − 1, s, s + 1, . . .}.

5 Bounds for the σ
2-series

In this section we prove Thms. 2.2-2.3. We first derive bounds for the σ2-series that depend
on the mean and the variance of Y , from which we derive bounds that depend on µA. We
consider the representation (25) in which the σ2-series is expressed in terms of µY , σ2

Y and
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E(Y 3). We are interested in the smallest and largest value of (25) under the condition that µY

and σ2
Y take prescribed values. For convenience we assume Y takes, not necessarily integer,

values between 0 and s, and that 0 < µY < s. Under these assumptions, we have

0 < θ :=
µY

s
< 1, 0 ≤ ω :=

σ2
Y

µY (s − µY )
≤ 1, (50)

and equality in the last inequality occurs if and only if Y is concentrated on {0, s}. We start
by presenting a lemma.

Lemma 5.1. Let D be a random variable with values in [−c, d], where c ≥ 0, d ≥ 0, and
assume that µD = 0, σ2

D = σ2 is fixed. Then the minimum and maximum value of E(D3) are
given by

σ4

c
− cσ2, dσ2 − σ4

d
, (51)

respectively. The minimum and maximum value occur when D is concentrated on {−c, σ2/c}
and {−σ2/d, d}, respectively.

The proof of this result follows from Thm. 2.4 in [7], as was kindly communicated to us by
E. Verbitskiy.

We next present three results from which Thm. 2.2 follows. In Thms. 5.2-5.4 the random
variable Y is allowed to take non-integer values in [0, s] and θ, ω are as in (50).

Theorem 5.2. We have

s−1
∑

k=1

zk

(1 − zk)2
≥ − 1

12
s2(1 − θ + θω)2 +

1

12
− 1

3
s2(1 − ω)θω, (52)

s−1
∑

k=1

zk

(1 − zk)2
≤ − 1

12
s2(1 − θ + θω)2 +

1

12
. (53)

The lower bound is assumed if and only if Y is concentrated on

{0, µY +
σ2

Y

µY
} = {0, sω + s(1 − ω)θ}, (54)

and the upper bound is assumed if and only if Y is concentrated on

{µY − σ2
Y

s − µY
, s} = {s(1 − ω)θ, s}. (55)

Theorem 5.3. We have

− s2

3(4 − θ)
+

1

12
≤

s−1
∑

k=1

zk

(1 − zk)2
≤ − 1

12
s2(1 − θ)2 +

1

12
. (56)

The lower bound is assumed if and only if Y is concentrated on the set in (54) with ω =
(3− θ)/(4− θ), and the upper bound is assumed if and only if Y is concentrated on the set in
(55) with ω = 0.

10



Theorem 5.4. We have

−1

9
s2 +

1

12
≤

s−1
∑

k=1

zk

(1 − zk)2
≤ 1

12
. (57)

The lower bound is assumed if and only if Y is concentrated on the set in (54) with ω =
(3−θ)/(4−θ) → 2

3 and θ ↑ 1, and the upper bound is assumed if and only if Y is concentrated
on the set in (55) with ω = 0 and θ ↑ 1.

Proofs. It is convenient to combine the proofs of the above results. We rewrite representation
(25) using

E(Y 2) = σ2
Y + µ2

Y , E(Y 3) = m3
Y + 3µY σ2

Y + µ3
Y , (58)

where m3
Y = E((Y − µY )3). This yields

s−1
∑

k=1

zk

(1 − zk)2
= − 1

12
(s − µY )2 − 1

2
σ2

Y +

(

σ2
Y

2(s − µY )

)2

+
m3

Y

3(s − µY )
+

1

12
. (59)

We then use Lemma 5.1 with D = Y − µY , c = µY , d = s − µY and some administration, to
see that

s−1
∑

k=1

zk

(1 − zk)2
≥ − 1

12

(

s − µY +
σ2

Y

s − µY

)2

+
1

12
− sσ2

Y

3(s − µY )

(

1 − σ2
Y

µY (s − µY )

)

,(60)

s−1
∑

k=1

zk

(1 − zk)2
≤ − 1

12

(

s − µY +
σ2

Y

s − µY

)2

+
1

12
, (61)

with equality if and only if Y is concentrated on {0, µY +σ2
Y /µY } and on {µY −σ2

Y /(s−µY ), s},
respectively. The inequalities in (60) and (61) can be written succinctly, in terms of θ, ω as
(52) and (53), respectively, and this shows Thm. 5.2.

