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1. Introduction.

A refinement of the class of multivariate regularly varying distributions, which we call hidden regular
variation, is a semi-parametric subfamily of the full family of distributions possessing multivariate regular
variation and asymptotic independence. Various cases of hidden regular variation have received considerable
attention recently as part of the program to statistically distinguish asymptotic independence from depen-
dence. See Campos et al. (2002), Coles et al. (1999), de Haan and de Ronde (1998), Draisma et al. (2001),
Ledford and Tawn (1996, 1997), Peng (1999), Poon et al. (2001), Resnick (2002a), Stărică (1999, 2000). In
particular, hidden regular variation is based on the analysis of the coefficient of tail dependence of Ledford
and Tawn (1996, 1997).

Both multivariate regular variation and hidden regular variation are crucial to defining semi-parametrically
specified dependence structures for heavy tailed models where it is important to consider assumptions beyond
independence. These concepts enter into analyses because there are often patterns of dependence among
large values of the components of a random vector which are not apparent by using summaries of dependence
based on the center of the distributions such as cross correlations. See de Haan and de Ronde (1998), Resnick
(2002b,c).

A treatment of hidden regular variation, placing it in relation to the concepts of asymptotic independence
and second order regular variation, was given in Resnick (2002b) where examples and characterizations were
given. Here we continue discussion by providing further characterizations and canonical representations.
The characterizations when the hidden angular measure is infinite are not completely satisfactory. These
canonical representations are dependent on a notion of multivariate tail equivalence. We also discuss how
influential hidden regular variation can be in assessing the behavior of products of components of a random
vector possessing hidden regular variation.

1.1. Outline. The rest of this section reviews notation (Subsection 1.2) and the polar coordinate transfor-
mation (Subsection 1.3). Section 2 defines multivariate regular variation of a probability distribution on Rd

+,
d > 1 and we phrase our definitions in terms of vague convergence of measures. The orientation to measures
is most natural in a multivariate context where d > 1 and when considering changes of coordinate systems.
Section 2 also defines precisely hidden regular variation.

Section 3 defines a notion of tail equivalence for multivariate distributions. The one dimensional concept,
considered in Resnick (1971), has a natural definition which says that if two distributions F,G are tail
equivalent, meaning for some c > 0, 1 − F (x) ∼ c(1 − G(x)), as x → ∞, then extremal behavior of i.i.d.
samples from F is essentially the same as for i.i.d. samples from G. How to define a multivariate analogue
depends on the purpose to which the concept will be put. We propose a definition and based on this
definition, we characterize distributions with hidden regular variation with finite hidden angular measure as
tail equivalent to certain mixtures.

In Section 4, we give a characterization and representation of distributions with finite hidden angular
measure. Section 5, on the other hand, considers the case of infinite hidden angular measure. We give
a characterization for this case and several important examples but the characterization has deficiencies.
Finally, in Section 6, we study the influence of hidden regular variation on the behavior of the distribution
of the product of two asymptotically independent random variables.

1.2. Notation. For simplicity we will generally assume that random vectors have non-negative components.
Set

E := [0,∞]d \ {0}

so that the origin is excluded from E. Compact subsets of E are compact sets of [0,∞]d which do not intersect
the origin; see the discussion in Resnick (2002b). In some applications, for instance in finance, it is natural
to consider the cone [−∞,∞]d \ {0}. We leave it to the reader to make the modest changes necessary to
generalize to this case, by considering the orthants individually.

Vectors are denoted by bold letters, capitals for random vectors and lower case for non-random vectors.
For example: x = (x(1), . . . , x(d)) ∈ Rd. Operations between vectors should be interpreted componentwise so
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that for two vectors x and z

x < z means x(i) < z(i), i = 1, . . . , d, x 6 z means x(i) 6 z(i), i = 1, . . . , d,

x = z means x(i) = z(i), i = 1, . . . , d, zx = (z(1)x(1), . . . , z(d)x(d)),

x
∨

z = (x(1) ∨ z(1), . . . , x(d) ∨ z(d)),
x

z
=
(x(1)

z(1)
, . . . ,

x(d)

z(d)

)
,

and so on. Also define 0 = (0, . . . , 0). For a real number c, denote as usual cx = (cx(1), . . . , cx(d)). We denote
the rectangles (or the higher dimensional intervals) by

[a, b] = {x ∈ E : a 6 x 6 b}.

