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Abstract
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data. This new estimator applies local linear techniques to observations from a regression model
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1 Introduction

Let X1, · · · , Xn be i.i.d. random variables with a smooth distribution function F . In many

practical situations, not all Xi’s may be observable. This results in incomplete observations. A

common cause for incomplete data is the right censoring, in which case we observe {Zi, δi}, i =

1, ..., n, where Zi = min(Xi, Yi) and δi = I(Xi ≤ Yi). Thus δi = 1 indicates the survival time Xi

for the ith individual is observed while δi = 0 indicates Xi is not observed but it is known to be

greater than Yi. Assume that Y1, ..., Yn are i.i.d. from the distribution function G and that Xi’s

and Yi’s are independent. Then the c.d.f. of Zi, i = 1, ..., n is given by 1− (1−F (x))(1−G(x)).

Censored data is widely seen in medical studies. Also, a fundamental problem of interest

in nonparametric statistical estimation and hypothesis testing is making inference about a c.d.f.

without specifying a particular parametric form for F .

In estimating the distribution function F , a popular nonparametric estimator Fn based

on the right censored data {Zi, δi}, i = 1, ..., n is the well-known Kaplan-Meier (Kaplan and

Meier, 1958) estimator given by

Fn(x) =

{
1 − Πn

j=1[
N(Zj)

1+N(Zj)
]I(Zj≤x,δj=1) if x < max(Z1, · · · , Zn)

1 elsewhere,

where N(u) =
∑n

j=1 I(Zj > u). The large sample properties of the product-limit estimator have

drawn much attention in the literature. See Chen and Lo (1997) and references cited therein.

However, in situations where it is known or it is reasonable to assume that the underlying

distribution function F is smooth with density f , it is more natural to use a smooth random

function as an estimator of F . In case of complete data, it was pointed out by Read (1972)

that the choice of the empirical function Fn (as an estimator for F ) does not always lead to

the best estimator of F due to the fact that Fn is in admissible with respect to the integrated

squared loss. An intuitively appealing and easily understood competitor to Fn is the smooth

empirical distribution function proposed by Nadaraya (1964) as follows:
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F̄n(x) = h−1

∫ ∞

−∞
k(

x − y

h
)Fn(y) dy, (1.1)

where k is a kernel function and h = h(n) > 0 is a sequence of bandwidth such that h → 0 as

n → ∞.

There is an extensive literature on the study of F̄n, see Reiss (1981), Azzalini (1981) and

Falk (1983), among others. A notable property, namely relative deficiency of the empirical

estimator with respect to the kernel smooth estimator F̄n was studied by Falk (1984). He

proved that asymptotic performance of F̄n is better than that of the empirical estimator in

terms of second order efficiency.

Kernel smooth estimation for F was extended to the case of the censored data by Ghorai

and Susarla (1990). The estimator is of the same form as in (1.1) with Fn being the Kaplan-

Meier type of estimator, and kernel k and bandwidth h are the same as in (1.1). Ghoral and

Susarla (1990) showed that the kernel estimator is better than the product-limit estimator in

terms of mean squared errors. They also provided the weak convergency of the normalized

processes F̄n(x) and strong consistency of F̄n. Later, Sun, Sun and Diao (2001) considered the

same estimator F̄n as well as the corresponding quantile processes Q̄n = F̄−1
n and obtained the

weak convergence of the normalized processes F̄n(x) and Q̄n = F̄−1
n in a more general set of

conditions.

In this paper we are interested in another type of smooth estimation of F based on

censored data. We compare the asymptotic performances of our estimator with the well known

Nadaraya type (Ghoral and Susarla (1990)) of kernel estimator in terms of high order mean

squared error.

First, we propose our smooth estimator of the underlying distribution function F as

follows: observe the following relation

Fn(Zj) = F (Zj) + error,

for those j′s such that δj = 1, i.e., Zj = Xj. We could apply the local smoothing techniques

(see Fan and Gijbels (1996)) to estimating function F . Here we concentrate on the local linear

estimation. Let (â, b̂) be the value of (a, b) that minimizes the following kernel weighted squared
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errors:
n∑

j=1

{Fn(Zj) − a − b(x − Zj)}2k(
x − Zj

h
)δj.

Then our local linear estimation is defined as â and has the following explicit expression

â = F̃n(x) =

∑n
j=1 wjFn(Zj)∑n

j=1 wj

,

where wj = δjk(
x−Zj

h
)[sn,2−(x−Zj)sn,1], j = 1, ...n and sn,l =

∑n
j=1 δjk(

x−Zj

h
)(x−Zj)

l, l = 1, 2.

In order to calculate the MSE we work with the modified local linear estimator

F̂n(x) = [o ∨ F̃n(x)] ∧ 1.

We organize this paper as follows. In section 2, we state the main result: mean square

error of F̂n(x). In section 3, we present the simulation studies. All proofs are deferred to section

4.

2 Main result

Throughout this paper we assume the following regularity conditions:

(A1) k is a symmetric density with support (−1, 1) and K(x) =
∫ x

−1
k(y) dy;

(A2) h = h(n) > 0 is a bandwidth satisfying d0n
−1+ε0 ≤ h ≤ d1n

−ε1 for some positive numbers

of d0, d1, ε0 ∈ (1
2
, 2

3
] and ε1 ∈ (0, 1

3
];

(A3) δ0 > 0 is small enough so that it satisfies 1−2ε1−2ε1δ0 > 0 and −1−2δ0+2ε0+2ε0δ0 > 0,

which implies
√

nhh1/2+δ0 → ∞.

(A4) F ′′(x) and G′(x) are continuous.

Denote

c1 =
∫ 1

−1
x2k(x) dx, c2 =

∫ 1

−1
xk(x)K(x) dx, c3 =

∫ 1

−1
x2k2(x) dx,
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H1(u) = P (Zj ≤ u, δj = 1), H2(u) = P (Zj ≤ u, δj = 0), H(u) = H1(u) + H2(u),

τH = sup{t : H(t) < 1} and γ(s) =
∫ s

−∞[1 − G(u)]−1[1 − F (u)]−2 dF (u).

Then our main result is the following.

Theorem 1. Assume (A1) - (A4) are true and x < τH . Then

MSE(F̂n(x))

= γ(x)[H ′
1(x)]2[1 − F (x)]2n−1

−[4c2 − c3][1 − G(x)][F ′(x)]3n−1h

+1
4
c2
1[F

′′(x)]2h4 + o(h4 + n−1h)

(2.1)

Our goal here is to compare the asymptotic performance of our local linear estimator F̂n

with that of the kernel estimator F̄n in terms of MSE. Ghorai and Susarla (1990) establish the

MSE of F̄n using estimated bias term. For comparison purpose, we can prove, under the same

set of conditions, the exact MSE of F̄n is given by following:

MSE(F̄n(x))

= γ(x)[H ′
1(x)]2[1 − F (x)]2n−1

−2c2[1 − G(x)][F ′(x)]3n−1h

+1
4
c2
1[F

′′(x)]2h4 + o(h4 + n−1h)

(2.2)

The proof of (2.2) is similar to the proof of our main theorem, hence is omitted here.

Observing (2.1) and (2.2), we notice that the main difference between two equations is

the coefficients in the first order of the bandwidth h. It was pointed out by Cheng and Peng

(2002), 2c2−c3 is positive for most conventional kernel functions. See Table 1 below. Therefore

our local linear estimator F̂n(x) has a smaller mean squared error than kernel estimator F̄n(x)

for most commonly used kernels.
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Table 1: Values of 2c2 − c3 for some commonly used kernels.

Kernel 2c2 − c3

Epanechnikov k(x) = 3
4
(1 − x2)I(|x| ≤ 1) 6

35

Biweight k(x) = 15
16

(1 − x2)2I(|x| ≤ 1) 5
33

Triangular k(x) = (1 − |x|)I(|x| ≤ 1) 1
6

Uniform k(x) = 1
2
I(|x| ≤ 1) 1

6

Since the bandwidth plays a critical role in implementing practical estimation and it deter-

mines the trade-off between the amount of smoothness obtained and closeness of the estimation

to the true distribution, it is important that we provide a way to select the optimal bandwidth.

As in the cases of smooth distribution function estimation (see Altman and Leger (1995), Bow-

man, Hall and Prvan (1998) or Cheng and Peng (2002)) we choose optimal bandwidth h in the

sense of minimizing the second order term in the expansion of MSE(F̂n(x)), i.e., minimizing

−[4c2 − c3][1 − G(x)][F ′(x)]3n−1h +
1

4
c2
1[F

′′(x)]2h4 + o(h4 + n−1h),

which gives

h∗
l = { [4c2 − c3][1 − G(x)][F ′(x)]3

c2
1[F

′′(x)]2
}1/3n−1/3.

Similarly the optimal bandwidth for kernel smooth estimator F̄n(x) can be obtained as

h∗
k = {2c2[1 − G(x)][F ′(x)]3

c2
1[F

′′(x)]2
}1/3n−1/3.

3 Simulation study

A Monte Carlo study was conducted to compare the performance between the local linear

estimator F̂n and kernel smooth distribution estimator F̄n in terms of mean squared error. The

Epanechnikov kernel defined by k(x) = 3
4
(1 − x2)I(|x| ≤ 1) was used to construct the two

estimators.
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Let F (x) = 1−e−x and G(x) = 1−e−αx, where α is the censoring parameter. The relative

efficiencies of F̂n(x) and F̄n(x) with respect to Fn(x) ( ratios of the mean squared errors of F̂n(x)

and F̄n(x) to that of Fn(x), respectively) were computed and plotted against different h (for

h = 0.01 with the increment of 0.01) for x = − log(0.8),− log(0.6),− log(0.4) and − log(0.2).

In Figures 1-4, α is chosen to have 30% censoring (α = 3/7) while in figures 5-8 α is chosen

to have 5% censoring (α = 1/19). The values of the MSE were the averages based on 1000

repetitions of sample of size 200. From the figures 1-8, we observe the following facts:

1. Both kernel and local linear estimators have smaller MSE than the product-limit

estimator. In general, the plots show that the optimal mean squared error of our local linear

estimator is smaller than that of kernel smooth estimator. Also, the local linear estimator is

better than kernel estimator when both estimators are based on their optimal bandwidths (that

is, the bandwidth which minimize the MSE).

2. When x = − log(0.6) and x = − log(0.4), that is when F (x) is in the neighborhood of

0.5, our local linear estimator performs much better than kernel estimator (see Figures 2, 3, 6

and 7).

3. For small h, there are some problems with using local linear estimator when F (x) is near

zero or one, this is due to the fact that the local linear estimator is not an increasing function.

On the other hand, when F (x) is close to zero and one, our local linear estimator is quite robust

against the bandwidth h. computed for x.h∗
l = 0.258, h∗

k = 0.217 h∗
l = 0.162, h∗

k = 0.137

h∗
l = 0.307, h∗

k = 0.259 h∗
l = 0.221, h∗

k = 0.186

h∗
l = 0.225, h∗

k = 0.190 h∗
l = 0.142, h∗

k = 0.120

h∗
l = 0.268, h∗

k = 0.226

4 Proofs of Main Theorems

Denote

Hn,1(u) =
1

n

n∑
j=1

I(Zj ≤ u, δj = 1),
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Hn,2(u) =
1

n

n∑
j=1

I(Zj ≤ u, δj = 0),

Hn(u) = Hn,1(u) + Hn,2(u),

and also define the following sets:

A1 = {|n−2h−4

n∑
j=1

wj − (H ′
1(x))2c1| > h1/2+δ0}

A2 = {|n−1h−3sn,1 + H ′′
1 (x)c1| > h1/2+δ0}

A3 = {|n−1h−3sn,2 − H ′
1(x)c1| > h1/2+δ0}.

By applying Edgeworth expansions, we obtain following results:


P (A1) = O(n−3h−3)
P (A2) = O(n−3h−3)
P (A3) = O(n−3h−3)

(4.1)

For proofs of (4.1), see Hall (1992).

Let T be such that 1 − H(T ) > d with some d > 0 and M,λ denote generic positive

constants. Then it follows from Major and Rejto (1988) that the process {Fn(u)−F (u),−∞ <

u < ∞, 1 − H(u) > 0} can be represented as

Fn(u) − F (u) = (1 − F (u))[B1(n, u) + B2(n, u)] + R(n, u),

where

B1(n, u) =
Hn,1(u) − H1(u)

1 − H(u)
−

∫ u

−∞

Hn,1(y) − H1(y)

[1 − H(y)]2
dH(y),

B2(n, u) =

∫ u

−∞

Hn(y) − H(y)

[1 − H(y)]2
dH2(y),

and

P (A4) ≤ Me−λh−δ0 ,

where

A4 = {sup
u≤T

n|R(n, u)| > h−δ0}.
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Moreover there exists a Gaussian Process W (u),−∞ < u < ∞, with E(W (u)) = 0 and

covariance

E(W (s)W (t)) = γ(s) (4.2)

for −∞ < s ≤ t < ∞, where γ(s) is defined right before Theorem 1, which satisfies{
P (A5) ≤ Me−λh−δ0

P (A6) ≤ Me−λh−δ0 ,
(4.3)

where

A5 = { sup
−∞<u≤T

√
n|√n[B1(n, u) + B2(n, u)] − W (u)| > h−δ0}

and

A6 = { sup
−∞<u<∞

√
n|Hn(u) − H(u)| > h−δ0}.

Using (4.1) - (4.3) and note that H ′
1(x) = [1 − G(x)]F ′(x) and γ′(x) = [1 − G(x)]−1[1 −

F (x)]−2F ′(x), it is clear that to prove Theorem 1, we need to prove the following:

E{[F̂n(x) − F (x)]2I(∩6
j=1A

c
j)}

= c2
1γ(x)[H ′

1(x)]4[1 − F (x)]2n−1 − 2c2
1c2γ

′(x)[H ′
1(x)]4[1 − F (x)]2n−1h

−c2
1[2c2 − c3]γ

′(x)[H ′
1(x)]2[1 − H(x)]2[F ′(x)]2n−1h + 1

4
c4
1[H

′
1(x)]4[F ′′(x)]2h4 + o(n−1h + h4),

(4.4)

where Ac denotes the complementary set of A and I(A) denotes the indicator function of set

A.