For fixed θ ∈ (0, 1), the minimum of (52) equals −s2/(4(3− θ)) + 1/12 and occurs uniquely
at ω = (3 − θ)/(4 − θ). The maximum of (53) equals −s2(1 − θ)2/12 + 1/12 and occurs
uniquely at ω = 0. This shows Thm. 5.3.

Finally, the minimum of the first member of (56) equals − 1
9s2 + 1/12 and occurs uniquely

when ω = (3 − θ)/(4 − θ) → 2/3 and θ ↑ 1, while the maximum of the third member of (56)
equals 1/12 and occurs uniquely when ω = 0 and θ ↑ 1. This then also shows Thm. 5.4. �

The bounds in Thm. 2.2 are in terms of µA. They can be obtained straightforwardly from
Thm. 5.3 by noting that µY ≤ µA and the fact that the first member in (56) is decreasing in
θ while the third member in (56) is increasing in θ. A corresponding result for the inequalities
in (52) and (53) is unlikely to hold since the relation between σ2

Y and σ2
A seems much more

awkward. Note once more that Y = A when A is concentrated on {0, 1, . . . , s}, and then
Thms. 5.2-5.4 hold with Y replaced by A.

In Thms. 5.2-5.4 the discrete nature of the random variables has been disregarded. Ac-
cordingly, the two bounds in (52) and (53) are achieved by some integer-valued Y if and only
if

µY +
σ2

Y

µY
= sω + s(1 − ω)θ ∈ Z, (62)

11



µY − σ2
Y

s − µY
= s(1 − ω)θ ∈ Z, (63)

respectively. In general, when these integrality conditions are not met, slight improvement
of the bounds in Thm. 5.2 can be achieved by invoking an appropriate discrete version of
Lemma 5.1 in Formula (59). This then gives rise to two guirlanded (µ, σ)- or (θ, ω)-surfaces,
with contact curves described by (62) and (63), just as we had a guirlanded graph in Thm. 2.1
for the upper bound for the µ-series (since the lower bound is constant and achievable by Y
concentrated on {0, s} no guirlande phenomenon occurs for the lower bound of the µ-series).

A slight improvement of the upper bound in (56) can be obtained by observing that σ2
Y ≥

〈µY 〉 − 〈µY 〉2 when Y is integer-valued. Thus we find, see (61), in a similar fashion as in Sec.
4 for the µ-series

s−1
∑

k=1

zk

(1 − zk)2
≤ − 1

12

(

s − µY +
〈µY 〉 − 〈µY 〉2

s − µY

)2

+
1

12

= − 1

12
(2s − 1 − 2f(µY ))2 +

1

12

≤ − 1

12
(2s − 1 − 2f(µA))2 +

1

12
=: g(µA) ≤ 0, (64)

with f as in Thm. 2.1.
We may also observe the bounds

−1

9
(s − 1

2
)2 ≤

s−1
∑

k=1

zk

(1 − zk)2
≤ 0, (65)

and their simple proofs from the representation (26) in terms of W . Indeed, consider an
arbitrary random variable C concentrated on {0, 1, . . . , s − 1} with mean µ and variance σ2.
When µ is fixed, the minimum value of

− 1

12
(s − µ)2 − 1

3
σ2 +

1

12
(66)

occurs when C is concentrated on {0, s − 1} and equals

−1

9
(s − 1

2
)2 +

1

4
(µ − 1

3
(s − 2))2 ≥ −1

9
(s − 1

2
)2. (67)

Similarly, the maximum value of (66) occurs when C is concentrated on {µ} or on {bµc, bµc+1}
(µ non-integer) and equals

− 1

12
(s − µ)2 − 1

3
(〈µ〉 − 〈µ〉2) +

1

12
≤ 0, (68)

with equality if and only if µ = s − 1.
In Fig. 2 we have plotted the bounds in (56), (64) and (65) for s = 5 and 0 ≤ µA < s.