Higher dimensional rectangles with one or both endpoints open are defined analogously, for example,

(a, b] = {x ∈ E : a < x 6 b}.

Complements are taken with respect to E, so that for x > 0,

[0,x]c = E \ [0,x] = {y ∈ E :
d∨

i=1

y(i)

x(i)
> 1}.

For i = 1, . . . , d, define the basis vectors

ei = (0, . . . , 0, 1, 0, . . . , 0)

so that the axes originating at 0 are Li := {tei, t > 0}, i = 1, . . . , d. Then define the cone

E0 = E \
d⋃

i=1

Li = {s ∈ E : For some 1 6 i < j 6 d, s(i) ∧ s(j) > 0}.

If d = 2, we have E0 = (0,∞]2. The cone E0 consists of points of E such that at most d− 2 coordinates are
0.

1.3. The polar coordinate transformation. It is sometimes illuminating to consider multivariate regular
variation for the distribution of a random vector after a polar coordinate transformation. Suppose ‖ · ‖ :
Rd 7→ [0,∞) is a norm on Rd. The most useful norms for us are the usual Euclidean L2 norm, the Lp norm
for p > 0 and the L∞ norm: ‖x‖ =

∨n
i=1 |x(i)|. Assume the norm has been scaled so that ‖ei‖ = 1 for

i = 1, . . . , d. Given a chosen norm ‖ · ‖, the points at unit distance from the origin 0 are

ℵ := {x ∈ E : ‖x‖ = 1}.

For the purpose of hidden regular variation, we need to look at a smaller subcone C of E and the restriction
of ℵ to C is denoted by ℵC = ℵ ∩ C. Recall norms on Rd are all topologically equivalent in that convergence
in one norm implies convergence in another.

Now fix a norm. Define the polar coordinate transformation T : [0,∞)d \ {0} 7→ (0,∞)× ℵ by

T (x) =
(
‖x‖, x

‖x‖

)
=: (r, a),

and the inverse transformation T← : (0,∞)× ℵ 7→ [0,∞]d+ \ {0} by

T←(r, a) = ra.

Think of a ∈ ℵ as defining a direction and r telling how far in direction a to proceed. Since we excluded 0
from the domain of T , both T and T← are continuous bijections.

When d = 2, it is customary, but not obligatory, to write T (x) = (r, θ), where x = (r cos θ, r sin θ), with
0 6 θ 6 π/2, rather than the more consistent notation T (X) =

(
r, (cos θ, sin θ)

)
. For a random vector X in

Rd we sometimes write T (X) = (RX ,ΘX). When there is no risk of confusion, we suppress the subscript.
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2. Multivariate regular variation and hidden regular variation.

2.1. Multivariate regular variation for distributions of random vectors. Multivariate regular vari-
ation is usually either defined by convergence of a family of functions defined on the cone C ⊆ E or as vague
convergence of measures defined on the Borel subsets of the cone. Behavior on the boundary of the cone can
be crucial. See Balkema (1973), Basrak et al. (2002), Davis and Hsing (1995), Davis and Mikosch (1998),
de Haan et al. (1984), Meerschaert and Scheffler (2001), Resnick (1986), Resnick (1987, Chapter 5). The
most common cones used are E itself and E0.

Consider a d-dimensional non-negative random vector Y = (Y (1), . . . , Y (d)) whose range includes the
cone C. We suppose that all one-dimensional marginal distributions are the same. This can be achieved by
marginal transformations of the components. (While this method of transformation is a simple theoretical
procedure, associated statistical difficulties should not be neglected.) The distribution of Y is multivariate
regularly varying on the cone C with limit measure ν, a non-zero Radon measure defined on Borel subsets
of C, if there exists a function b(t) ↑ ∞ as t →∞, such that

(2.1) t P
[

Y

b(t)
∈ ·
]

v→ ν

in M+(C), the space of Radon measures on C. Here convergence is vague convergence of measures and M+(C)
has the vague topology. See, for example, Kallenberg (1983), Karr (1986), Neveu (1977), Resnick (1987).
Condition (2.1) implies that there exists a non-negative constant α > 0 such that for relatively compact sets
B ⊆ C