We first show that (4.4) is true when F̂n(x) is replaced by F̃n(x). Therefore similarly we

can prove that (4.4) holds. To this end, we express the term n−2h−4
∑n

j=1 wj[Fn(Zj) − F (x)]

as follows:
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n−2h−4
∑n

j=1 wj[Fn(Zj) − F (x)]

= [n−1h−3sn,2 − H ′
1(x)c1]{n−1h−1

∑n
j=1 δjk(

x−Zj

h
)[Fn(Zj) − F (x)]}

−[n−1h−3sn,1 + H ′′
1 (x)c1]{n−1h−1

∑n
j=1(x − Zj)δjk(racx − Zjh)[Fn(Zj) − F (x)]}

+c1n
−1h−1

∑n
j=1 δjk(

x−Zj

h
)[H ′

1(x) + (x − Zj)H
′′
1 (x)][F (Zj) − F (x)]

+c1n
−1h−1

∑n
j=1 δjk(

x−Zj

h
)[H ′

1(x) + (x − Zj)H
′′
1 (x)][Fn(Zj) − F (Zj)],

= I1 + I2 + I3 + I4

(4.5)

Note that

dHn,1(u) = [1 − H(u)] d[B1(n, u) + B2(n, u)] + H ′
1(u) du − Hn(u) − H(u)

1 − H(u)
H ′

2(u) du,

therefore, I3 and I4 can be further decomposed as follows:
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I3 = c1h
−1

∫ ∞
−∞ k(x−s

h
)[H ′

1(x) + (x − s)H ′′
1 (x)][F (s) − F (x)] dHn,1(s)

= c1h
−1

∫ ∞
−∞ k(x−s

h
)[H ′

1(x) + (x − s)H ′′
1 (x)][F (s) − F (x)][1 − H(s)]

× d[B1(n, s) + B2(n, s)]

+c1h
−1

∫ ∞
−∞ k(x−s

h
)[H ′

1(x) + (x − s)H ′′
1 (x)][F (s) − F (x)]H ′

1(s) ds

−c1h
−1

∫ ∞
−∞ k(x−s

h
)[H ′

1(x) + (x − s)H ′′
1 (x)][F (s) − F (x)]Hn(s)−H(s)

1−H(s)
H ′

2(s) ds

= c1h
−1n−1/2

∫ 1

−1
{√n[B1(n, x − sh) + B2(n, x − sh)] − W (x − sh)}

× d{k(s)[H ′
1(x) + shH ′′

1 (x)][F (x − sh) − F (x)][1 − H(x − sh)]}

+c1h
−1n−1/2

∫ 1

−1
W (x − sh) d{k(s)[H ′

1(x) + shH ′′
1 (x)]

×[F (x − sh) − F (x)][1 − H(x − sh)]}

+c1

∫ 1

−1
k(s)[H ′

1(x) + shH ′′
1 (x)][F (x − sh) − F (x)]H ′

1(x − sh) ds

−c1

∫ 1

−1
k(s)[H ′

1(x) + shH ′′
1 (x)][F (x − sh) − F (x)]Hn(x−sh)−H(x−sh)

1−H(x−sh)
H ′

2(x − sh) ds

= II1 + II2 + II3 + II4

(4.6)
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and

I4 = c1h
−1

∫ ∞
−∞ k(x−s

h
)[H ′

1(x) + (x − s)H ′
1(x)][Fn(s) − F (s)] dHn,1(s)

= c1n
−1h−1

∑n
j=1 δjk(

x−Zj

h
)[H ′

1(x) + (x − Zj)H
′′
1 (x)]R(n, Zj)

+c1h
−1

∫ ∞
−∞ k(x−s

h
)[H ′

1(x) + (x − s)H ′′
1 (x)][1 − F (s)][B1(n, s) + B2(n, s)] dHn,1(s)

= c1n
−1h−1

∑n
j=1 δjk(

x−Zj

h
)[H ′

1(x) + (x − Zj)H
′′
1 (x)]R(n, Zj)

+1
2
c1h

−1
∫ ∞
−∞ k(x−s

h
)[H ′

1(x) + (x − s)H ′′
1 (x)][1 − F (s)][1 − H(s)] × d[B1(n, s) + B2(n, s)]2

+c1h
−1

∫ ∞
−∞ k(x−s

h
)[H ′

1(x) + (x − s)H ′′
1 (x)][1 − F (s)][B1(n, s) + B2(n, s)]H ′

1(s) ds

−c1h
−1

∫ ∞
−∞ k(x−s

h
)[H ′

1(x) + (x − s)H ′′
1 (x)][1 − F (s)][B1(n, s) + B2(n, s)]

×Hn(s)−H(s)
1−H(s)

H ′
2(s) ds

= c1n
−1h−1

∑n
j=1 δjk(

x−Zj

h
)[H ′

1(x) + (x − Zj)H
′′
1 (x)]R(n, Zj)

+1
2
c1h

−1
∫ 1

−1
[B1(n, x − sh) + B2(n, x − sh)]2

× d{k(s)[H ′
1(x) + shH ′′

1 (x)][1 − F (x − sh)][1 − H(x − sh)]}

+c1

∫ 1

−1
k(s)[H ′

1(x) + shH ′′
1 (x)][1 − F (x − sh)][B1(n, x − sh) + B2(n, x − sh)]

×H ′
1(x − sh) ds

−c1

∫ 1

−1
k(s)[H ′

1(x) + shH ′′
1 (x)][1 − F (x − sh)][B1(n, x − sh) + B2(n, x − sh)]

×Hn(x−sh)−H(x−sh)
1−H(x−sh)

H ′
2(x − sh) ds
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= c1n
−1h−1

∑n
j=1 δjk(

x−Zj

h
)[H ′

1(x) + (x − Zj)H
′′
1 (x)]R(n, Zj)

+1
2
c1n

−1h−1
∫ 1

−1
{√n[B1(n, x − sh) + B2(n, x − sh)] − W (x − sh)}2

× d{k(s)[H ′
1(x) + shH ′′

1 (x)][1 − F (x − sh)][1 − H(x − sh)]}

+c1n
−1h−1

∫ 1

−1
{√n[B1(n, x − sh) + B2(n, x − sh)] − W (x − sh)} × W (x − sh)

× d{k(s)[H ′
1(x) + shH ′′

1 (x)][1 − F (x − sh)][1 − H(x − sh)]}

+1
2
c1n

−1h−1
∫ 1

−1
W 2(x − sh)

× d{k(s)[H ′
1(x) + shH ′′

1 (x)][1 − F (x − sh)][1 − H(x − sh)]}

+c1n
−1/2

∫ 1

−1
k(s)[H ′

1(x) + shH ′′
1 (x)][1 − F (x − sh)]

×{√n[B1(n, x − sh) + B2(n, x − sh)] − W (x − sh)}H ′
1(x − sh) ds

+c1n
−1/2

∫ 1

−1
k(s)[H ′

1(x) + shH ′′
1 (x)][1 − F (x − sh)]W (x − sh)H ′

1(x − sh) ds

−c1n
−1/2

∫ 1

−1
k(s)[H ′

1(x) + shH ′′
1 (x)][1 − F (x − sh)]

×{√n[B1(n, x − sh) + B2(n, x − sh)] − W (x − sh)}

×Hn(x−sh)−H(x−sh)
1−H(x−sh)

H ′
2(x − sh) ds

−c1n
−1/2

∫ 1

−1
k(s)[H ′

1(x) + shH ′′
1 (x)][1 − F (x − sh)]W (x − sh)

×Hn(x−sh)−H(x−sh)
1−H(x−sh)

H ′
2(x − sh) ds

= III1 + · · · + III8.

(4.7)

The terms II1, II3 and II4 in (4.6) can be estimated as follows:




|II1I(∩6
j=1A

c
j)| ≤ Mn−1h−δ0

|II4I(∩6
j=1A

c
j)| ≤ Mn−1/2h1−δ0

(4.8)
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and

II3 = c1

∫ 1

−1
k(s)[H ′

1(x) + shH ′′
1 (x)][−shF ′(x) + 1

2
s2h2F ′′(x) + o(h2)]

×[H ′
1(x) − shH ′′

1 (x) + o(h)] ds

= h2 1
2
c2
1[H

′
1(x)]2F ′′(x) + o(h2).

(4.9)

The terms III1 −−III5, III7 and III8 in (4.7) can be estimated as follows:

E{III2
1I(∩6

j=1A
c
j)}

≤ c2
1n

−2h−2n−2h−2δ0E{∑n
j=1 δjk(

x−Zj

h
)[H ′

1(x) + (x − Zj)H
′′
1 (x)]}2

≤ Mn−2h−2δ0 ,

(4.10)

and




|III2I(∩6
j=1A

c
j)| ≤ Mn−2h−1−2δ0

|III3I(∩6
j=1A

c
j)| ≤ Mn−3/2h−1−δ0

|E(III2
4I(∩6

j=1A
c
j))| ≤ E(III2

4 ) ≤ Mn−2h−1

|III5I(∩6
j=1A

c
j)| ≤ Mn−1h−δ0

|III7I(∩6
j=1A

c
j)| ≤ Mn−1h−2δ0

|III8I(∩6
j=1A

c
j)| ≤ Mn−1h−δ0 .

(4.11)

Now the only terms remained to be analyzed are II2 in (4.6) and III6 in (4.7). We

proceed in the following. Put

Q1(s) = k(s)[H ′
1(x) + shH ′′

1 (x)][F (x − sh) − F (x)][1 − H(x − sh)],

Q2(s) = k(s)[H ′
1(x) + shH ′′

1 (x)][1 − F (x − sh)]H ′
1(x − sh),

Q3(s) = hk(s){−sH ′
1(x)[1 − H(x)]F ′(x) − s2hH ′′

1 (x)[1 − H(x)]F ′(x)−

−s2hH ′
1(x)H ′(x)F ′(x) + 1

2
s2hH ′

1(x)[1 − H(x)]F ′′(x)},
and

Q4(s) = k(s){[H ′
1(x)]2[1 − F (x)] + sh[H ′

1(x)]2F ′(x)}.
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Then

Q1(s) = Q3(s) + o(h2), Q′
1(s) = Q′

3(s) + o(h2), Q2(s) = Q4(s) + o(h)

Observe that the following equations hold:

E{∫ 1

−1
W (x − sh)Q′

3(s) ds}2

= 2
∫ 1

−1
{∫ s

−1
γ(x − sh)Q′

3(s)Q
′
3(t) dt} ds

= 2
∫ 1

−1
γ(x − sh)Q′

3(s)Q3(s) ds

= 2
∫ 1

−1
{γ(x) − shγ′(x) + o(h)}Q′

3(s)Q3(s) ds

= 2
∫ 1

−1
{−shγ′(x) + o(h)}Q′

3(s)Q3(s) ds

= h3c3γ
′(x)[H ′

1(x)]2[1 − H(x)]2[F ′(x)]2 + o(h3),

(4.12)

E{∫ 1

−1
W (x − sh)Q4(s) ds}2

= 2
∫ 1

−1
{∫ s

−1
γ(x − sh)Q4(s)Q4(t) dt} ds

= 2
∫ 1

−1
γ(x − sh)Q4(s){K(s)[H ′

1(x)]2[1 − F (x)] + K(s)sh[H ′
1(x)]2F ′(x)−

− ∫ s

−1
K(t)h[H ′

1(x)]2F ′(x) dt} ds

= 2
∫ 1

−1
γ(x − sh)Q4(s)K(s){[H ′

1(x)]2[1 − F (x)] + sh[H ′
1(x)]2F ′(x)} ds

−2
∫ 1

−1
K(t)h[H ′

1(x)]2F ′(x)
∫ 1

t
γ(x − sh)Q4(s) ds} dt

= 2
∫ 1

−1
k(s)K(s){γ(x)[H ′

1(x)]4[1 − F (x)]2 + 2shγ(x)[H ′
1(x)]4F ′(x)[1 − F (x)]−

−shγ′(x)[H ′
1(x)]4[1 − F (x)]2} ds

−2
∫ 1

−1
K(t)[1 − K(t)]hγ(x)[H ′

1(x)]4F ′(x)[1 − F (x)] dt + o(h)

= γ(x)[H ′
1(x)]4[1 − F (x)]2 − h2c2γ

′(x)[H ′
1(x)]4[1 − F (x)]2 + o(h)

(4.13)

and
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2E{∫ 1

−1

∫ 1

−1
W (x − sh)Q′

3(s)W (x − th)Q4(t) dsdt}

= 2
∫ 1

−1
{∫ s

−1
γ(x − sh)Q′

3(s)Q4(t) dt} ds

+2
∫ 1

−1
{∫ 1

s
γ(x − th)Q′

3(s)Q4(t) dt} ds

= 2
∫ 1

−1
{∫ s

−1
γ(x − sh)Q′

3(s)Q4(t) dt} ds

+2
∫ 1

−1
{∫ t

−1
γ(x − th)Q′

3(s)Q4(t) ds} dt

= 2
∫ 1

−1
γ(x − sh)Q′

3(s)K(s)[H ′
1(x)]2[1 − F (x)] ds

+2
∫ 1

−1
γ(x − sh)Q′

3(s)K(s)sh[H ′
1(x)]2F ′(x) ds

−2
∫ 1

−1
γ(x − sh)Q′

3(s){
∫ s

−1
K(t)h[H ′

1(x)]2F ′(x) dt} ds

+2
∫ 1

−1
γ(x − th)Q3(t)Q4(t) dt

= 2
∫ 1

−1
γ(x)Q′

3(s)K(s)[H ′
1(x)]2[1 − F (x)] ds

−2
∫ 1

−1
γ′(x)shQ′

3(s)K(s)[H ′
1(x)]2[1 − F (x)] ds

+2
∫ 1

−1
γ(x)Q′

3(s)K(s)sh[H ′
1(x)]2F ′(x) ds

−2
∫ 1

−1
{∫ 1

t
γ(x − sh)Q′

3(s)K(t)h[H ′
1(x)]2F ′(x) ds} dt

+2
∫ 1

−1
γ(x)Q3(t)Q4(t) dt

−2
∫ 1

−1
γ′(x)thQ4(t)Q3(t) dt + o(h2)

= −2
∫ 1

−1
Q3(s)k(s)γ(x)[H ′

1(x)]2[1 − F (x)] ds

+2
∫ 1

−1
Q(s)[K(s) + sk(s)]hγ′(x)[H ′

1(x)]2[1 − F (x)] ds

−2
∫ 1

−1
Q3(s)[K(s) + sk(s)]hγ(x)[H ′

1(x)]2F ′(x) ds

+2
∫ 1

−1
γ(x)Q3(t)K(t)h[H ′

1(x)]2F ′(x) dt

+2
∫ 1

−1
γ(x)Q3(t)Q4(t) dt

+2c3h
2γ′(x)[H ′

1(x)]3[1 − H(x)]F ′(x)[1 − F (x)] + o(h2)
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= −2
∫ 1

−1
Q3(s)Q4(s)γ(x) ds

+2
∫ 1

−1
Q3(s)k(s)sh[H ′

1(x)]2F ′(x)γ(x) ds

−2
∫ 1

−1
h2k(s)s[K(s) + sk(s)][H ′

1(x)]3[1 − H(x)]F ′(x)[1 − F (x)]γ′(x) ds

+2
∫ 1

−1
h2k(s)s[K(s) + sk(s)][H ′

1(x)]3[1 − H(x)][F ′(x)]2γ(x) ds

−2
∫ 1

−1
h2γ(x)tk(t)K(t)[H ′

1(x)]3[1 − H(x)][F ′(x)]2 ds

+2
∫ 1

−1
Q3(t)Q4(t)γ(x) dt

+2c3h
2γ′(x)[H ′

1(x)]3[1 − H(x)]F ′(x)[1 − F (x)] + o(h2)

= −h22c3[H
′
1(x)]3[1 − H(x)][F ′(x)]2γ(x)

−h22[c2 + c3][H
′
1(x)]3[1 − H(x)]F ′(x)[1 − F (x)]γ′(x)

+h22[c2 + c3][H
′
1(x)]3[1 − H(x)][F ′(x)]2γ(x)

−h22c2[H
′
1(x)]3[1 − H(x)][F ′(x)]2γ(x)

+h22c3[H
′
1(x)]3[1 − H(x)]F ′(x)[1 − F (x)]γ′(x) + o(h2)

= −h22c2[H
′
1(x)]3[1 − H(x)]F ′(x)[1 − F (x)]γ′(x) + o(h2).

(4.14)
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Therefore by (4.12) - (4.14) we have

E{II2 + III6}2

= n−1c2
1γ(x)[H ′

1(x)]4[1 − F (x)]2

−n−1h2c2
1c2γ

′(x)[H ′
1(x)]4[1 − F (x)]2

+n−1hc2
1c3γ

′(x)[H ′
1(x)]2[1 − H(x)]2[F ′(x)]2

−n−1h2c2
1c2[H

′
1(x)]3[1 − H(x)]F ′(x)[1 − F (x)]γ′(x) + o(n−1h)

= n−1c2
1γ(x)[H ′

1(x)]4[1 − F (x)]2

−n−1h2c2
1c2γ

′(x)[H ′
1(x)]4[1 − F (x)]2

−n−1hc2
1[2c2 − c3]γ

′(x)[H ′
1(x)]2[1 − H(x)]2[F ′(x)]2 + o(n−1h).

Further
E{(II2 + III6)

2I(∩6
j=1A

c
j)}

= E{II2 + III6}2 − E{(II2 + III6)
2I(∪6

j=1Aj)}

= E{II2 + III6}2 + o(n−1h).

(4.15)

Finally, the terms I1, ..., I4 in (4.5) can be estimated by using (4.8)–(4.11) and (4.15), that

is

|E{IiIjI(∩6
j=1A

c
j)}| = o(n−1h + h4) (4.16)

for i 
= j. Thus it follows from (4.8)–(4.11) and (4.16) that (4.4) is true by replacing F̂n(x) by

F̃n(x). Similarly we can show that for any q > 1

E{(F̃n(x) − F (x))2I(∩6
j=1A

c
j)}q = O(n−q). (4.17)
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Hence, for any q−1
1 + q−1

2 = 1 with q1 > 1

E{(F̃n(x) − F (x))2I(F̃n(x) < 0)I(∩6
j=1A

c
j)}

≤ {E((F̃n(x) − F (x))2I(∩6
j=1A

c
j))

q1}1/q1{EI(F̃n(x) < 0)I(∩6
j=1A

c
j)}1/q2

≤ {E((F̃n(x) − F (x))2I(∩6
j=1A

c
j))

q1}1/q1{EI(|F̃n(x) − F (x)| > F (x))I(∩6
j=1A

c
j)}1/q2

= {E((F̃n(x) − F (x))2I(∩6
j=1A

c
j))

q1}1/q1{EI(|F̃n(x) − F (x)|I(∩6
j=1A

c
j) > F (x))}1/q2

≤ {E((F̃n(x) − F (x))2I(∩6
j=1A

c
j))

q1}1/q1{E((F̃n(x)−F (x))2I(∩6
j=1Ac

j))

F 2(x)
}1/q2

= O(n−1−1/q2)

= o(n−1h + h4) (letting q2 → 1).

Similarly

E{(F̃n(x) − F (x))2I(F̃n(x) > 1)I(∩6
j=1A

c
j)} = o(n−1h + h4).

Thus, (4.4) holds by noting that

E{(F̂n(x) − F (x))2I(∩6
j=1A

c
j)}

= E{(F̃n(x) − F (x))2I(∩6
j=1A

c
j)}

−E{(F̃n(x) − F (x))2I(F̃n(x) < 0)I(∩6
j=1A

c
j)}

−E{(F̃n(x) − F (x))2I(F̃n(x) > 1)I(∩6
j=1A

c
j)}.

Hence Theorem 1.

References

[1] N. Altman and C. Leger (1995). Bandwidth selection for kernel distribution function esti-

mation. J. Statist. Plan. Inf., 46, 195 - 214.

[2] A. Azzalini (1981). A note on estimation of a distribution function and quantiles by a

kernel method. Biometrika, 68, 326 - 328.

[3] N. Bowman, P. Hall and T. Prvan (1998). Bandwidth selection for the smoothing of dis-

tribution functions. Biometrika, 85(4), 799 - 808.

19



[4] K. Chen and S. Lo (1997). On the rate of uniform convergence of the product-limit esti-

mator: strong and weak laws. Ann. Statist., 25(3), 1050 1087.

[5] M. Cheng and L. Peng (2002). Regression modeling for nonparametric estimation of dis-

tribution and quantile functions. Statistica Sinica, 12(4).

[6] M. Falk (1983). Relative efficiency and deficiency of kernel type estimators of smooth

distribution

[7] M. Falk (1984). Relative efficiency of kernel type estimators of quatiles. Ann. Statist. 12,

261-268

[8] J. Fan and I. Gijbels (1996). Local Polynomial Modelling and its Applications.Chapman

and Hall, London.

[9] J.K. Ghorai and V. Susarla (1990). Kernel estimation of a smooth distributon function

based on censored data. Metrika, 37, 71 - 86.

[10] P. Hall (1992). The Bootstrap and Edgeworth Expansion. Springer.

[11] E.L. Kaplan and P. Meier (1958). Nonparametric estimation from incomplete observations.

J. Amer. Statist. Assoc., 53, 457 - 481.

[12] P. Major and L. Rejto (1988). Strong embedding of the estimator of the disribution function

under random censorship. Ann. Statist., 16, 1113 - 1132.

[13] E.A. Nadaraya (1964) Some new estimates for distribution functions. Theory Probab. Appl.

9, 497-500.

[14] R.R. Read (1972). The asymptotic inadmissibility of the sample distribution function.

Ann. Math. Statist., 43, 89-95.

[15] R.D. Reiss (1981). Nonparametric estimation of smooth distribution functions. Scand. J.

Statist., 8, 116 - 119.

kernel quantile estimators

[16] Y. Sun, S. Sun and Y. Diao (2001). Smooth quantile processes from right censored data

and construction of simultaneous conference bands. Communication in Statistics, Theory

and Methods. 30 no.4 707-727

20



0.0 0.5 1.0 1.5

h

1
2

3
4

5
6

ra
tio

x=-log(0.8)

Figure 1: The solid line and dotted line represent the ratio of the mean squared error of local
linear estimator F̂n(x) to that of product limit estimator Fn(x) and the ratio of the mean squared
error of kernel smooth estimator F̄n(x) to that of product limit estimator Fn(x), respectively.
We took α = 3/7.
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Figure 2: The solid line and dotted line represent the ratio of the mean squared error of local
linear estimator F̂n(x) to that of product limit estimator Fn(x) and the ratio of the mean squared
error of kernel smooth estimator F̄n(x) to that of product limit estimator Fn(x), respectively.
We took α = 3/7.
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Figure 3: The solid line and dotted line represent the ratio of the mean squared error of local
linear estimator F̂n(x) to that of product limit estimator Fn(x) and the ratio of the mean squared
error of kernel smooth estimator F̄n(x) to that of product limit estimator Fn(x), respectively.
We took α = 3/7.
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Figure 4: The solid line and dotted line represent the ratio of the mean squared error of local
linear estimator F̂n(x) to that of product limit estimator Fn(x) and the ratio of the mean squared
error of kernel smooth estimator F̄n(x) to that of product limit estimator Fn(x), respectively.
We took α = 3/7.
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Figure 5: The solid line and dotted line represent the ratio of the mean squared error of local
linear estimator F̂n(x) to that of product limit estimator Fn(x) and the ratio of the mean squared
error of kernel smooth estimator F̄n(x) to that of product limit estimator Fn(x), respectively.
We took α = 1/19.
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Figure 6: The solid line and dotted line represent the ratio of the mean squared error of local
linear estimator F̂n(x) to that of product limit estimator Fn(x) and the ratio of the mean squared
error of kernel smooth estimator F̄n(x) to that of product limit estimator Fn(x), respectively.
We took α = 1/19.
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Figure 7: The solid line and dotted line represent the ratio of the mean squared error of local
linear estimator F̂n(x) to that of product limit estimator Fn(x) and the ratio of the mean squared
error of kernel smooth estimator F̄n(x) to that of product limit estimator Fn(x), respectively.
We took α = 1/19.
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Figure 8: The solid line and dotted line represent the ratio of the mean squared error of local
linear estimator F̂n(x) to that of product limit estimator Fn(x) and the ratio of the mean squared
error of kernel smooth estimator F̄n(x) to that of product limit estimator Fn(x), respectively.
We took α = 1/19.
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