Observe that the graph of g hangs down from − 1
12(s− µ)2 + 1

12 as a guirlande with nodes at
all integers µ = 0, 1, . . . , s − 1.

We conclude this section by proving Thm. 2.3. Theorem 2.3(i) follows at once from (23)
and the fact that σ2

X ≥ σ2
A, with equality if and only if A is concentrated on {0, 1, . . . , s}. As

to Thm. 2.3(ii) we start from the representation (24) in which we write

Y ′′′(1) = E(Y (Y − 1)(Y − 2)) = E(h(Y )), (69)

12
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with h given in (30). In (69) the last identity follows from the fact that Y is integer-valued.
The function h is convex on [0,∞) and strictly convex on [2,∞), whence by Jensen’s inequality
there holds

E(h(Y )) ≥ h(E(Y )) = h(µY ), (70)

with equality if and only if Y is concentrated on {0, 1, 2} or Y is concentrated on {j} with
j = 2, 3, . . . , s−1. Next we observe from convexity of h that the function (h(µ)−h(s))/(s−µ)
is strictly decreasing in µ ∈ [0, s). Hence, as µY ≤ µA, we have

Y ′′′(1) − s(s − 1)(s − 2)

3(s − µY )
≥ h(µY ) − h(s)

3(s − µY )
≥ h(µA) − h(s)

3(s − µA)
, (71)

with equality if and only µA = µY . We next turn to the quantity
(

s(s − 1) − Y ′′(1)

2(s − µY )

)2

− s(s − 1) − Y ′′(1)

2(s − µY )
, (72)

that occurs at the right-hand side of (24). We note from (18) that

s(s − 1) − Y ′′(1)

2(s − µY )
≥ 1

2
(s − 1). (73)

Furthermore, we have from (18) and Thm. 2.1(i) that

s(s − 1) − Y ′′(1)

2(s − µY )
≥ 1

2
(s − 1) +

1

2
µA − σ2

A

2(s − µA)
=

s(s − 1) − A′′(1)

2(s − µA)
. (74)

Denoting the far left-hand side of (74) by xY and the far right-hand side of (74) by xA we
have xY ≥ 1

2(s − 1) and xA ≥ 1
2(s − 1), whence

(x2
Y − xY ) − (x2

A − xA) = (xY − xA)(xY + xA − 1) ≥ 0, (75)

whenever xA ≥ −1
2(s − 1) + 1. This latter condition can be worked out to yield constraint

(32). Hence, under this constraint, (29) follows. The cases with equality easily follow from
what has been said in connection with occurrence of equality in (70) and (71).
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6 Special results for the Poisson distribution

In this section we consider the case that A is distributed according to a Poisson distribution,
see (33), for which we prove monotonicity of the µ-series and σ2-series. This facilitates a
sharpening of the lower bounds for both series. We have

µA = σ2
A = λ; A(k)(1) = λk, (76)

with A(k)(1) the k-th derivative of A(z) evaluated at z = 1. The roots z0, z1, . . . , zs−1 lie on
the so-called generalized Szegö curve, as defined by (34). In Fig. 3 some examples of Sθ are
plotted.

We now introduce two useful parameterizations of Sθ. First, we represent a point z on Sθ

as

z = rθ(ϕ)eiϕ, 0 ≤ ϕ ≤ 2π, (77)

where 0 ≤ rθ(ϕ) ≤ 1. In (34) and (77) we allow θ = 1, i.e. λ = s. There holds

rθ(ϕ) = exp{θ(rθ(ϕ) cos ϕ − 1)}, 0 ≤ ϕ ≤ 2π. (78)

It follows that
d

dθ
(θrθ(ϕ)) =

(1 − θ)rθ(ϕ)

1 − θrθ(ϕ) cos ϕ
≥ 0, (79)

d

dθ
(rθ(ϕ)) =

−θr2
θ(ϕ) sin ϕ

1 − θrθ(ϕ) cos ϕ
≤ 0, (80)

which yields the result that for 0 ≤ θ ≤ 1

θrθ(ϕ) ≤ r1(ϕ) ≤ rθ(ϕ), 0 ≤ ϕ ≤ 2π. (81)

It thus holds that the interior of S1 is a root-free region for any θ ≤ 1. Moreover, there holds

max

{

0,
cosϕ

1 + | sin ϕ|

}

≤ r1(ϕ) ≤ 1

1 + | sin ϕ| , 0 ≤ ϕ ≤ 2π. (82)

In Sec. 7 we shall see that this implies that Re[z(1 − z)−2] ≤ 0 for all z ∈ Sθ and all θ ≤ 1.

A second parameterization of Sθ is obtained by solving for α ∈ [0, 2π] the equation

zeθ(1−z) = eiα. (83)

Denoting the solution of (83) by zθ(α), we have the following Fourier series representation,
see [5] where this is done for more general A as well,

zθ(α) =
∞

∑

l=1

e−lθ (θl)l−1

l!
eilα, α ∈ [0, 2π]. (84)

This allows convenient computation of all zk’s, since

zk = zk,θ = zθ(2πk/s), k = 0, 1, . . . , s − 1. (85)

Using the parametrizations of Sθ, we derive the following results.
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Figure 3: Sθ for θ = .1, .5., 1. The roots z0, . . . , z19 (s = 20) are indicated as dots.

Lemma 6.1. For any z on the generalized Szegö curve Sθ, it holds that

Re

[

z

(1 − z)(1 − θz)

]

≤ 0, (86)

with equality if and only if z → 1.

Proof. With z = reiϕ, we get

Re

[

z

(1 − z)(1 − θz)

]

=
r

|1 − z|2|1 − θz|2 Re[eiϕ(1 − re−iϕ)(1 − θre−iϕ)]

=
r

|1 − z|2|1 − θz|2 (cos ϕ − (1 + θ)r + θr2 cos ϕ),

and it suffices to show that, omitting the subindex θ in rθ for notational convenience,

g(ϕ) := (1 + θr2(ϕ)) cos ϕ − (1 + θ)r(ϕ) ≤ 0, (87)

with equality if and only if ϕ = 0. Here it is evidently sufficient to consider the case that
cos ϕ > 0, ϕ ≥ 0, i.e. ϕ ∈ [0, 1

2π). There is indeed equality in (87) when ϕ = 0 since r(0) = 1.
It follows from (78) that

r′(ϕ) =
−θr2(ϕ) sin ϕ

1 − θr(ϕ) cos ϕ
, (88)

and hence

g′(ϕ) = −(1 + θr2(ϕ)) sin ϕ + (2θr(ϕ) cos ϕ − 1 − θ)r′(ϕ))

= −(1 + θr2(ϕ)) sin ϕ − (2θr(ϕ) cos ϕ − 1 − θ)θr2(ϕ) sin ϕ

1 − θr(ϕ) cos ϕ

=
− sin ϕ

1 − θr(ϕ) cos ϕ
[(1 + θr2(ϕ))(1 − θr(ϕ) cos ϕ) + (2θr(ϕ) cos ϕ − 1 − θ)θr2(ϕ))]

=
− sin ϕ

1 − θr(ϕ) cos ϕ
[1 − θr(ϕ) cos ϕ − θ2r2(ϕ)(1 − r(ϕ) cos ϕ)]. (89)
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Now, as cos ϕ > 0 and θ ≤ 1,

1 − θr(ϕ) cos ϕ − θ2r2(ϕ)(1 − r(ϕ) cos ϕ) ≥ 1 − r(ϕ) cos ϕ − θ2r2(ϕ)(1 − r(ϕ) cos ϕ)

= (1 − r(ϕ) cos ϕ)(1 − θ2r2(ϕ)) ≥ 0, (90)

with equality in the last inequality if and only if ϕ = 0. Thus g′(ϕ) < 0 for ϕ > 0, and it
follows that (87) is ≤ 0 with equality if and only if ϕ = 0. This completes the proof. �

Lemma 6.2. The µ-series in case of A(z) = eθs(z−1) is increasing in θ ∈ [0, 1).