(2.2) ν(cB) = c−αν(B), c > 0,

which is called the homogeneity property of ν. Henceforth, assume that α > 0. The function b(·) is necessarily
regularly varying of index 1/α which we write as b ∈ RV1/α and we can choose b to be strictly increasing,
and continuous. We shall always assume that b is strictly continuous and increasing. There are equivalent
formulations in terms of polar coordinates (cf. Basrak, 2000, Basrak et al., 2002, Resnick, 2002b,c). The
regular variation condition (2.1) is equivalent to

(2.3) t P
[(

R

b(t)
,Θ
)
∈ ·
]

v→ c να × S,

where c > 0, να is a Radon measure on (0,∞] given by

να((x,∞]) = x−α, x > 0,

S is a Radon measure on ℵC (and can be chosen to be a probability measure if ℵC is compact), and convergence
is in M+

(
(0,∞]× ℵC

)
.

Asymptotic independence occurs when C = E and ν(E0) = 0 or equivalently when S concentrates uni-
formly on the set {ei, 1 6 i 6 d}.

2.2. Hidden regular variation for distributions of random vectors. The random vector Y has a
distribution possessing hidden regular variation if there is a subcone C0 ⊂ C and the distribution has regular
variation on C but also regular variation of lower order on C0. So in addition to (2.1), we assume that there
exists a non-decreasing function b0(t) ↑ ∞ such that b(t)/b0(t) →∞ and there exists a measure ν0 6= 0 which
is Radon on C0 and such that

(2.4) t P
[

Y

b0(t)
∈ ·
]

v→ ν0

on M+(C0). Then there exists α0 > α such that b0 ∈ RV1/α0 and ν0 and α0 satisfy the analogue of (2.2).
We can again assume that b0 is strictly increasing, continuous and further assume that b(1) = 1 and hence
b←(1) = 1.

When C = E and C0 = E0, then (cf. Resnick, 2002b) hidden regular variation implies asymptotic inde-
pendence. In this case, the name hidden regular variation is justified by the fact that the relatively crude
normalization necessary for convergence on the axes is too large and obscures structure in the interior of
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the cone. A normalization of smaller order, b0(·), is necessary on the smaller cone. Also, as has previously
been noted by several authors including de Haan and de Ronde (1998, pg. 41)), Resnick (1987, pg. 297),
Sibuya (1960), asymptotic independence can be quite different from independence. The measure ν0 of hidden
regular variation is a measure of the dependence in asymptotic independence.

There are possible variants of hidden regular variation. First, the normalization in (2.4) of each component
of the random vector is by the same function. One could allow different normalizations bi(t), i = 1, . . . , d,
provided b(t)/bi(t) →∞ for i = 1, . . . , d. The case of different normalizing functions can be reduced to (2.4)
by monotone transformations. Second, the definition of hidden regular variation uses two cones C ⊃ C0. In
principle, one could have more cones C ⊃ C0 ⊃ C1 ⊃ · · · ⊃ Ck with regular variation of progressively smaller
order present in each. An simple example where d = 3 = k is given in Example 5.1 below. A characterization
of hidden regular variation when (C,C0) = (E, E0) is given in Resnick (2002b). It uses max- and min-linear
combinations of the form

∨d
i=1 siY

(i) and
∧d

i=1 aiY
(i). See also the work of Coles et al. (1999).

The hidden regular variation condition (2.4) has an equivalent form in polar coordinates:

(2.5) t P
[(

R

b0(t)
,Θ
)
∈ ·
]

v→ c0 να0 × S0,

where c0 > 0, S0 is a Radon measure on ℵ0 := ℵC0 and convergence is in M+

(
(0,∞]× ℵ0

)
. The measure ν0

in (2.4) can be either finite or infinite on {x ∈ C0 : ‖x‖ > 1} and equivalently, the measure S0 in (2.5) can
be either finite or infinite on ℵ0. See Examples 1 and 2 in Resnick (2002b).

We will call the measure S the angular measure or spectral measure. S0 is called the hidden angular
measure or hidden spectral measure. Keep in mind these are quantities defined by an asymptotic procedure.

The coefficient of tail dependence is defined by Ledford and Tawn (1996, 1997, 1998) and is a somewhat
weaker concept than our definition of hidden regular variation. Schlather (2001) points out some curiosities
stemming from the formulation. When hidden regular variation is present, the coefficient of tail dependence
is α−1

0 . Related work is in Coles et al. (1999), reviewed and discussed more fully in Heffernan (2000), where
two limits (χ, χ̄) are assumed to exist in the context d = 2. When hidden regular variation is assumed as in
(2.1) and (2.4), we have

χ := lim
t→∞

P [Y (2) > t|Y (1) > t] = 0

χ̄ := lim
t→∞

2 log P [Y (1) > t]
log P [Y (1) > t, Y (2) > t]

− 1 =
2α− α0

α0
.

3. Multivariate tail equivalence.

Two probability distributions F,G on R+ are tail equivalent (see Resnick, 1971) if they have the same
right endpoint x0 and for some c ∈ (0,∞),

lim
s↑x0

1−G(s)
1− F (s)

= c.

Then, upper extremes of i.i.d. samples from F behave asymptotically in the same way as upper extremes of
i.i.d. samples from G. In the heavy tailed case, this definition is equivalent to supposing that there exists a
function b(t) ↑ ∞ such that for some α > 0, as t →∞

tF (b(t)·) v→ να, tG(b(t)·) v→ cνα.

Now suppose Y and Z are [0,∞)d-valued random vectors with distributions F , G respectively. In the
multivariate regular variation context, we say that F and G (or by abuse of language Y and Z) are tail
equivalent on the cone C ⊂ E if there exists a scaling function b(t) ↑ ∞ such that

(3.1) t P
[

Y

b(t)
∈ ·
]

= tF (b(t)·) v→ ν and t P
[

Z

b(t)
∈ ·
]

= tG(b(t)·) v→ cν
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in M+(C), for some constant c > 0 and non-zero Radon measure ν on C. We shall write

Y
te(C)∼ Z.

If {Y n, n > 1} is an i.i.d. sample from F and {Zn, n > 1} is an i.i.d. sample from G, then

(3.2)
n∑

i=1

εY i/b(n) ⇒ PRM (ν), and
n∑

i=1

εZi/b(n) ⇒ PRM (cν),

in Mp(C), the space of Radon point measures on C. Here PRM(ν) means a Poisson random measure with
points in C whose mean measure is ν. The two convergence statements in (3.2) mean that extremes of each
sample when taken in C will asymptotically have the same properties. See Resnick (1987).

4. Mixture characterization when the hidden angular measure is finite.

We now show that a regularly varying distribution on E possessing hidden regular variation on E0 is tail
equivalent on E and E0 to a mixture model, provided the hidden angular measure is finite. The following
definitions facilitate our presentation.

Suppose Y is a random vector whose distribution is multivariate regularly varying on C and satisfies (2.1).
Call Y extremally dependent on C0, if the limit measure ν is non-zero on C0. (If (C,C0 = E, E0), then this
means that Y is not asymptotically independent.)

A multivariate regularly varying random vector Y is called completely asymptotically independent, if its
support is bounded away from ∞. Then for some t > 0, the support is contained in [t1,∞]c and hence
cannot have any hidden regular variation, though it will surely be asymptotically independent. Therefore,
an exactly independent random vector, that is, a vector with independent components, cannot be completely
asymptotic independent (cf. Resnick, 2002b, Example 2). A completely asymptotically independent vector
is tail equivalent on the cone E to a random variable Y which is a mixture of regularly varying distributions
concentrating on the axes. This means Y can be represented as follows: Let I, {Xi, i = 1, . . . , d} be
independent and {Xi} i.i.d. with one-dimensional distribution F (x) with F̄ (x) ∈ RV−α. Then Y is tail
equivalent on E to

∑d
j=1 1[I=j]Xjej . Also note that the parameters χ, and χ̄ (cf. Coles et al., 1999, Heffernan,

2000) will have values 0 and ∞ respectively. The two concepts of extremal dependence and complete
asymptotic independence represent two extreme situations of hidden regular variation.

4.1. Characterization for finite hidden angular measure. The next Theorem summarizes how tail
behavior of the distributions on E possessing hidden regular variation on E0 with finite hidden angular
measure can be characterized in terms of tail equivalence.

Theorem 4.1. Suppose F is a multivariate regularly varying distribution on E with hidden regular variation
on E0, finite hidden angular measure, and scaling functions b(t), b0(t) with b(t)/b0(t) → ∞. Then F is tail
equivalent on both the cones E and E0 to a distribution which is mixture of

(i) a completely asymptotically independent distribution on E (with no hidden regular variation) whose
marginal distributions have scaling function b(t),

and
(ii) an extremally dependent distribution on E with scaling function b0(t). (The tails of this extremally

dependent distribution are thus lighter than those of the completely asymptotically independent dis-
tribution.)

Conversely, if F is tail equivalent to a mixture as above with b(t)/b0(t) → ∞, then F is multivariate
regularly varying distribution on E and has hidden regular variation on E0 with finite hidden angular measure
and with scaling functions b and b0.

Proof. Let Y be a d-dimensional random vector distributed as F , which is multivariate regularly varying on
E with hidden regular variation on E0. Suppose Y has finite hidden angular measure which, without loss of
generality, we take to be a probability measure. Then Y satisfies the conditions (2.3) and (2.5) with c0 = 1.
Extend the hidden angular measure S0, defined in (2.5), to ℵ by defining it to be 0 on ℵ\ℵ0. Recall that the
one-dimensional marginal distributions of Y are identical. Take i.i.d. random variables X1, . . . , Xd having
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the same distribution as Y1 and independent of the independent pair R0 and Θ0 (all defined on the same
probability space), where Θ0 is distributed as S0 and R0 is distributed as F0 given by

(4.1) F0(x) =

{
1, x 6 1

1
b←0 (x) , x > 1

,

since b←0 (1) = 1. We further take an integer valued random variable I independent of all the rest (and defined
on the same probability space as before), which takes value 0 with probability 1

2 and values 1, 2, . . . , d with
probability 1

2d each. Define V to be the random vector by transforming the pair (R0,Θ0) to Cartesian
coordinates, that is, V = R0Θ0. Finally define

(4.2) Z = 1{I=0}V +
d∑

i=1

1{I=i}Xiei,

and we claim that the distribution of Z is tail equivalent to F on both E and E0.
First we check that V is multivariate regularly varying on E with scaling function b0(t) and hence also on

E0. We check this using polar coordinates through the convergence in (2.3). For any Borel set Λ ⊂ ℵ and
x > 0,

(4.3) t P
[

RV

b0(t)
> x,ΘV ∈ Λ

]
= t P

[
R0

b0(t)
> x

]
S0(Λ) = t

1
b←0 (b0(t)x)

S0(Λ) ∼ x−α0S0(Λ).

Also since S0 6≡ 0, S0(ℵ \ ℵ0) = 0, V is extremally dependent. So Z is a mixture of a multivariate
regularly varying random vector V which is extremally dependent and a random vector whose distribution
is multivariate regularly varying and completely asymptotically independent.

Next observe that

ΘZ = 1{I=0}Θ0 +
d∑

i=1

1{I=i}ei(4.4)

and

RZ = 1{I=0}R0 +
d∑

i=1

1{I=i}Xi.(4.5)

Then for Λ0, a compact subset of ℵ0 (and hence ei /∈ Λ0, i = 1, . . . , d), we have that

t P
[

RZ

b0(t)
> x,ΘZ ∈ Λ0

]
= t P

[
I = 0,

R0

b0(t)
> x,Θ0 ∈ Λ0

]
+

d∑
i=1

t P
[
I = i,

Xi

b0(t)
> x, ei ∈ Λ0

]
=

1
2
T P[R0 > b0(t)x]S0(Λ0) + 0

∼ 1
2
x−α0S0(Λ0),(4.6)

by (4.3), since ei /∈ Λ0, for i = 1, 2, . . . , d. Therefore,

t P
[(

RZ

b0(t)
,ΘZ

)
∈ ·
]

v→ 1
2
να0 × S0 on (0,∞]× ℵ0.

Again, for Λ, a subset of ℵ, we have that

t P
[

RZ

b(t)
> x,ΘZ ∈ Λ

]
= t P

[
I = 0,

R0

b(t)
> x,Θ0 ∈ Λ

]
+

d∑
i=1

t P
[
I = i,

Xi

b(t)
> x, ei ∈ Λ

]

=
1
2
t P[R0 > b(t)x]S0(Λ) +

1
2
t P[X1 > b(T )x]

1
d

d∑
i=1

1{ei}(Λ)
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→ 0 +
c∗

2
x−α 1

d

d∑
i=1

1{ei}(Λ),(4.7)

where c∗ = ν((1,∞] × [0,∞]d−1). The 0 in the last line of the previous display results from b←0 (b(t)) → ∞
since b(t)/b0(t) →∞ implies b←(t)/b←0 (t) → 0 which in turn implies 1/b←0 (b(s)) → 0 as s →∞. Thus

t P
[(

RZ

b(t)
,ΘZ

)
∈ ·
]

v→ c∗

2
να × S on (0,∞]× ℵ,

where S is the uniform distribution on {e1, . . . ,ed}. Therefore, Y and Z are asymptotically equivalent on
both the cones E and E0.

Conversely, suppose Y has hidden regular variation and (i) and (ii) hold with b(t)/b0(t) → ∞. Since a
completely asymptotically independent distribution cannot have a non-zero hidden angular measure, and
the scaling function b0(t) of the extremally dependent part is of smaller order than that of the completely
asymptotically independent part, the hidden angular measure of F is a multiple of the hidden angular
measure of the extremally dependent part, which is finite. �

4.2. Significance of a finite angular measure on E0. Before considering distributions with infinite
hidden angular measure, we highlight the significance of having a finite angular measure. Having a finite
hidden angular measure on E0 means that regular variation on E0 can be extended to regular variation of
the same order on the full cone E and that marginals are regularly varying.

Theorem 4.2. Suppose V is regularly varying on E0, with index α0, scaling function b0(t), limit measure
ν0, angular measure S0 on ℵ0. The following are equivalent:

(i) S0 is finite on ℵ0.
(ii) There exists a random vector V ∗ defined on E0 such that

V ∗
te(E0)∼ V

on E0 and for i = 1, . . . , d

t P
[
V

(i)
∗ > b0(t)x

]
→ cx−α0 , t →∞

for some c > 0, so that each component V
(i)
∗ has regularly varying tail probabilities with index α0.

(iii) There exists a random vector V ∗ defined on E0 such that

V ∗
te(E0)∼ V

on E0 and V ∗ is regularly varying on the full cone E with scaling function b0(t) and limit measure
ν and

ν|E0 = ν0;

that is, the restriction of ν to E0 is ν0.
(iv) There exists a random vector V ∗ defined on E0 such that

V ∗
te(E0)∼ V

on E0 such that for any s ∈ [0,∞) \ {0} and any a ∈ (0,∞] \
⋃d

i=1{e
−1
i }

d∨
i=1

siV
(i) and

d∧
i=1

aiV
(i),

are tail equivalent on [0,∞) and have regularly varying tail probabilities of index α0.

Remark 4.1. We cannot replace V ∗ with V and still hope the assertions to hold. In (4.2), we have Z
regularly varying on E0 but the marginal distributions are not regularly varying with index α0.
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Proof of Theorem 4.2. (i)⇒(iii): S0 is defined on E0. It can be extended to all of E by setting S0(ei) = 0.
Now repeat the construction of R0,Θ0 given prior to and including (4.1) and this time define V ∗ = R0Θ0

on E which will be regularly varying on E with scaling function b0(t), limit measure ν with ν|E0 = ν0.
(iii)⇒(i): If V ∗ is regularly varying on E, then

t P[‖V ∗‖ > b0(t)] → ν{x ∈ E : ‖x‖ > 1} < ∞.

Therefore
ν{x ∈ E0 : ‖x‖ > 1} = ν0{x ∈ E0 : ‖x‖ > 1} = S0(ℵ0) < ∞.

(iii)⇒(ii): Since

t P
[

V ∗
b0(t)

∈ ·
]
→ ν

on E, we have that

t P

[
V (1)
∗

b0(t)
> x

]
= t P

[
V ∗
b0(t)

∈ (x,∞]× [0,∞]d−1

]
→ ν

(
(x,∞]× [0,∞]d−1

)
.

This implies marginal regular variation.
(ii)⇒(iii): Suppose V ∗ is regularly varying on E0 and the one dimensional marginal tails are also regularly

varying. For x ∈ E such that at least 2 components are strictly positive, we have by inclusion-exclusion

t P
([

V ∗
b0(t)

6 x

]c)
=t P

(
d⋃

i=1

[
V (i)
∗

b0(t)
> x(i)

])

=t

d∑
i=1

P

[
V (i)
∗

b0(t)
> x(i)

]
− t

∑
16i<j6d

P

[
V (i)
∗

b0(t)
> x(i),

V (j)
∗

b0(t)
> x(j)

]
+

· · ·+ (−1)d+1t P
[

V ∗
b0(t)

> x

]
.

Convergence of the first sum results from one-dimensional marginal convergence. Convergence of the other
terms results from vague convergence on E0.

To understand (iv), see Theorem 1 of Resnick (2002b). �

5. Hidden regular variation when the hidden angular measure is infinite.

Techniques used in the previous section when the hidden angular measure was assumed finite need modifi-
cation when the hidden angular measure is infinite. We discuss the differences between the two cases, provide
tools for discussing regular variation on a subcone of E, give a broad class of examples for this infinite case
and provide a characterization.

5.1. Regular variation on E0. When the hidden angular measure was finite, regular variation on E0 could
be extended to all of E with the same index; see Theorem 4.2. The situation when the hidden angular
measure is infinite, is rather different. If regular variation can be extended to all of E, then the order of the
extension is different.

Theorem 5.1. Suppose V is defined on E, has equal marginal distributions, and is regularly varying on E0,
with index α0, scaling function b0(t) ∈ RV1/α0 , limit measure ν0, infinite angular measure S0 on ℵ0. Then
V is also regularly varying on E iff there exists α 6 α0 such that

P
[
V (i) > x

]
∈ RV−α, i = 1, . . . , d,

and with the quantile function

(5.1) b(t) =
(

1
P[V (i) > ·]

)←
(t)

satisfying b(t)/b0(t) →∞ as t →∞.
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Proof. Only if part: Suppose V is regularly varying on E with limit measure ν. We may assume the quantile
function given in (5.1) is the scaling function of the regular variation. If ν(E0) > 0, then for some x > 0,

t P
[

V

b0(t)
> x

]
→ν0((x,∞]) > 0,

t P
[

V

b(t)
> x

]
→ν((x,∞]) > 0

which implies b(t) ∼ cb0(t), for some c > 0. This means that regular variation on E0 is extended to all of
E and, by Theorem 4.2, S0, the hidden angular measure, is finite. This is a contradiction and hence we
conclude we must have ν(E0) = 0. But then we have

P[V /b(t) > x]
P[V /b0(t) > x]

→ 0,

which implies b(t)/b0(t) →∞ as t →∞. Thus we conclude α 6 α0. Also

t P
[
V (1)

b(t)
> x

]
= t P

[
V

b(t)
∈ [x,∞]× [0,∞]d−1

]
→ ν

(
[x,∞]× [0,∞]d−1

)
which implies P[V (1) > x] ∈ RV−α.

If part: The converse follows from Corollary 1 in Resnick (2002b) without the assumption of infinite
hidden angular measure. �

5.2. A coordinate system for regular variation on a subcone; the inverse norm transformation.
Consider the map x 7→ x−1 from [0,∞] 7→ [0,∞]; that is(

x(1), . . . , x(d)
)
7→
(

1
x(1)

, . . . ,
1

x(d)

)
.

(Here we define 1/∞ = 0 and 1/0 = ∞.) Let ‖ · ‖ be a norm on Rd. Extend the definition from [0,∞)d to
[0,∞]d by defining ‖x‖ = ∞ if any component x(i) of x is infinite. Now define

‖ · ‖inv : [0,∞]d 7→ [0,∞], by ‖x‖inv =
1

‖x−1‖
,

and
ℵinv = {x ∈ E : ‖x‖inv = 1}.

Note ‖x‖inv = ∞ iff x = ∞ and ‖x‖inv = 0 iff ∧d
i=1x

(i) = 0. Furthermore, observe that ‖·‖inv is homogeneous:

‖tx‖inv = t‖x‖inv

and that {x ∈ E : ‖x‖inv > 1} is a compact neighborhood of ∞. If ‖x‖ =
∑d

i=1 x(i), then

‖x‖inv =
1∑d

i=1(x(i))−1
=

∏d
i=1 x(i)∑d

i=1

∏
j 6=i x(j)

.

If ‖x‖ = ∨d
i=1x

(i) then ‖x‖inv = ∧d
i=1x

(i). In this case, the set {x ