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Abstract

We consider a discrete-time multi-server queue for which the moments of the stationary
queue length can be expressed in terms of series over the zeros in the closed unit disk of
a queue-specific characteristic function. In many important cases these zeros can be
considered to be located on a queue-specific curve, called generalized Szegö curve. By
adopting a special parametrization of these Szegö curves, the relevant zeros occur as
equidistant samples of a 2π-periodic function whose Fourier coefficients can be determined
analytically. Thus the series occurring in the expressions for the moments can be written
as Fourier aliasing series with terms given in analytic form. This gives rise to formulas for
e.g. the mean and variance of the queue length that are reminiscent of Spitzer’s identity
for the moment generating function of the steady-state waiting time for a G/G/1 queue.
Indeed, by considering the queue under investigation as a G/G/1 queue, the new formulas
for the mean and variance also follow from Spitzer’s identity. The approach in this paper
can also be used to compute the probability distribution function of the queue length in
analytic form.

Keywords: Discrete-time queue, multi-server, Szegö curve, Spitzer’s identity, Fourier
sampling.

AMS 2000 Subject Classification: 42A16, 42A32, 30C15, 94A20, 90B22.

1 Introduction and motivation

We consider a discrete-time queue (in queueing theory language a multi-server queue, see [6]),
defined by the recursion

Xn+1 = max{Xn − s, 0} + An , n ∈ Z . (1.1)
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Here Xn is the queue length at the beginning of time slot n, An is a non-negative discrete
random variable denoting the number of arriving customers at the end of slot n, and s is the
(constant) number of customers that can be processed within one time slot. It is assumed
that the An form an i.i.d. sequence of random variables with probabilities aj = P (A = j),
j = 0, 1, ... , such that

∑

j aj = 1 and

E(A) =
∞

∑

j=0

j aj < s . (1.2)

Under this assumption the system defined by (1.1) is stable and the stationary probability
distribution of the Xn exists. We denote this stationary distribution by X with probabilities
xj = P (X = j) = limn→∞ P (Xn = j), j = 0, 1, ... , satisfying

∑

j xj = 1. We shall also
assume that the generating function

A(z) :=
∞

∑

j=0

aj zj (1.3)

is analytic in a disk |z| < 1 + ε with ε > 0. Then the generating function

X(z) :=
∞

∑

j=0

xj zj (1.4)

is analytic in a disk |z| < 1+ε with ε > 0 as well, and it is an elementary exercise in queueing
theory to show that the generating functions A(z) and X(z) satisfy (see e.g. [2])

X(z) =
A(z)

∑s−1
j=0 (zs − zj) xj

zs − A(z)
(1.5)

in a disk |z| < 1 + ε with ε > 0. We refer to [7] for the general theory of Markov chains
(of which the system in (1.1) is an example), and to [4] for the theory and applications of
queueing systems. In Sec. 7 we shall relate the queueing system under investigation to what
is called in queueing theory a G/G/1 queue.

It follows from Rouché’s theorem, applied to zs − A(z) on circles |z| = 1 + ε with ε > 0,
and the assumption (1.2), that the equation

A(z) = zs (1.6)

has exactly s roots z0 = 1, z1, ..., zs−1 in |z| ≤ 1. Also, there is an ε > 0 such that (1.6) has
no roots for 1 < |z| < 1 + ε. Denote the mean and variance of A by µA and σ2

A, so that

µA =

∞
∑

j=0

j aj = A′(1) , (1.7)

σ2
A =

∞
∑

j=0

(j − µA)2 aj = A′′(1) + A′(1) − (A′(1))2 , (1.8)
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and similarly for X. Now a careful but otherwise elementary analysis of the relation (1.5)
around z = 1, using the analyticity of A(z) and X(z) in a disk |z| < 1 + ε with ε > 0, yields

µX =
1

2
µA +

σ2
A

2(s − µA)
− 1

2
(s − 1) +

s−1
∑

k=1

1

1 − zk
, (1.9)

σ2
X = σ2

A +
A′′′(1) − s(s − 1)(s − 2)

3(s − µA)
+

A′′ − s(s − 1)

2(s − µA)

+
(A′′(1) − s(s − 1)

2(s − µA)

)2
−

s−1
∑

k=1

zk

(1 − zk)2
. (1.10)

See e.g. [2], and also the beginning of Sec. 6 for some aspects of this analysis.
The two series at the right-hand sides of (1.9) and (1.10) can be evaluated by numerically

computing the zeros zk, k = 1, . . . , s. The feasibility of this approach depends on A and how
large s is. In [5] these two series are bounded in a relatively simple form in terms of the first
three moments of A. This gives considerable insight into the behaviour of these series, but the
bounds are not always as tight as one wishes. As an alternative, one can try to consider the
zk’s as equidistant samples z(2πk/s) of a 2π-periodic, complex-valued function parametrizing
the ”curve” {z | |z| ≤ 1, |A(z)|1/s = |z|}, and apply Fourier sampling theory. In this paper
we work out this point of view in all detail, and we succeed in obtaining analytical expressions
for the two series. The resulting formulas for µX and σ2

X , see formulas (3.6-3.7) below, are
reminiscent of the expressions for the mean and variance of the steady-state waiting time
for a general G/G/1 queue, see [1], (8). These formulas explicitly involve the power series
coefficients of Al(z), l = 0, 1, . . ., around z = 0, and are therefore termed formulas of Spitzer
type, since they follow from Spitzer’s identity, see [14], [1], (7), and (3.9) below.

That methods from analytic function theory play a crucial role in queueing theory is
evident, notably from the work of Pollaczek [9, 10], also see [1, 13]. In [1] it is pointed out
that Spitzer’s identity can be derived from one of Pollaczek’s identities, see [1], (3), and this
bridges a gap between the analytic function theory approach and the combinatorial approach
as embodied by Spitzer’s identity.

In the present paper we fully exploit the discrete nature of the queues under study, and
we bridge the gap between the analytic function approach, as embodied by the formulas (1.9-
1.10), and formulas of Spitzer type, by considering the relevant zeros as sample points on,
what we call generalized Szegö curves. This approach yields the desired analytic expressions
for the two series as well as for the probabilities xj , j = 0, ..., s − 1, that occur at the right-
hand side of (1.5), and xs. From xj , j = 0, 1, ..., s , all xj with j = s + 1, s + 2, ... can be
determined recursively using (1.5).

2 Overview

We now sketch our approach to obtain analytic expressions for series
∑

k g(zk) with zk the
roots of A(z) = zs in |z| ≤ 1. We shall throughout assume that a0 > 0. This involves no
essential limitation: if a0 were zero we would replace the distribution {ai} by {a′i} where
a′i = ai−m, am being the first non-zero entry of {ai}, and a corresponding decrease in the
maximum number of customers served per slot according to s′ = s − m.
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We consider for w in a neighbourhood of 0 the equation

z A−1/s(z) = w , (2.1)

where at the left-hand side of (1.2) we have taken the principal value of the root. Let g
be analytic in a neighbourhood of z = 0. By the Lagrange inversion theorem, see [16],
§ 7.32, there is a neighbourhood of w = 0 such that the equation (2.1) has a unique solution
z = z0(w). Furthermore, the function g(z0(w)) has the power series expansion

g(z0(w)) = g(0) +
∞

∑

l=1

cl(g) wl , (2.2)

where for l = 1, 2, ...

cl(g) =
1

l!

( d

dz

)l−1
[Al/s(z) g′(z)] (z = 0) =

1

l
Czl−1 [Al/s(z) g′(z)] . (2.3)

We have used here the short-hand notation Czj [f(z)] for the coefficient of zj in f(z). We
denote

cl := cl(g0) ; g0(z) = z , (2.4)

and we let R be the radius of convergence of the series

z0(w) =
∞

∑

l=1

cl w
l . (2.5)

We shall show in Sec. 4 that the mapping w, |w| < R → z0(w) is analytic and injective.
Now assume that R > 1. Then we can consider the equation (2.1) and its unique solution

z0(w) with w = eiα, α ∈ [0, 2π]. Accordingly, we let

z(α) := z0(e
iα) , α ∈ [0, 2π] . (2.6)

The s roots z = zk, k = 0, 1, ..., s − 1 , of the equation A(z) = zs with z0 = 1, |zk| ≤ 1,
k = 1, ..., s − 1 , are distinct and are obtained as

zk = z(2πk/s) = z0(e
2πik/s) , k = 0, 1, ..., s − 1 . (2.7)

Furthermore, with (2.6) we have a parametrization of a Jordan curve with 0 in its interior.
Finally, when g is analytic in an open neighbourhood of {z0(w)||w| ≤ 1}, then the 2π-periodic
function α → g(z(α)) has the Fourier series representation

g(z(α)) = g(0) +
∞

∑

l=1

cl(g) eilα , α ∈ [0, 2π] , (2.8)

with cl(g) given in (2.3).
The assumption R > 1 is, for instance, satisfied when A(z) is zero-free in |z| ≤ 1. An

example of this is the Poisson case,

aj = e−λ λj

j!
, j = 0, 1, ... ; A(z) = eλ(z−1) , (2.9)
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with 0 ≤ E(A) = λ < s. There are also non-trivial examples of distributions A with gener-
ating functions that do have zeros in the unit disk for which R > 1. See Example 4.5 at the
end of Sec. 4 where we consider the binomial distribution

aj =

(

n

j

)

qj(1 − q)n−j , j = 0, ..., n; aj = 0, j = n + 1, ... , (2.10)

so that
A(z) = (1 − q + qz)n , (2.11)

with E(A) = nq < s.
With R > 1 and g analytic in an open neighbourhood of {z0(w) | |w| ≤ 1} there follows

from the Fourier series representation (2.8) and elementary Fourier sampling theory that

s−1
∑

k=0

g(zk) =

s−1
∑

k=0

g(z(2πk/s)) = s g(0) + s

∞
∑

l=1

cls(g) , (2.12)

with cl(g) given by (2.3). Thus

s−1
∑

k=0

g(zk) = s g(0) +
∞

∑

l=1

1

l
Czls−1 [Al(z) g′(z)] . (2.13)

Note that the right-hand side series in (2.13) has terms that involve integral powers of A
only. In fact, when g is analytic in a disk |z| < 1+ε with ε > 0 and A satisfies the assumptions
of Sec. 1, then the numbers Czls−1 [Al(z) g′(z)] decay exponentially fast, irrespective whether
R > 1 or not. Hence in these cases the right-hand side of (2.13) makes sense regardless
whether R > 1 or not. It therefore seems a plausible conjecture that (2.13) holds for these
more general A and somewhat different type of g.

Some of the g’s we are interested in fail to be analytic at z = 1, but become so after
proper regularization. This is, for instance, the case with

g(z) =
1

1 − z
,

z

(1 − z)2
(2.14)

that occur in (1.9) and (1.10). In Sec. 5 we regularize the g’s in (2.14) by subtracting

B

1 − z A−1/s(z)
,

C

(1 − z A−1/s(z))2
+

D

1 − z A−1/s(z)
(2.15)

with properly chosen B and C, D. Indeed, since A(1) = 1, proper choice of B and C, D
cancels the poles of the g’s at z = 1. Furthermore

z A−1/s(z)|z=zk
= e2πik/s , k = 1, ..., s ,

and in Sec. 5 we present an identity for the series
∑s−1

k=1 (1 − e2πik/s)−m, m = 1, 2 , which
shows that regularization of the g’s in (2.14) according to (2.15) may maintain the analytic
nature of the expressions for

∑

g(zk). For this it is also required that the cl, with regularized
g’s, are still expressible in analytic form. That this happens to be the case is also shown in
Sec. 5.

We now give a short survey of the paper. In Sec. 3 we present the main results of this
paper. In Sec. 4 we give the details regarding the parametrization in (2.5) of the Jordan
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curve {z | |z| = |A1/s(z)|, |z| ≤ 1} in case that R > 1. We call curves of this type generalized
Szegö curves, the curve {z | |z| = |eϑ(z−1)|, |z| ≤ 1} as considered in [14] with ϑ = 1 being
the prototype of these curves. In Sec. 5 we give the details of our approach to find analytic
expressions for

∑s−1
k=1 (1− zk)

−1,
∑s−1

k=1 zk(1− zk)
−2, and we present the resulting expressions

for µX and σ2
X . In Sec. 6 we give explicit expressions for the probabilities xj , j = 0, 1, ..., s ,

by using the approach of this paper. In Sec. 7 we view the queue in (1.1) as a G/G/1 queue,
and we present Spitzer’s formula for the moment generating function of the steady-state
waiting time for this case. This connection yields alternative proofs of the results in Secs. 5,
6 without the assumption that R > 1. Hence, this completes the process of bridging a gap
between two sets of formulas that exist for the mean and variance of the waiting times in
certain discrete-time queues.

3 Results

We have the following main results, using the short-hand notation Czj [f(z)] for the coefficient
of zj in f(z).

Theorem 3.1. Under the assumptions on A as made in Sec. 1 there holds

s−1
∑

k=1

1

1 − zk
=

1

2
(s − 1) +

1

2
µA − σ2

A

2(s − µA)
+
∞

∑

l=1

1

l

∞
∑

j=ls

(j − ls) Czj [Al(z)] . (3.1)

Theorem 3.2. Under the assumptions on A as made in Sec. 1 there holds

s−1
∑

k=1

zk

(1 − zk)2
= − 1

12
C(s − 1)(s − 5) +

1

2
D(s − 1) − gR

2 (1) − s(C + D)

−
∞

∑

l=1

1

l

∞
∑

j=ls

(j − ls)2 Czj [Al(z)] , (3.2)

where C and D are given by

C =
(

1 − 1

s
µA

)2
, C + D =

1

s
σ2

A , (3.3)

and

gR
2 (1) =

a[2] + 1
3a[3]

1 + a[1]
+

a[1] + 1
2a[2]

1 + a[1]

(

1 − a[1] + 1
2a[2]

1 + a[1]

)

(3.4)

with a[i] the ith derivative of A−1/s(z) at z = 1, i = 1, 2, 3. Alternatively, one has for the
constant on the first line of (3.2)

− 1

12
C(s − 1)(s − 5) +

1

2
D(s − 1) − gR

2 (1) − s(C + D)

=
A′′′(1) − s(s − 1)(s − 2)

3(s − µA)
+

A′′(1) − s(s − 1)

2(s − µA)
+

(A′′ − s(s − 1)

2(s − µA)

)2
. (3.5)
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Theorems 3.1-3.2 are proved in Sec. 5 under the assumption that R > 1, where R is the
radius of convergence of the power series of z0(w) in (2.5). In Sec. 4 we shall show that
Czj [Al(z)], j ≥ ls, can be estimated in such a way that the two infinite series at the right-
hand sides of (3.1) and (3.2) converge absolutely under the assumptions on A of Sec. 1 alone
(no assumption on R required). A further observation is that from Thms. 3.1-3.2 and (1.9),
(1.10)

µX = µA +
∞

∑

l=1

1

l

∞
∑

j=ls

(j − ls) Czj [Al(z)] , (3.6)

σ2
X = σ2

A +
∞

∑

l=1

1

l

∞
∑

j=ls

(j − ls)2 Czj [Al(z)] . (3.7)

These two results can be proved directly, under the assumptions on A of Sec. 1, by using
Spitzer’s identity, see [12] and [4], p.339. To that end, we introduce the process

Wt+1 = max(Wt + At−1 − s, 0) , (3.8)

and W its stationary distribution, i.e. P (W = j) = limt→∞ P (Wt = j). Observe that from
(1.1) it follows that Xt = Wt + At−1. Spitzer’s identity now reads

E(e−uW ) = exp
{

∞
∑

l=1

1

l
E(e−u max(Sl,0) − 1)

}

, Re u ≥ 0 , (3.9)

where Sl =
∑l

i=1 (Ai − s). This will be detailed in Sec. 7.

In Sec. 6 we consider the stationary queue length distribution {xi}, for which we have the
following result.

Theorem 3.3. Under the assumptions on A as made in Sec. 1 there holds

c :=
s−1
∑

j=0

xj = exp
{

−
∞

∑

l=1

1

l

∞
∑

j=ls

Czj [Al(z)]
}

, (3.10)

d :=
s

∑

j=0

xj = exp
{

−
∞

∑

l=1

1

l

∞
∑

j=ls+1

Czj [Al(z)]
}

, (3.11)

xi = d Cvi

[

A(v) exp
{

s−1
∑

j=1

vj
∞

∑

l=1

1

l
Czls+j [Al(z)]

}]

, (3.12)

for i = 0, 1, ..., s − 1. Hence, and in particular,

x0 = a0d = a0 exp
{

−
∞

∑

l=1

1

l

∞
∑

j=ls+1

Czj [Al(z)]
}

, (3.13)

xs = d − c = d
(

1 − exp
{

−
∞

∑

l=1

1

l
Czls [Al(z)]

})

. (3.14)
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From the xj , j = 0, 1, ..., s , all other xj ’s can be computed recursively, for it follows from
(1.5) that

X(z) − c A(z) = A(z)
∞

∑

j=0

xj+s zj (3.15)

with c given in (3.10).

As with Thms. 3.1-3.2 the proof of Thm. 3.3 is first given under the assumption that the
radius of convergence R of the series in (2.5) is larger than one. This latter assumption can,
however, be removed by directly using Spitzer’s identity.

4 Fourier sampling on Szegö curves

In 1924, Szegö [14] showed that the zeros of the normalized partial sums

sn(nz) =
n

∑

k=0

(nz)k

k!
, n = 0, 1, ... , (4.1)

of ez tend to what nowadays is called the Szegö curve

S := {z ∈ C | |z| = |ez−1|, |z| ≤ 1} . (4.2)

This Szegö curve attracts attention to this date of researchers in approximation theory, see
e.g. [11, 15, 17] and the references therein.

Curves of the Szegö type occur in the present context as follows. When A(z) is as in
Sec. 1, the roots zk of A(z) = zs in the unit disk all lie in the set

SA,s := {z ∈ C | |z| = |A1/s(z)|, |z| ≤ 1} . (4.3)

In the case that A(z) = exp(λ(z− 1)), the generating function of a Poisson distribution, with
A′(1) = λ < s, we get the set

Sϑ := {z ∈ C | |z| = |eϑ(z−1)|, |z| ≤ 1} , (4.4)

where ϑ := λ/s. Interestingly, in this case some of the quantities that occur in Sec. 3, such
as d of (3.11), can be expressed in terms of the sn(nz) in (4.1). The set S in (4.2) occurs as
the limit case where ϑ = 1.

We start this section by proving the claims on the mappings z0(w) and z(α) made in
Sec. 2 under the assumption that the power series

∞
∑

l=1

clw
l ; cl =

1

l
Czl−1 [Al/s(z)] , (4.5)

has radius of convergence R > 1. We have assumed that A(z) is analytic in a disk |z| < 1+ ε,
and also that aj ≥ 0, A′(1) < s, and a0 > 0. Let ε > 0 be such that A(z) is analytic in
|z| < 1 + ε. Let

Gε :=
{

∞
∑

l=1

clw
l | |w| < R

}

∩ {z | |z| < 1 + ε} . (4.6)
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Define

z0(w) :=
∞

∑

l=1

clw
l , |w| < R , (4.7)

and let

Hε := z←0 (Gε) = {w ∈ C | |w| < R, |z0(w)| < 1 + ε} .

Lemma 4.1. With the above assumptions and definitions the following holds. The function
A is analytic and zero-free on Gε. Taking the principal s−1-root of A(z), z ∈ Gε, there holds

z0(w) A−1/s(z0(w)) = w , w ∈ Hε , (4.8)

and z0(w) is the unique solution of the equation z A−1/s(z) = w with w ∈ Hε and z ∈ Gε.
This unique z0(w) is positive for w ∈ (0, 1] and satisfies z0(1) = 1. For α ∈ [0, 2π] we have
that z(α) is the unique solution z in |z| ≤ 1 of

z A−1/s(z) = eiα . (4.9)

The set {z(α) | α ∈ [0, 2π]} is a Jordan curve with 0 in its interior. Finally, the roots zk of
the equation A(z) = zs, k = 0, 1, ..., s − 1 , occur as z(2πk/s) and are distinct.

Proof. Evidently, A is analytic on Gε ⊂ {z | |z| < 1 + ε}. Since z0(w) A−1/s

(z0(w)) = w holds in a neighbourhood of w = 0, we have by analyticity that

zs
0(w) = ws A(z0(w)) , w ∈ Hε . (4.10)

Suppose that w ∈ Hε, w 6= 0, and that A(z0(w)) = 0. Then it follows from (4.10) that
z0(w) = 0, whence that A(0) = 0 = a0 6= 0. Contradiction. So A(z0(w)) 6= 0 for w ∈ Hε.
We can therefore take the principal s−1-root of A(z) for z ∈ Gε which is analytic on Gε. By
analyticity we then have that z0(w) A−1/s(z0(w)) = w holds on all of Hε, and not just in a
neighbourhood of w = 0. That is, (4.8) holds. From (4.8) it readily follows that z0 is injective
on Hε. Also when w ∈ Hε we have that z0(w) is the unique solution z ∈ Gε of the equation
z A−1/s(z) = w.