Proof. From

zθ(α) = eθ(zθ(α)−1),
dzθ(α)

dθ
=

zθ(α)(zθ(α) − 1)

1 − θzθ(α)
, (91)

we obtain

d

dθ
(1 − zθ(α))−1 =

1

(1 − zθ(α))2
dzθ(α)

dθ
=

−zθ(α)

(1 − zθ(α))(1 − θzθ(α))
. (92)

Applying Lemma 6.1 then shows that the real part of (92) is ≥ 0 for each point on Sθ, and
thus for all roots z1, . . . , zs−1. �

Lemma 6.3. The σ2-series in case of A(z) = eθs(z−1) is increasing in θ ∈ [0, 1).

Proof. It is readily seen that

d

dθ

(

zθ(α)

(1 − zθ(α))2

)

=
−zθ(α)

(1 − zθ(α))(1 − θzθ(α))
· 1 + zθ(α)

1 − zθ(α)
, (93)

and thus

Re

[

d

dθ

(

zθ(α)

(1 − zθ(α))2

)]

= Re

[ −zθ(α)

(1 − zθ(α))(1 − θzθ(α))

]

Re

[

1 + zθ(α)

1 − zθ(α)

]

− Im

[ −zθ(α)

(1 − zθ(α))(1 − θzθ(α))

]

Im

[

1 + zθ(α)

1 − zθ(α)

]

. (94)

First note that with z = reiϕ

Im

[

z

(1 − z)(1 − θz)

]

=
r

|1 − z|2|1 − θz|2 · Im[eiϕ(1 − re−iϕ)(1 − θre−iϕ)]

=
r(1 − θr2)

|1 − z|2|1 − θz|2 · sin ϕ. (95)

Furthermore, we have
1 + z

1 − z
=

1

|1 − z|2 (1 − r2 + 2ir sin ϕ), (96)

whence

Re

[

1 + z

1 − z

]

=
1 − r2

|1 − z|2 , Im

[

1 + z

1 − z

]

=
2r

|1 − z|2 · sin ϕ. (97)

Altogether, this shows that both members at the right-hand side of (94) are ≥ 0, and thus
the real part of (93) is ≥ 0 for each point on Sθ, including all roots z1, . . . , zs−1. �

Combining the monotonicity of the µ-series and σ2-series, as proven in Lemma 6.2 and
Lemma 6.3, and the bounds in Thms. 2.1 and 2.3 yields the following results.
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Theorem 6.4. For A distributed according to the Poisson distribution, i.e. A(z) = eλ(z−1),
that satisfies λ < s, the corresponding µ-series can be bounded as

s−1
∑

k=1

1

1 − zk
≥ 1

2
(s − 1) + m1(λ), (98)

s−1
∑

k=1

1

1 − zk
≤ 1

2
(s − 1) +

1

2
λ − 〈λ〉 − 〈λ〉2

2(s − λ)
, (99)

where m1(λ) = max{ τ
2 + τ

2(s−τ) | 0 ≤ τ ≤ λ}.

Theorem 6.5. For A distributed according to the Poisson distribution, i.e. A(z) = eλ(z−1),
that satisfies λ < s, and when Cond. (32) holds, the corresponding σ2-series can be bounded

17



as

s−1
∑

k=0

zk

(1 − zk)2
≥ m2(λ), (100)

s−1
∑

k=0

zk

(1 − zk)2
≤ − 1

12
(s − λ)2 − 1

2
λ +

s(s + 2λ)

12(s − λ)2
, (101)

where m2(λ) = max{− 1
12(s − τ)2 − 1

2τ + s(s+2τ)
12(s−τ)2

− τ
s−τ (τ − 2

3) | 0 ≤ τ ≤ λ}.

The functions m1(λ) and m2(λ) are strictly increasing for λ ∈ [0, s−√
s] and λ ∈ [0, λ2(s)],

respectively, where λ2(s) is a point close to s − (6(s2 − 1
2s))1/3.

Fig. 4 and Fig. 6 display the µ-series and the bounds in Thm. 6.4 for s = 20 and s = 100,
respectively, with 1

2(s − 1) as an overall lower bound. The more general lower bound arising
from Thm. 2.1 is also plotted.

Fig. 5 and Fig. 7 display the σ2-series and the bounds in Thm. 6.5 for s = 20 and s = 100,
respectively, where − 1

9(s− 1
2)2 holds as an overall lower bound and as the lower bound when

condition (32), i.e. λ ≤ 19.64 for s = 20 and λ ≤ 99.66 for s = 100, is not met. The more
general lower bound arising from Thm. 2.3 is also plotted.

In Figs. 4-7 it is nicely demonstrated that the lower bound is sharpened substantially when
monotonicity can be proven. We conjecture that monotonicity of the µ-series and σ2-series
can be shown for distributions of A other than Poisson, e.g. the binomial and geometric
distribution. Moreover, in the Poisson case, it should be possible to establish concavity of the
µ-series and σ2-series as a function of θ with the techniques developed in [5].

7 Geometric properties of Re
[

(1 − z)−1
]

, Re
[

z(1 − z)−2
]

The inequalities presented in Sec. 2 give a considerable amount of information on the location
of the roots z1, . . . , zs−1. Among other things, it raises the question whether there exists a
universal root-free region in |z| < 1, of which S1 and its interior in the Poisson case is an
example. Thus, does there exist an open set S contained in the unit disc such that for an
arbitrarily distributed A any root z of A(z) = zs lies outside S? The answer is no. For an
allowed A can have its zeros of A(z) anywhere, except on the positive real axis 0 < z < 1,
and by taking s sufficiently large these zeros approximate roots of A(z) = zs with any desired
precision. Evidently, the inequalities in Sec. 2 provide only on-average information that leads
to the observations described next. We consider the functions

1

1 − z
,

z

(1 − z)2
. (102)

There holds for z 6= 1:

|z| ≤ 1 ⇔ Re
[

(1 − z)−1
]

≥ 1

2
. (103)

More generally, for ζ > 0 and z 6= 1, z = x + iy with real x and y, we have

Re
[

(1 − z)−1
]

=
1

2ζ
⇔ (x − (1 − ζ))2 + y2 = ζ2. (104)
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Roughly spoken, Equation (12) leads one to expect that the roots satisfy 1
2 ≤ Re

[

(1 − z)−1
]

≤
1, |z| ≤ 1, and thus are concentrated mainly in the region,

{z ∈ C | |z| ≤ 1, |z − 1/2| ≥ 1/2} , (105)

see Fig. 8. For 0 < ϕ ≤ 1
2π, z = reiϕ, the maximum value of

Re
[

(1 − reiϕ)−1
]

=
1 − r cos ϕ

1 − 2r cos ϕ + r2
, 0 ≤ r ≤ 1, (106)

equals 1
2(1 + 1

sin ϕ) and occurs at

r =
cos ϕ

1 + sin ϕ
=

1 − sin ϕ

cos ϕ
. (107)

For 1
2π ≤ ϕ ≤ π the maximum value of (106) equals 1 and occurs at r = 0. Note that (106)

is even and 2π-periodic in ϕ, and see Fig. 8.
The curve described by (107) can also be generated in connection with Re[z(1− z)−2]. We

have for z 6= 1, z = reiϕ,

Re
[

z(1 − z)−2
]

=
r((1 + r2) cos ϕ − 2r)

(1 − 2r cos ϕ + r2)2
, (108)

which is ≥ 0 if and only if, see Fig. 8,

0 ≤ r ≤ max

{

0,
cosϕ

1 + | sin ϕ|

}

. (109)

It is seen from (81) and (82) that the region described by (109) is zero-free for all allowed
values of λ.
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8 More examples

In this section we present more examples of distributions of A to illustrate the behaviour
of the µ-series and σ2-series and the importance of the bounds in Thms. 2.1 and 2.3. The
µ-series and σ2-series can be computed numerically by finding the roots z1, . . . , zs−1, which
is feasible in the cases below. When A is concentrated on {0, 1 . . . , s} we can check these
numerical results since the lower bound in Thm. 2.1 coincides with the µ-series and the
upper bound in Thm. 2.3 coincides with the σ2-series in that case. We display the µ-series
and σ2-series, with corresponding lower and upper bounds, for a number of parametrically
given A in which µA covers the whole range of permitted values below s = 5. For these cases
we also exhibit explicitly the quantities µA, σ2

A and A′′(1), A′′′(1), as required in the various
bounds.

For the µ-series we employ the bounds in Thm. 2.1 together with 1
2(s − 1) as an overall

lower bound. For the σ2-series we employ the bounds in Thm. 2.3, where the lower bound
(31) is only used when condition (32) is satisfied. If not, we use the overall lower bound
−1

9(s − 1
2)2, and the overall upper bound 0. The cases where one can read off equality from

the figures are covered by our theorems.

Example 8.1. Let A be uniformly distributed on {0, 1, . . . , n − 1} so that

A(z) =
1

n
(1 + z + . . . + zn−1) =

1

n

zn − 1

z − 1
. (110)

We have

µA =
1

2
(n − 1), σ2

A =
1

12
(n2 − 1), (111)

and for k = 2, 3, . . .

A(k)(1) =
1

k + 1
(n − 1)(n − 2) · . . . · (n − k). (112)

Fig. 9 and Fig. 10 display the µ-series and σ2-series for s = 5, µA ∈ [0, s− 1
2), i.e. 1 ≤ n ≤ 2s.

As a curiosity we mention that the values of the µ-series and σ2-series at n = s, s + 1 are
identical, viz. 2

3(s − 1) and − 1
18(s − 1)(s + 2), respectively. Condition (32) is satisfied for

µA ≤ 4.27.

Example 8.2. Take an = 1 − a, an+1 = a where a ∈ [0, 1] and n = 0, 1, . . ., so that

A(z) = (1 − a)zn + azn+1. (113)

We have
µA = n + a, σ2

A = a − a2, (114)

and for k = 2, 3, . . .

A(k)(1) = n(n − 1) · . . . · (n − k + 2)(n + 1 − (1 − a)k). (115)

Fig. 11 and Fig. 12 display the µ-series and σ2-series for s = 5, µA ∈ [0, s), i.e. 0 ≤ n ≤ s−1,
a ∈ [0, 1). Note that the µ-series and its lower and upper bound equal the guirlande upper
bound. The graph of the σ2-series is given by the right-hand side of (64), and coincides with
the upper bound. In this case, we have

P (W = n) =
(s − n)(1 − a)

s − n − a
, P (W = n + 1) =

(s − n − 1)a

s − n − a
, (116)
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Figure 9: The µ-series, Ex. 8.1, s = 5.
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Figure 10: The σ2-series, Ex. 8.1, s = 5.
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Figure 11: The µ-series, Ex. 8.2, s = 5.
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Figure 12: The σ2-series, Ex. 8.2, s = 5.
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Figure 13: The µ-series, Ex. 8.4, s = 5.
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Figure 14: The σ2-series, Ex. 8.4, s = 5.
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and so there is no need for numerical determination of the roots. Instead, since X = A = Y ,
we could use representation (17) and (26).

Example 8.3. Take a0 = 1 − µ/s, as = µ/s with µ ∈ [0, s), so that

A(z) = (1 − µ

s
) +

µ

s
zs. (117)

We have

µA = µ, σ2
A = µ(s − µ), (118)

and for k = 2, 3, . . .

A(k)(1) = µ(s − 1)(s − 2) · . . . · (s − k + 1). (119)

Note that zk = exp(2πik/s), and thus

s−1
∑

k=1

1

1 − zk
=

1

2
(s − 1),

s−1
∑

k=1

zk

(1 − zk)2
= − 1

12
(s2 − 1), (120)

which can also be found using (17) and (26), and the fact that P (W = 0) = 1.

Example 8.4. Take a0 = 1 − µ/(s − 1), as−1 = µ/(s − 1) with µ ∈ [0, s − 1], so that

A(z) = (1 − µ

s − 1
) +

µ

s − 1
zs−1. (121)

We have

µA = µ, σ2
A = µ(s − 1 − µ), (122)

and for k = 2, 3, . . .

A(k)(1) = µ(s − 2)(s − 3) · . . . · (s − k). (123)

We also compute

P (W = 0) =
s(s − 1) − µs

(s − 1)(s − µ)
, P (W = s − 1) =

µ

(s − 1)(s − µ)
, (124)

so that

µW =
µ

s − µ
, σ2

W =
µs

s − µ
(1 − 1

s − µ
) = µW (s − 1 − µW ). (125)

Therefore,

s−1
∑

k=1

1

1 − zk
=

1

2
(s− 1) +

1

2
µW ,

s−1
∑

k=1

zk

(1 − zk)2
= − 1

12
s2 − 1

2
µW (

1

3
s− 2

3
) +

1

4
µ2

W +
1

12
, (126)

and these quantities are displayed in Fig. 13 and Fig. 14 for s = 5, µA ∈ [0, s− 1]. The least
value, -1

9(s− 1
2)2, of the σ2-series occurs for µW = 1

3(s− 2), i.e. for µ = s(s− 2)/(s+1) = 2 1
2 .

The µ-series and σ2-series coincide with their lower and upper bounds, respectively.

22



0 1 2 3 4 5
1.5

2

2.5

3

3.5

4

4.5
series
lower bound
upper bound

PSfrag replacements

µAµ-series

Figure 15: The µ-series, Ex. 8.5, s = 5.
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Figure 16: The σ2-series, Ex. 8.5, s = 5.
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Figure 17: The µ-series, Ex. 8.6, s = 5.
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Figure 18: The σ2-series, Ex. 8.6, s = 5.

Example 8.5. Take a0 = 1/2, an−1 = 1/2 where n ∈ [1, 2s], so that

A(z) =
1

2
+

1

2
zn−1. (127)

We have

µA =
1

2
(n − 1), σ2

A =
1

4
(n − 1)2, (128)

and for k = 2, 3, . . .

A(k)(1) =
1

2
(n − 1)(n − 2) · . . . · (n − k). (129)

Fig. 15 and Fig. 16 display the µ-series and σ2-series for s = 5, µA ∈ [0, s − 1
2 ], i.e.

for 1 ≤ n ≤ 2s. Note that the µ-series starts decreasing as a function of n − 1 around
n − 1 = s(2 −

√
2), which is well before n − 1 = s. Condition (32) is satisfied for µA ≤ 3.63.
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Example 8.6. Take a symmetric binomial distributed A,

aj =
1

2n−1

(

n − 1

j

)

, j = 0, 1, . . . , n − 1; aj = 0, j = n, n + 1, . . . , (130)

so that

A(z) =

(

1 + z

2

)n−1

. (131)

We now have

µA =
1

2
(n − 1), σ2

A =
1

4
(n − 1), (132)

and for k = 2, 3, . . .

A(k)(1) =

(

1

2

)k

(n − 1)(n − 2) · . . . · (n − k). (133)

Fig. 17 and Fig. 18 display the µ-series and σ2-series for s = 5, µA ∈ [0, s − 1
2 ], i.e. for

1 ≤ n ≤ 2s, and we observe a qualitatively similar behaviour for the two series as in the
Poisson case, see Sec. 6. Condition (32) is satisfied for µA ≤ 4.77.
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