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Abstract

In this paper we propose to estimate the hazard function based on local smoothing tech�

niques for both i�i�d and censoring data� Such estimators are known as to have no boundary

e�ects while the estimators based on kernel function have the boundary e�ect� as pointed out by

M	uller and Wang 
����
� We derive the asymptotic normalities of the local smooth estimators�

Also� we study the comparisons between the local smooth estimators and the kernel smooth

estimators for most commonly used kernel functions� It turns out that our local smooth estima�

tors with optimal bandwidths produce smaller biases than that of the kernel smooth estimators�

However� such estimators have large variances than that of the kernel smooth estimators� To

overcome this problem� we apply the variance reduction technique in Cheng� Wu and Yen 
����


to our estimators� The resulted estimators have the same asymptotic biases as the local smooth

estimators and smaller asymptotic variances than the kernel estimators�
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� Introduction

Hazard function based on i�i�d� or censored data is important� It provides useful information

in reliability theory and survival analysis� as well as in the �elds as diverse as engineering�

medical statistics and geophysics� A variety of inferential procedures have been proposed to

estimate the hazard function nonparametrically� Estimators of hazard function based on kernel

smooth estimation have been studied extensively in the literature� For related investigations

in this direction we refer to Watson and Leadbetter 
����
� Murphy 
����
� Rice and Rosen�

blatt 
����
� Singpurwalla and Wong 
����
 and Patil 
����
� under the i�i�d case� Under the

censoring case� see the discussions in Tanner and Wong 
����
� Tanner 
����
� Sch	afer 
����
�

Liu and Ryzin 
����
� Diehl and Stute 
����
� Lo� Mack and Wang 
����
� M	uller and Wang


����
� Patil 
����
� Wang 
����
� It was pointed out that the drawback of using the kernel

smooth estimators are known to have the boundary e�ect 
see by M	uller and Wang 
����

�

In this paper we propose another type of smooth estimation for the hazard function

based on local smoothing techniques� which may be argued to have no boundary e�ect� We

show that our local smooth estimators have smaller asymptotic biases� but larger asymptotic

variances� than the kernel smooth estimators under the case with or without censoring� Proofs

of these results are nontrivial� To reduce the variances of our local smooth estimators� we

apply the variance reduction technique introduced by Cheng� Wu and Yen 
����
� Hence�

our variance reduced local smooth estimators are better than the kernel smooth estimators in

terms of optimal asymptotic mean squared error or asymptotic bias and variance with the same

bandwidth� A numerical study demonstrates that these advantageous asymptotic properties

are also apparent in �nite sample sizes�

We organize this paper as follows� In Section �� we establish the weak convergence of

the local smooth estimators for both i�i�d and censoring cases� In Section �� we provide some

comparisons between our local smooth estimators and the kernel smooth estimators� In Section

�� we propose variance reduced local smooth estimators and compare them with the kernel

smooth estimators� A simulation study is given in Section �� All proofs are deferred till Section

��

�



� Local smooth estimation

Throughout this paper we assume that

A�� k
x
 is a symmetric density function with support ���� ���

A�� f ��
x
 exists and is continuous� where f is de�ned below�

A�� h � h
n
 � �� h� � and
p
nhh� � b � ����
 as n���

���� The case without censoring� Let X�� � � � � Xn be independent and identically dis�

tributed survival times with distribution function F 
x
 and density function f
x
� Our aim is

to estimate the hazard function �
x
 � f�x�
��F �x� using local smooth techniques� We apply local

smoothing techniques� see for example Fan and Gijbels 
����
� to estimate the derivative of

�
x
 � � log
�� F 
x

� i�e�� �
x
 as follows�

Let Fn
x
 � �
n

nX
i��

I
Xi � x
 be the empirical distribution of the sample fX�� X�� ���� Xng
and de�ne �n
x
 � � log
�� Fn
x

� Observe the following regression model�

�n
Xi
 � �
Xi
 � error� i � �� � � � � n�

and let 
�a��b� �c
 be the value of 
a� b� c
 that minimizes the following kernel weighted squared

errors�

nX
j��

f�n
Xj
� a� b
Xj � x
� c
Xj � x
�g�k

x�Xj

h

�

Then our new local smooth estimator for �
x
 is de�ned as ��n
x
 � �b and has the following

explicit expression

��n
x
 �

nX
j��

�n
Xj
k

x�Xj

h

��n��
x
 � 
Xj � x
�n��
x
 � 
Xj � x
��n��
x
�

�n
x

�

�



where sn�l
x
 �
nX

j��


x�Xj

lk


x�Xj

h

� l � �� �� �� �� �� and

��������������
�������������

�n
x
 � s�n��
x
sn��
x
 � sn��
x
s�n��
x
 � sn��
x
sn��
x
s�n��
x


��s�n��
x
sn��
x
sn��
x
� sn��
x
sn��
x
sn��
x
sn��
x


�n��
x
 � sn��
x
sn��
x
sn��
x
� s�n��
x
sn��
x


�n��
x
 � sn��
x
s�n��
x
� sn��
x
sn��
x
sn��
x


�n��
x
 � s�n��
x
sn��
x
� sn��
x
sn��
x
sn��
x



���


De�ne

c� �

Z �

��
s�k
s
 ds� c� �

Z �

��
s�k
s
 ds� c� � �

Z �

��

nZ t

��
k
s
k
t
s�t ds

o
dt 
���


The following theorem provides us with the weak convergence of the local smooth estimator

��n
x
�

Theorem �� Under regularity conditions A�� � A��� we have for �� F 
x
 � �

p
nhf��n
x
� �
x
g d� N

�b���
x
c�
�c�

�
f
x
c�

��� F 
x
��c��

�

as n��� where b is de�ned in condition A� and c�� c� and c� are de�ned in ������

���� The case with censoring� Let X�� � � � � Xn be independent and identically distributed

random variables with distribution function F 
x
 and density function f
x
� and Y�� � � � � Yn
be independent and identically distributed random variables with distribution function G
y


and density function g
y
� Suppose X �
is and Y �

j s are independent and our observations are

Zi � min
Xi� Yi
 with censoring indicators �i � I
Xi � Yi
 for i � �� � � � � n� Thus �i � �

indicates the survival time Xi for the ith individual is observed while �i � � indicates Xi is not

observed but it is known to be greater than Yi� Our aim is to estimate the hazard function

�
x
 � f�x�
��F �x� � which is of importance in many lifetime studies�

In estimating the distribution function F � a popular nonparametric estimator F �
n based

on the right censored data fZi� �ig� i � �� ���� n� is the well�known Kaplan�Meier 
Kaplan and

�



Meier� ����
 estimator given by

F �
n
x
 �

���
��

��
nY

j��

�
N
Zj


� � N
Zj

�I�Zj�x��j��� if x � max
Z�� � � � � Zn


� elsewhere�

where N
u
 �
nX

j��

I
Zj � u
� The large sample properties of the product�limit estimator F �
n
x


have drawn much attention in the literature� see Chen and Lo 
����
 and references cited

therein�

De�ne ��
n
x
 � � log
� � F �

n
x

 and �
x
 � � log
� � F 
x

� Observe the following

regression model�

��
n
Zi
 � �
Zi
 � error � i � �� � � � � n�

For those i�s such that �i � �� i�e�� Zi � Xi� we apply local smoothing techniques to estimate

the derivative of �
x
� i�e�� �
x
� That is� let 
�a��b� �c
 be the value of 
a� b� c
 that minimizes the

following kernel weighted squared errors�

nX
j��

�jf��
n
Zj
� a� b
Zj � x
� c
Zj � x
�g�k


x� Zj

h

�

Then our local smooth estimator for �
x
 is de�ned as ���n
x
 � �b and has the following explicit

expression

���n
x
 �

nX
j��

��
n
Zj
k


x� Zj

h

��n��
x
 � 
Zj � x
�n��
x
 � 
Zj � x
��n��
x
�

�n
x

� 
���


where sn�l
x
 �
nX

j��

�j
x�Zj

lk


x� Zj

h

� l � �� �� �� �� �� and �n
x
��n��
x
��n��
x
 and �n��
x


are de�ned as in 
���
� The following theorem provides us the week convergence of the local

smooth estimator ���n
x
�

Theorem �� Under regularity conditions A�� � A�� and g
y
 is continuous� we have for

�� F 
x
 � �

p
nhf���n
x
� �
x
g d� N

�b���
x
c�
�c�

�
f
x
c�

��� F 
x
�����G
x
�c��

�
as n��� where b is de�ned in condition A� and c�� c� and c� are given by ������

�



� Comparisons between kernel smooth estimators and

local smooth estimators

In this section� we study some asymptotic properties of the kernel smooth estimators and local

smooth estimators for both i�i�d and censored cases�

���� The case without censoring� Under the case of no censoring� the kernel smooth

estimator studied by Singpurwalla and Wong 
����
 is de�ned as

��n
x
 �
�

h

nX
j��

k

X�j� � x

h

�
n� j � �
�

where X��� � � � � � X�n� denote the order statistics of X�� � � � � Xn� Under the regularity

conditions A�� � A��� Singpurwalla and Wong 
����
 proved that for �� F 
x
 � �

p
nh
��n
x
� �
x



d� N
�b���
x
c�

�
�

f
x
c�
��� F 
x
��

�
as n��� where c� is given by 
���
� b satis�es condition A� and

c� �

Z �

��
k�
x
dx�

Hence� by minimizing the asymptotic mean squared error� we obtain that the local optimal

bandwidth for ��n
x
 is

�hopt � n���	
n f
x
c�

��� F 
x
������
x
��c��

o��	

� 
���


Thus the optimal asymptotic mean squared error of ��n
x
 is given by

amse
��n
x
� �hopt
 � n���	
n f
x


��� F 
x
��

o��	

f���
x
g��	 �c
��	
� c

��	
�

�
� 
���


On the other hand� it follows from Theorem � that� by minimizing the asymptotic mean

squared error 
amse
� the local optimal bandwidth for our local smooth estimator ��n
x
 is

�hopt � n���	
n f
x
�c�

��� F 
x
������
x
��c��

o��	

� 
���


Thus the optimal asymptotic mean squared error for ��n
x
 is given by

amse
��n
x
� �hopt
 � n���	
n f
x


��� F 
x
��

o��	

f���
x
g��	 �c
��	
� c

��	
�

� � ���	c��
� 
���


�



���� The case with censoring� For the case of censoring� a kernel smooth estimator for �
x


was proposed by Tanner and Wong 
����
 as

���n
x
 �
�

h

nX
j��


n� j � �
����j�k

x� Z�j�

h

�

where Z��� � � � � � Z�n� denote the order statistics of Z�� � � � � Zn and ����� � � � � ��n� denote the

corresponding censoring indicators� Under the same regularity conditions as in Theorem ��

M	uller and Wang 
����
 showed that for �� F 
x
 � �

p
nh
���n
x
� �
x



d� N

�
b���
x
c�

�
�

f
x
c�
��� F 
x
�����G
x
�

�

as n��� Hence� by minimizing the asymptotic mean squared error of ���n
x
� the local optimal

bandwidth for kernel smooth estimator ���n
x
 is given by

�h�opt � n���	
n f
x
c�

��� F 
x
�����G
x
�����
x
��c��

o��	

� 
���


Thus� the optimal asymptotic mean squared error for ���n
x
 is

amse
���n
x
� �h�opt
 � n���	
n f
x


��� F 
x
�����G
x
�

o��	

f���
x
g��	 �c
��	
� c

��	
�

�
� 
���


On the other hand� it follows from Theorem � that� by minimizing the asymptotic mean

squared error 
amse
� the local optimal bandwidth for local smooth estimator ���n
x
 is

�h�opt � n�
�

�

n f
x
�c�
��� F 
x
�����G
x
�����
x
��c��

o �

�

� 
���


Therefore� the optimal asymptotic mean squared error for ���n
x
 is given by

amse
���n
x
� �h�opt
 � n�
�

�

n f
x


��� F 
x
�����G
x
�

o �

�f���
x
g �

�

�c
��	
� c

��	
�

� � ���	c��
� 
���


���� Comparisons� For the purpose of comparison� we compute the values of c�� � � � � c� and

the contant factors in the asymptotically optimal bandwidth and amse expressions 
���
�
���


for four commonly used kernels� They are the Epanechnikov� Biweight� Triangular and Uniform

kernels� The results are shown in Table ��

�



Table �� Values of c�� c�� c�� c� for some commonly used kernels�

Kernel
c�
�

�c�
�

c�
�

c�
c�
�

c�
c
���
�

c
���
�

����c�
�

c
���
�

c
���
�

�
�c�
c�
�

���� � c�
c�
�

����

Epanechnikov k�x� � �

�
��� x��I�jxj � �� �

��

�

��

�

�

�

�
�
�	���� �
����
�	 �
�����
 �
��
���

Biweight k�x� � ��

��
�� � x���I�jxj � �� �

	�

�

��
��
�	
	 �

�
�
�	�
	�� �
�	���� �
������ �
�����


Triangular k�x� � ��� jxj�I�jxj � �� �

�



�

��

��

��

�

�
�
�	����� �
�	����� �
������ �



��	

Uniform k�x� � �

�
I�jxj � �� �

��

�

�

�

�

�

�
�
����
�	 �
������� �
��
��� �
�	����

First� let us look at the optimal amse for kernel smooth estimators and our local smooth

estimators� From 
���
� 
���
� 
���
 and 
���
� we notice that for both i�i�d case and censored

case� the di�erence in amse between these estimators are mainly the terms
c
���
�

c
���
�

����c�
�

and c
��	
� c

��	
� �

Table � shows that our local smooth estimators 
��n and ���n
 have smaller bias terms than that

of the kernel estimators 
��n and ���n
� but with large variances in general� for the four commonly

used kernel functions� It is also interesting to see that the optimal mean squared error is the

same for local smooth estimators with uniform kernel and for the kernel smooth estimators

with Epanechnikov kernel� In fact� this optimal mean squared error is the smallest among the

four kernels for both local and kernel smooth estimators�

Next� let us compare the optimal bandwidths for both local 
��n and ���n
 and kernel

smooth estimators 
��n and ���n
� Observe equations 
���
� 
���
� 
���
 and 
���
� we see that�

for both i�i�d� case and censoring case� the di�erence in optimal bandwidths for kernel and

local smooth estimators are based on terms
	
c�
c�
�


��	
and

	
�c�
c�
�


��	
� From Table �� we see that

the optimal bandwidths for our local smooth estimators are larger than those for the kernel

smooth estimators� So� in practice� one may prefer local smooth estimators to kernel smooth

estimators since the larger optimal bandwidth will allow more data points in the local model�

�



� Variance reduced local smooth estimation

Note that our local smooth estimator has a smaller asymptotic bias� but a larger asymptotic

variance� than the kernel smooth estimator under the case with or without censoring� In this

section we apply the variance reduction technique in Cheng� Wu and Yen 
����
 to our local

smooth estimators de�ned in Section ��

	��� The case without censoring� We consider the following variance reduced local smooth

estimators

��n
x
 �
��p�

�
��n
x� 


p
��� � �
�h
 �

�

�
��n
x�

p
����h
 �

� �
p

�

�
��n
x� 


p
���� �
�h


where � � �� This estimator is a linear combination of the three values ��n
x � 

p

��� � �
�

��n
x�p����h
 and ��n
x�

p

�����
�h
� and it is parallel to the form of the variance reduced

local linear regression estimator of Cheng� Wu and Yen 
����
� The principle of Cheng� Wu

and Yen 
����
 is to �nd the maximal relative variance reduction among all points in an

interpolation interval of length ��h� In the current hazard estimation context� the covariance

structure of the local smooth estimator at di�erent locations is much more complicated than in

the regression setting� For simplicity reasons we take ��n
x
 the speci�ed form� This may not

achieve the most variance reduction� Nevertheless� ��n
x
 admits a very simple form and it is

shown that ��n
x
 enjoys superior performance in both asymptotic and �nite sample cases�

To analyze asymptotic properties of the new estimator� de�ne

c	
a� b
 �

Z �

��

Z t�a�b

��
k
s
k
t

s� b
st dsdt �

Z �

��

Z t�a�b

��
k
s
k
t

s� a
st dsdt 
���


and

c�
�
 � 	


c� � ��p�

�
c	



p
��� � �
��

p
����
� �



c	



p
��� � �
�� 


p
���� �
�


���
p
�

�
c	

p

����� 

p

���� �
�
�

���


First we derive the asymptotic normality for our variance reduced local smooth estimator as

follows�

Theorem �� Under regularity conditions A�� � A��� we have for �� F 
x
 � � and � � �

p
nhf��n
x
� �
x
g d� N

�b���
x
c�
�c�

�
f
x
c�
�


��� F 
x
��c��

�

�



as n���

Second� we shall compare our variance reduced local smooth estimator ��n
x
 with the

kernel smooth estimator ��n
x
 de�ned in Section ���� Since the local smooth estimator ��n
x


with the uniform kernel and ��n
x
 with the Epanechnikov kernel have the same smallest optimal

amse among the four di�erent kernels considered in Section ���� we only compare between

the variance reduced local smooth estimator with the uniform kernel and the kernel smooth

estimator with the Epanechnikov kernel� In this case� we have for � � b� a � �

c	
a� b
 � �
�

R �

���a�bf
R t�a�b
�� 
s� a
st dsg dt� �

�

R �

���a�bf
R �

t�a�b
t� b
st dsg dt

��
�

R ���a�b
�� fR �

��
t� b
st dsg dt

� �
�

R �

���a�b tf �t�a�b�
���

�
� a�t�a�b���a

�
g dt � �

�

R �

���a�b t
t� b
���t�a�b�
�

�
dt

� �
�

R �

���a�bf� t�

�
� t� b�a

�
� t�
� �b�a��

�
� �

�

 � t
 �b�a�

�

b
� b�a

�
� �

�

g dt

� �
�	
� �b�a��

��
� �b�a��

��
� �b�a��

�
�
�

and for b� a � �� c	
a� b
 � �� Therefore�

c�
�
 �

��
�

����� ����� � ��	���� if � � � � �
����� ����� � ������ �	���� if � � � � �
���� if � � ��

i�e��

c�
�
�c
�
� �

��
�

���� ������ � ���	���� if � � � � �
������ ����� � ������� ��	���� if � � � � �
��� if � � ��

Notice that ��n
x
 with � � � reduces to the original estimator ��n
x
� By checking that

d
d�
c�
�
 � �� � � �� we see that c�
�
�c

�
� �

�
	

for any � � �� i�e�� ��n
x
 with the uniform kernel

has a smaller asymptotic variance than ��n
x
 with the Epanechnikov kernel� Because both

estimators have the same asymptotic bias� we conclude that the variance reduced local smooth

estimator ��n
x
 with the uniform kernel is better than the kernel smooth estimator ��
x
 with

the Epanechnikov kernel in terms of optimal amse or amse with the same bandwidth�

Cheng� Wu and Yen 
����
 discussed in detail the choice of the parameter �� Larger

values of � are preferred so that more variance reductions are achieved if the hazard function

��



is smooth� Otherwise� if the curve has sharp feature� second order bias may appear and play

a role� In that case� smaller values of � would still provide reasonable amount of variance

reductions� Data�driven choice of � can be done by� for example� cross�validation�

	��� The case with censoring�

The variance reduced local smooth estimators in this case is de�ned as

���n
x
 �
��p�

�
���n
x� 


p
��� � �
�h
 �

�

�
���n
x�

p
����h
 �

� �
p

�

�
���n
x� 


p
���� �
�h
�

where � � �� The asymptotic normality of this variance reduced local smooth estimator is

given below� The comparison between ��n
x
 and ��n
x
 is similar to the i�i�d case in Section

���� hence is omitted here�

Theorem 	� Under regularity conditions A�� � A�� and that g
y
 is continuous� we have for

�� F 
x
 � � and any � � �

p
nhf���n
x
� �
x
g d� N

�b���
x
c�
�c�

�
f
x
c�
�


��� F 
x
�����G
x
�c��

�

as n��� where c� is de�ned as in �����

� Simulation study

A Monte Carlo study was conducted to demonstrate the advantage of our variance reduced

local smooth estimator ��n
x
 over the kernel smooth estimator ��n
x
� under the i�i�d setup�

The uniform kernel and Epanechnikov kernel were employed for ��n
x
 and ��n
x
� respectively�

Moreover� value of � in the de�nition of ��n
x
 was taken as one�

We generated ���� pseudo�random samples of size n � ��� from Weibull distribution

F 
x
 � � � exp
�x�
� x � �� We took � � � and compute ��n
x
 and ��n
x
 at point x such

that F 
x
 � ��� for h �
�hopt
�

� j
��

�hopt� j � �� �� � � � � ��� where �hopt is de�ned in 
���
� In Figure

�� we plot the mean squared errors of ��n
x
 and ��n
x
 against di�erent h� This �gure clearly
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Proof of Theorem 	� Similar to the proof of Theorem ��
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