The function z ∈ [0, 1 + δ] → z A−1/s(z) is strictly increasing for some δ > 0. Indeed,
when z ∈ (0, 1] we have that

(z A−1/s(z))′ =
1

s
A−

1

s
−1(z) [s A(z) − z A′(z)]

=
1

s
A−

1

s
−1(z)

∞
∑

j=0

(s − j) aj zj ≥ 1

s
A−

1

s
−1(z) zs

∞
∑

j=0

(s − j) aj > 0 , (4.11)

since A′(1) < s. Moreover A(1) = 1. It thus follows that z0(w) increases from 0 to 1 as w
increases from 0 to 1.

We consider now w = eiα with α ∈ [0, 2π], and let z(α) be the unique solution of (4.9).
We shall show that |z(α)| ≤ 1. To that end we observe that there is a δ > 0 such that
|A(z)| 6= |z|s when 1 < |z| < 1 + ε (this follows from the assumptions that aj ≥ 0, A′(1) < s).
Since z(0) = z0(1) = 1 and z(α) depends continuously on α ∈ [0, 2π] we see that |z(α)| ≤ 1,
α ∈ [0, 2π], indeed. Furthermore, z(0) = z(2π) and z(α) 6= z(β) when 0 ≤ α < β < 2π,

9



while the mapping r ∈ [0, 1] → {z0(r eiα) | α ∈ [0, 2π]} is a homotopy between {0} and
{z(α) | α ∈ [0, 2π]}. Hence {z(α) | α ∈ [0, 2π]} is indeed a Jordan curve with 0 in its interior.

Finally consider (4.9) with α = 2πk/s, k = 0, 1, ..., s − 1. Evidently, the z(2πk/s)
are distinct and have modulus ≤ 1, as follows from the above. Also, any z(2πk/s) is
a root of the equation A(z) = zs, see (4.9). Hence, the sets {zk | k = 0, ..., s − 1} and
{z(2πk/s) | k = 0, ..., s − 1} coincide. �

Note. We have |A(z)|1/s >, =, < |z| according as z, |z| ≤ 1, is inside, on, outside the Jordan
curve {z(α) | α ∈ [0, 2π]}.

Lemma 4.2. Assume that A satisfies the conditions in Sec. 1 and that A is zero-free in
|z| < 1 + ε, where ε > 0. Then Czl−1 [Al/s(z)] decays exponentially.

Proof. We have by Cauchy’s theorem

Czl−1 [Al/s(z)] =
1

2πi

∫

|z|=r

Al/s(z)

zl
dz , l = 1, 2, ... , (4.12)

for any r ∈ (0, 1 + ε). Noting that there is a δ > 0 such that

∣

∣

∣

A(z)

zs

∣

∣

∣
≤ A(|z|)

|z|s < 1 , 1 < |z| < 1 + δ , (4.13)

we see that for any r ∈ (1, 1 + δ)

|Czl−1 [Al/s(z)]| ≤ (A(r))l/s

rl
≤

((A(r)

rs

)1/s)l
, (4.14)

and this decays exponentially fast as l → ∞. �

Lemma 4.3. Assume that A satisfies the conditions of Sec. 1 with ε > δ > 0 such that A is
analytic in |z| < 1 + ε and |A(z)| < |z|s in 1 < |z| < 1 + δ (no assumption on R). Let h be
analytic in |z| < 1 + ε. Then for any r ∈ (1, 1 + δ) we have

|Czj [Al(z) h(z)]| ≤
(A(r)

rs

)l M

rj−ls
, l = 1, 2, ..., j ≥ ls , (4.15)

where M = max {|h(z)| | |z| = r}.

Proof. This follows, in a similar fashion as Lemma 4.2, from Cauchy’s theorem and A′(1) < s.
�

Example 4.4. Consider the Poisson case A(z) = exp(λ(z − 1)) with 0 ≤ λ < s. We have
pictured in Fig. 1 the set Sϑ in (4.4) for a number of values of ϑ := λ/s (although not
permitted, ϑ = 1 is included). The dots on the curves indicate the roots zk for the case
s = 20; this will be discussed at the end of this section. We compute

cl =
1

l
Czl−1 [Al/s(z)] =

1

l
Czl−1 [eϑl(z−1)] = e−lϑ (lϑ)l−1

l!
(4.16)
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for l = 1, 2, ... . Hence Sϑ has the parametric representation

zϑ(α) =
∞

∑

l=1

e−lϑ (lϑ)l−1

l!
eilα , α ∈ [0, 2π] . (4.17)

We observe that cl is accurately approximated, using Stirling’s formula, by

cl ≈
(ϑ e1−ϑ)l

ϑl
√

2πl
, l = 1, 2, ... , (4.18)

where we note that ϑ e1−ϑ increases from 0 to 1 as ϑ increases from 0 to 1. Hence, even for
ϑ = 1 the representation in (4.17) makes sense.

Example 4.5. Consider the binomial case A(z) = (p + qz)n where p, q ≥ 0, p + q = 1 and
A′(1) = nq < s. We compute in this case

cl =
1

l
Czl−1 [Al/s(z)] =

1

l
Czl−1 [(p + qz)nl/s]

=
1

l
p

nl
s
−l+1 ql−1

(

nl/s

l − 1

)

, l = 1, 2, ... , (4.19)

where we have used the notation
(

α

k

)

=
α(α − 1) · ... · (α − k + 1)

k!
=

Γ(α + 1)

Γ(α − k + 1) Γ(k + 1)
. (4.20)

Let β := n/s. When β = 1 we have

cl = p ql−1 , l = 1, 2, ... , (4.21)

and there is exponential decay (when β = 1 we have q < s/n = 1). When β > 1, one has by
Stirling’s formula for Γ(x + 1),

cl ≈
p

q

1

β − 1

1

l
√

2πl
pl(β−1) ql

( β

β − 1

)1/2 [ ββ

(β − 1)β−1

]l
, (4.22)

whence there is exponential decay when

ββ

(β − 1)β−1
pβ−1 q < 1 . (4.23)

For fixed p, q, the quantity at the left-hand side of (4.23) is maximal as a function of β at
β = 1/q, with the value 1. Hence, since β = n/s < 1/q, we have exponential decay. Finally,
when 0 < β < 1, one has again by Stirling’s formula and the formula Γ(x) Γ(1−x) = π/ sin πx,

cl ≈
p

q

1

(1 − β)2
(−1)l sin πlβ

l
√

1
2πl

pl(β−1) ql((1 − β)β)1/2((1 − β)1−β ββ)l , (4.24)

whence there is exponential decay when

pβ−1 q(1 − β)1−β ββ < 1 . (4.25)
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Figure 1: Sϑ for Poisson case, ϑ = .1, .5, 1.
The dots indicate z0, . . . , z19 for s = 20.
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Figure 2: SA,s=2n for binomial case, q = .82.
The dots indicate z0, . . . , z19 for s = 20.

Note that the left-hand side of (4.25) increases from 0 to ∞ when q increases from 0 to 1
(p = 1 − q). In the critical case, where we have = instead of < in (4.25), there is still a
l−3/2-decay of the cl. This critical case also arises in the following way. With β = n/s we
consider the equation

|p + qz|β = |z| (4.26)

for negative z = −r ∈ [−1, 0). When 0 < β < 1 and p/q < 1 this equation has at least one
and at most three roots z ∈ [−1, 0]. The critical case now occurs when (4.26) has three roots
of which two of them coincide.

In Figs. 2-4 we consider the case that β = 1
2 and s = 20. The critical case now occurs for

q0 = 2(
√

2 − 1) = 0.828427125. We have plotted the set

SA,s=2n = {z | |z| ≤ 1, |p + qz|1/2 = |z|} (4.27)

for q = 0.82, 2(
√

2 − 1), 0.83. We observe that SA,s turns from a smooth Jordan curve
containing 0 (Fig. 2) into two separate closed curves when q passes q0 (Fig. 4).

Lemma 4.6. Assume that A satisfies the assumptions of Sec. 1 and that the radius of conver-
gence, R, of the series in (4.5) > 1. Also assume that g is analytic in an open neighbourhood
of {z0(w) | |w| ≤ 1}. Then cl(g) = l−1 Czl−1 [Al/s(z) g′(z)] has exponential decay, and there is
an Rg > 1 such that

g(z0(w)) = g(0) +
∞

∑

l=1

cl(g) wl , |w| < Rg , (4.28)

with absolute convergence at the right-hand side of (4.28). In particular, we have

g(z(α)) = g(0) +
∞

∑

l=1

cl(g) eilα , α ∈ [0, 2π] , (4.29)

with absolute convergence at the right-hand side of (4.29).
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Proof. There is an R1, 1 < R1 < R, such that g is analytic in {z0(w) | |w| < R1}. With
1 < R2 < R1 and C2 = {z0(R2 eiα) | α ∈ [0, 2π]}, a Jordan curve with 0 in its interior, we
have by Cauchy’s theorem for l = 1, 2, ...

Czl−1 [Al/s(z) g′(z)] =
1

2πi

∫

C2

Al/s(z) g′(z)

zl
dz . (4.30)

On C2 we have |A(z)/zs| = R−s
2 , whence

|Czl−1 [Al/s(z) g′(z)]| ≤ M R−l
2 , l = 1, 2, ... , (4.31)

where M = max {|g′(z)| | z ∈ C2}. This shows exponential decay of cl(g). From this (4.28)
easily follows with Rg = R2 since g(z0(w)) = g(0) +

∑∞
l=1 cl(g) wl holds in a neighbourhood

of 0 by Lagrange’s theorem. Finally, (4.29) is a direct consequence of (4.28). �

Note. As one sees from the proof of Lemma 4.6 a geometric reformulation of the condi-
tion R > 1 reads: there is a Jordan curve J with 0 in its interior such that A(z) is zero-free
on and inside J while |A(z)| < |z|s on J .

We now make some comments on equidistant sampling of functions g(z(α)) under the
conditions of Lemma 4.6. The zeros zk = z(2πk/s), k = 0, 1, ..., s− 1 , can be computed from
(4.29) by taking g(z) = z and α = 2πk/s. Hence

zk = z(2πk/s) =
∞

∑

l=1

1

l
Czl−1 [Al/s(z)] e2πikl/s , k = 0, 1, ..., s − 1 . (4.32)

As mentioned earlier, the zk are displayed as dots for
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(a) A(z) = exp(λ(z − 1)), s = 20, λ = 2, 10, 20,

(b) A(z) = (p + qz)n, s = 20, n = 10, q = 0.82, 2(
√

2 − 1), 0.83,

in Fig. 1 and Figs. 2-4, respectively. For all cases, except the last one in (b) we can use
(4.32); for the latter case we had to use a different (numerical) procedure.

When the conditions of Lemma 4.6 are satisfied, we see immediately from (4.29) and

s−1
∑

k=0

e2πikl/s =

{

s , l = 0(mod s) ,

0 , l 6= 0(mod s) ,
(4.33)

that
s−1
∑

k=0

g(zk) =
s−1
∑

k=0

g((z(2πk/s)) = s g(0) + s
∞

∑

l=1

cls(g) . (4.34)

5 Expressing
∑

(1 − zk)
−1 and

∑

zk(1 − zk)
−2 in terms of

aliasing series

In this section we express the series

s−1
∑

k=1

1

1 − zk
,

s−1
∑

k=1

zk

(1 − zk)2
, (5.1)

in terms of aliasing series under the conditions on A of Sec. 1 and the assumption that the
series in (4.5) has radius of convergence R > 1.

To apply Lemma 4.6, we need to regularize the functions

g1(z) =
1

1 − z
, g2(z) =

z

(1 − z)2
=

1

(1 − z)2
− 1

1 − z
(5.2)

at z = 1. This must be done in a clever way so that the regularized functions are manageable
from a computational point of view. After some trial and error one is led to subtract from
g1, g2 in (5.2) the functions

h1(z) =
B

1 − z A−1/s(z)
, h2(z) =

C

(1 − z A−1/s(z))2
+

D

1 − z A−1/s(z)
, (5.3)

respectively, with B and C, D chosen in such a way that g1 − h1 and g2 − h2 are regular at
z = 1. The reasons for choosing h1, h2 as in (5.3) are the fact that 1 − z A−1/s(z) has a first
order zero at z = 1 (since A′(1) < s) and the fact that

1 − z A−1/s(z)|z=zk
= 1 − e2πik/s , k = 0, 1, ..., s − 1 . (5.4)

The latter fact implies that
∑s−1

k=1 hi(zk) are computationally manageable. In fact one has
explicitly

s−1
∑

k=1

1

1 − e2πik/s
= 1

2(s − 1) ,
s−1
∑

k=1

1

(1 − e2πik/s)2
= − 1

12(s − 1)(s − 5) . (5.5)

The decisive reason to choose h1, h2 of the above type is the following result that shows that
subtraction of hi does not lead to unmanageable expressions in the aliasing series.
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Lemma 5.1. Let f be analytic in a neighbourhood of 0. Then

1

l
Czl−1

[

Al/s(z)
d

dz
(f(z A−1/s(z)))

]

= Cwl [f(w)] . (5.6)

Proof. We have by Lagrange’s theorem, see the beginning of Sec. 2,

1

l
Czl−1

[

Al/s(z)
d

dz
(f(z A−1/s(z)))

]

=
1

l!

( d

dz

)l−1 [

Al/s(z)
d

dz
(f(z A−1/s(z)))

]

(z = 0)

= Cwl [f(z A−1/s(z)) where z satisfies z A−1/s(z) = w]

= Cwl [f(w)] , (5.7)

as required. �

We finally consider the issue of choosing B and C, D properly in (5.3). Thus we let
gR
i := gi − hi, i = 1, 2. A lengthy but otherwise elementary computation shows that for gR

1

we need to take
B = 1 − s−1 A′(1) (5.8)

so that gR
1 is indeed regular at z = 1, with value

gR
1 (1) =

1

1 − z
− B

1 − z A−1/s(z)

∣

∣

∣

z=1

=
s−1 A′(1) − 1

2 [s−1(s−1 + 1)(A′(1))2 − s−1 A′′(1)]

1 − s−1 A′(1)
(5.9)

at z = 1. For the regularization of g2 we need to take

C = (1 + a[1])2 , D = −1 − 3a[1] − a[2] , (5.10)

and then

gR
2 (1) =

z

(1 − z)2
− C

(1 − z A−1/s(z))2
− D

1 − z A−1/s(z)

∣

∣

∣

z=1

=
a[2] + 1

3a[3]

1 + a[1]
+

a[1] + 1
2a[2]

1 + a[1]

(

1 − a[1] + 1
2a[2]

1 + a[1]

)

, (5.11)

where

a[i] =
( d

dz

)i
A−1/s(z)

∣

∣

∣

z=1
, i = 1, 2, 3 . (5.12)

We are now ready to prove Thms. 3.1-3.2 in Sec. 3. We have by Lemma 4.6 with g = gR
1

and (5.5) that

s−1
∑

k=1

1

1 − zk
=

s−1
∑

k=1

B

1 − e2πik/s
+

s−1
∑

k=1

gR
1 (zk)
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= 1
2 B(s − 1) − gR

1 (1) +
s−1
∑

k=0

gR
1 (zk)

= 1
2 B(s − 1) − gR

1 (1) + s gR
1 (0) + s

∞
∑

l=1

cls(g
R
1 ) . (5.13)

Furthermore,

cls(g
R
1 ) =

1

ls
Czls−1 [Al(z)(gR

1 )′(z)]

=
1

ls
Czls−1

[

Al(z)
1

(1 − z)2

]

− B

ls
Czls−1

[

Al(z)
( 1

1 − s−1 A(z)

)′]

.

(5.14)

Using (1 − z)−2 =
∑∞

j=0 (j + 1) zj and applying Lemma 5.1 we then get that

cls(g
R
1 ) =

1

ls

ls−1
∑

j=0

(ls − j) Czj [Al(z)] − Cwls

[ B

1 − w

]

=
1

ls

ls−1
∑

j=0

(ls − j) Czj [Al(z)] − B . (5.15)

To bring the right-hand side of (5.15) in its final form, we observe that cls(g
R
1 ) → 0 as l → ∞

and that

1 = Al(1) =
∞

∑

j=0

Czj [Al(z)] , (5.16)

l A′(1) =
d

dz
[Al(z)] (z = 1) =

∞
∑

j=0

j Czj [Al(z)] . (5.17)

This implies that B = 1 − s−1 A′(1), which agrees with (5.8), and that

cls(g
R
1 ) =

1

ls

∞
∑

j=ls

(j − ls) Czj [Al(z)] . (5.18)

Therefore we arrive at (noting that gR
1 (0) = 1 − B)

s−1
∑

k=1

1

1 − zk
= (1 − 1

2 B) s − 1
2 B − gR

1 (1) +
∞

∑

l=1

1

l

∞
∑

j=ls

Czj [Al(z)] . (5.19)

The proof of Thm. 3.1 is completed by a rather long but otherwise elementary computation,
using the expressions in (5.8) and (5.9) for B and gR

1 (1) and the fact that

A′(1) = µA , A′′(1) = σ2
A + µ2

A − µA . (5.20)
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The procedure for computation of
∑s−1

k=1 zk(1 − zk)
−2 is entirely the same as the one for

∑s−1
k=1 (1− zk)

−1, although quite a bit more elaborate. Accordingly, using both items in (5.5)
and Lemma 4.6 with g = gR

2 we get as in (5.19) that (using gR
2 (0) = −C − D)

s−1
∑

k=1

zk

(1 − zk)2
= − 1

12 C(s − 1)(s − 5) + 1
2 D(s − 1) − gR

2 (1) − s(C + D)

+ s
∞

∑

l+1

cls(g
R
2 ) . (5.21)

Using that (z(1− z)−2)′ =
∑∞

j=0 j2 zj−1 we find in a similar fashion as in (5.15) from Lemma
5.1 that

cls(g
R
2 ) =

1

ls
Czls−1

[

Al(z)
( z

(1 − z)2

)′]

− Cwl

[ C

(1 − w)2
+

D

1 − w

]

=
1

ls

ls−1
∑

j=0

(ls − j)2 Czj [Al(z)] − C(l + 1) − D . (5.22)

To bring (5.22) in its final form, we observe that cls(g
R
2 ) → 0 as l → ∞ by Lemma 4.6, and

we use (5.16) and (5.17) together with

∞
∑

j=0

j2 Czj [Al(z)] = l(l − 1)(A′(1))2 + l A′′(1) + l A′(1) (5.23)

and (5.20). This yields (in agreement with (5.10))

C + D =
1

s
σ2

A , C =
(

1 − 1

s
µA

)2
, (5.24)

and

cls(g
R
2 ) =

−1

ls

∞
∑

j=ls

(j − ls)2 Czj [Al(z)] . (5.25)

We then find that

s−1
∑

k=1

zk

(1 − zk)2
= − 1

12 C(s − 1)(s − 5) + 1
2 D(s − 1) − gR

2 (1) − s(C + D)

−
∞

∑

l=1

1

l

∞
∑

j=ls

(j − ls)2 Czj [Al(z)] . (5.26)

The proof of Thm. 3.2 is then completed by an extremely long but otherwise elementary
calculation in which the two members in (3.5) are shown to be equal with C, D and gR

2 (1)
given through (5.10)–(5.12) and (5.24).
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6 The stationary queue length distribution

In this section we derive explicit formulas for the xj , j = 0, ..., s , and for

c =

s−1
∑

j=0

xj , d =

s
∑

j=0

xj . (6.1)

We do this using our approach under the assumptions on A of Sec. 1 and the condition that
the series in (4.5) has radius of convergence R > 1.

We denote

Q(z) :=
s−1
∑

j=0

(zs − zj) xj =:
s

∑

j=0

qj zj (6.2)

so that (1.5) can be written in the form

A(z) X(z) = −A(z) Q(z) + zs X(z) . (6.3)

Then it follows that

xj = −qj , j = 0, ..., s − 1 ; xs = −qs − a−1
0 q0 . (6.4)

Since X(z) is analytic in a disk |z| < 1 + ε with ε > 0, the sth degree polynomial Q cancels
all s zeros of zs − A(z) in |z| ≤ 1, see (1.5). Hence

Q(z) = γ
s−1
∏

k=0

(z − zk) (6.5)

for some constant γ. Differentiating (6.3) and setting z = 1 yields Q′(1) = s− µA while from
(6.5) noting that z0 = 1 we get Q′(1) = γ

∏s−1
k=1 (1 − zk). Hence

γ = (s − µA)
s−1
∏

k=1

(1 − zk)
−1 . (6.6)

Furthermore, from (6.5) and (6.2) we see that

γ = Czs [Q(z)] =
s−1
∑

j=0

xj = c , (6.7)

with c given in (6.1). We thus have that

Q(v) = (−1)s c
s−1
∏

k=1

zk

s−1
∏

k=0

(

1 − v

zk

)

, (6.8)

and then (6.4) shows that is enough to find explicit formulas for

c = (s − µA)
s−1
∏

k=1

(1 − zk)
−1 ,

s−1
∏

k=0

zk , Cvj

[

s−1
∏

k=0

(

1 − v

zk

)]

, j = 1, ..., s − 1 . (6.9)
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We start by considering
∏s−1

k=1 (1 − zk)
−1 and to that end we regularize g3(z) = ln(1 − z)

at z = 1 by setting

gR
3 (z) = ln(1 − z) − ln(1 − z A−1/s(z)) . (6.10)

Then gR
3 is analytic in an open neighbourhood of {z | |z|s ≤ A(z)}, and

gR
3 (1) = −ln(1 − µA/s) , gR

3 (0) = 0 . (6.11)

Also, we have zk A−1/s(zk) = exp(2πik/s), k = 0, 1, ..., s − 1 , and there is the identity

s−1
∑

k=1

ln(1 − e2πik/s) = ln s . (6.12)

We thus obtain as before from the above that

s−1
∑

k=1

ln(1 − zk) =

s−1
∑

k=1

ln(1 − e2πik/s) +

s−1
∑

k=1

gR
3 (z(2πk/s))

= ln(s − µA) + s
∞

∑

l=1

cls(g
R
3 ) . (6.13)

Here we have, also as before, from Lemma 4.6 and Lemma 5.1

cls(g
R
3 ) =

1

ls
Czls−1 [Al(z)(ln(1 − z))′] − Cwls [ln(1 − w)]

=
1

ls

∞
∑

j=ls

Czj [Al(z)] . (6.14)

Hence we get
s−1
∑

k=1

ln(1 − zk) = ln(s − µA) +
∞

∑

l=1

1

l

∞
∑

j=ls

Czj [Al(z)] , (6.15)

so that

c = exp
{

−
∞

∑

l=1

1

l

∞
∑

j=ls

Czj [Al(z)]
}

. (6.16)

We next compute
∏s−1

k=0 zk. To that end we note that

zk = e2πik/s A1/s(z(2πk/s)) , (6.17)

so that
s−1
∏

k=0

zk = (−1)s−1 exp
{

s−1
∑

k=0

ln
[

A1/s(z(2πk/s))
]}

. (6.18)

The function g4(z) := ln [A1/s(z)] is analytic in a neighbourhood of {z | |z|s ≤ |A(z)|}, and
we have

g4(1) = 0 , g4(0) =
1

s
ln a0 . (6.19)
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Hence using our approach there follows

s−1
∑

k=0

ln
[

A1/s(z(2πk/s))
]

= ln a0 + s
∞

∑

l=1

cls(g4) . (6.20)

The cls(g4) follow from

cls(g4) =
1

(ls)!

( d

dz

)ls−1
[Al(z)(ln [A1/s(z)])′] (z = 0)

=
1

s(ls)!

( d

dz

)ls−1
[Al−1(z) A′(z)] (z = 0) =

1

ls
Czls [Al(z)] . (6.21)

It thus follows that

s−1
∏

k=1

zk = (−1)s−1 a0 exp
{

∞
∑

l=1

1

l
Czls [Al(z)]

}

. (6.22)

We then find from (6.4) and (6.8) that

x0 = −q0 = (−1)s c
s−1
∏

k=1

zk = a0 exp
{

−
∞

∑

l=1

1

l

∞
∑

j=ls+1

Czj [Al(z)]
}

. (6.23)

Moreover, from Q(1) = 0 and (6.3) we have

d =
s

∑

j=0

xj = a−1
0 x0 = exp

{

−
∞

∑

l=1

1

l

∞
∑

j=ls+1

Czj [Al(z)]
}

. (6.24)

We conclude by computing the xi, i = 1, ..., s − 1. Note that

xi = x0 Cvi

[

s−1
∏

k=0

(

1 − v

zk

)]

, i = 1, ..., s − 1 . (6.25)

We shall consider, using (6.17) and the Taylor expansion of ln(1 − x) around x = 0, the
expression

s−1
∑

k=0

ln
(

1 − v

zk

)

= −
∞

∑

j=1

vj

j

s−1
∑

k=0

A−j/s(z(2πk/s)) e−2πijk/s . (6.26)

The xi in (6.25) are completely determined by the terms at the right-hand side of (6.26) with
j = 1, ..., s − 1. Thus we consider for j = 1, ..., s − 1 the 2π-periodic functions

A−j/s(z(α)) = A−j/s(0) +
∞

∑

l=1

cl[A
−j/s] eilα . (6.27)

The cl[A
−j/s] are given here as

cl[A
−j/s] =

1

l!

( d

dz

)l−1
[Al/s(z)(A−j/s)′ (z)] (z = 0)

=
−1

l!

j

s

( d

dz

)l−1
[A−1−(l−j)/s(z) A′(z)] (z = 0) . (6.28)
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It is seen from (6.28) that

cj [A
−j/s] =

−j

s
Czj [ln [A(z)]] , (6.29)

cl[A
−j/s] =

−j

l − j
Czl [A(l−j)/s(z)] , l 6= j . (6.30)

Since A(0) = a0, we thus get that

A−j/s(z(α)) e−ijα = a
−j/s
0 e−ijα − j

s
Czj [ln A(z)] − j

∞
∑

l=−j+1,

l 6=0

1

l
Czl+j [Al/s(z)] eilα . (6.31)

Therefore, for j = 1, ..., s − 1 by sampling theory,

s−1
∑

k=0

A−j/s(z(2πk/s)) e−2πijk/s = −j Czj [ln [A(z)]] −
∞

∑

l=1

j

l
Czls+j [Al(z)] . (6.32)

This gives, see (6.25)–(6.26), for i = 1, ..., s − 1 that

xi = x0 Cvi

[

exp
{

s−1
∑

j=1

vj
(

Czj [ln [A(z)]] +
∞

∑

l=1

1

l
Czls+j [Al(z)]

)}]

. (6.33)

Since we consider i = 1, ..., s − 1 in (6.33) the summation over j may be extended to all
j = 1, 2, ... . Noting that

∞
∑

j=1

vj Czj [ln [A(z)]] = ln A(v) − ln a0 , (6.34)

and that x0 = a0 d, see (6.24), we arrive for i = 1, ..., s − 1 at

xi = d Cvi

[

A(v) exp
{

s−1
∑

j=1

vj
∞

∑

l=1

1

l
Czls+j [Al(z)]

}]

. (6.35)

We finally have, see (6.1), (6.16) and (6.24), that

xs = d − c = d
(

1 − exp
{

−
∞

∑

l=1

1

l
Czls [Al(z)]

})

. (6.36)

We thus have computed c, d and xj , j = 0, ..., s . It is an immediate consequence of (1.5)
and the definition of c as

∑s−1
j=0 xj that

X(z) − c A(z) = A(z)

∞
∑

j=0

xj+s zj . (6.37)

This implies that xs+1, xs+2, ... can be computed recursively from x0, ..., xs and c.
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7 Spitzer’s identity and Wiener-Hopf factorization

In this section we show how the results in Sec. 3 can be alternatively derived from Spitzer’s
identity given by (3.9). Since the methods that are used stem from the fields of applied
probability and stochastic processes, parts of the derivation are sketched, where we do give
references to other places for a more complete mathematical underpinning.

Because of the discrete nature of the queue under investigation we make the change of
variables e−u → z in (3.9) yielding

E(zW ) = exp
{

∞
∑

l=1

1

l
E(zmax(Sl,0) − 1)

}

, |z| ≤ 1 , (7.1)

where, as before, Sl =
∑l

i=1 (Ai − s). We first show how expression (7.1) can be derived,
analogously to [4] p. 338 for the continuous-time case, using Wiener-Hopf factorization (see
[3]). From recursion (3.8) we have

E(zWt+1) = P (Wt ≤ s − At−1) + E(zWt+At−1−s1{Wt > s − At−1})
= P (Wt ≤ s − At−1) + E(zWt+At−1−s) − E(zWt+At−1−s1{Wt ≤ s − At−1}) ,

(7.2)

where 1{B} = 1 if B holds and 0 otherwise. Letting t → ∞ and observing that Wt and At−1

are independent then yields

E(zW )(1 − z−sA(z)) = P (W ≤ s − A) − E(zW+A−s1{W ≤ s − A}) . (7.3)

We denote the right-hand side of (7.3) as −W−(z) and E(zW ) as W+(z), which gives

W+(z)(1 − z−sA(z)) = −W−(z) . (7.4)

This basic identity is the starting point for the remaining analysis, for which we proceed in
two ways: (i) the general way using no knowledge on the zeros of 1 − z−sA(z), and (ii) the
queue-specific way using an explicit factorization of 1 − z−sA(z).

(i) Using

1

1 − z
= exp{− ln(1 − z)} = exp

{

∞
∑

l=1

zl

l

}

, |z| < 1 , (7.5)

we have (with Sl =
∑l

i=1 (Ai − s)) that

(1 − z−sA(z))−1 = exp
{

∞
∑

l=1

1

l
(z−sA(z))l

}

= exp
{

∞
∑

l=1

1

l
E(zSl1{Sl > 0})

}

· exp
{

∞
∑

l=1

1

l
E(zSl1{Sl ≤ 0})

}

.(7.6)

Substituting (7.6) into (7.4) yields

W+(z) exp
{

−
∞

∑

l=1

1

l
E(zSl1{Sl > 0})

}

= −W−(z) exp
{

∞
∑

l=1

1

l
E(zSl1{Sl ≤ 0})

}

. (7.7)
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The left-hand side and right-hand side of (7.7) are analytic in |z| < 1 and |z| > 1, respectively,
and continuous up to |z| = 1. Moreover, the left-hand side and right-hand side of (7.7) are
bounded (see [4] p.338, [8] p.287) and analytic in |z| < 1 and |z| > 1, respectively. Therefore,
their analytic continuation contains no singularities in the entire complex plane, whence upon
using Liouville’s theorem (see e.g. [4]) the left-hand side of (7.7) is constant, i.e.

W+(z) = K exp
{

∞
∑

l=1

1

l
E(zSl1{Sl > 0})

}

. (7.8)

The constant K follows from W+(1) = 1 yielding

K = exp
{

−
∞

∑

l=1

1

l
P (Sl > 0)

}

. (7.9)

Upon inspection, one sees that the right-hand sides of (7.1) and (7.8) are the same.
(ii) An alternative way to construct a decomposition, starting from (7.4), is to invoke the

following explicit factorization

1 − z−sA(z) =
zs − A(z)

zs
=

zs − A(z)
∏s−1

k=0(z − zk)
·
∏s−1

k=0(z − zk)

zs
, (7.10)

where the first and second factor on the right-hand side of (7.10) are analytic and bounded
in |z| ≤ 1 and |z| ≥ 1, respectively. Substituting (7.10) into (7.4) gives

W+(z)
zs − A(z)

∏s−1
k=0(z − zk)

= −W−(z)
zs

∏s−1
k=0(z − zk)

. (7.11)

From Liouville’s theorem it then follows that

W+(z) = K
(z − 1)

∏s−1
k=1(z − zk)

zs − A(z)
, (7.12)

where K again follows from W+(1) = 1, i.e.

K−1 = lim
z→1

(z − 1)
∏s−1

k=1(z − zk)

zs − A(z)
=

∏s−1
k=1(1 − zk)

s − µA
. (7.13)

So we have for W+(z) the two expressions given by (7.8) and (7.12), respectively, and
since by definition X(z) = A(z)W+(z), we have for X(z) the expressions

X(z) = A(z) exp
{

−
∞

∑

l=0

1

l
P (Sl > 0)

}

exp
{

∞
∑

l=0

1

l
E(zSl1{Sl > 0})

}

(7.14)

=
A(z)(z − 1)(s − µA)

zs − A(z)

s−1
∏

k=1

z − zk

1 − zk
. (7.15)

Note that (7.15) also follows from substituting (6.5) into (6.3).
The mean and variance of X follow from µX = X ′(1) and σ2

X = X ′′(1) + X ′(1) − X ′(1)2.
Then, differentiating (7.15) results in expressions (1.9) and (1.10), while differentiating (7.14)
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gives expressions (3.6) and (3.7). Moreover, we have shown that (3.6) and (3.7) can be derived
from Fourier sampling on generalized Szegö curves.

Next, observe that

exp
{

−
∞

∑

l=0

1

l
P (Sl > 0)

}

= exp
{

−
∞

∑

l=1

1

l

∞
∑

j=ls+1

Czj [Al(z)]
}

= d , (7.16)

as in (6.24), and that the expression (3.12) for the xi, i = 0, 1, . . . , s − 1 also follows from
(7.14). It even follows that

xi = d Cvi

[

A(v) exp
{

∞
∑

j=1

vj
∞

∑

l=1

1

l
Czls+j [Al(z)]

}]

, i = 0, 1, . . . , (7.17)

and thus holding for all {xi}.
From a numerical viewpoint, we might say that one can follow two courses in dealing with

the queue under investigation: either determine the s − 1 zeros of A(z) = zs within the unit
disk, or calculate the infinite sum of power series coefficients of Al(z), l = 0, 1, . . ., around
z = 0, up to a certain level. A comparison of these two alternatives is currently being drawn
by the authors.
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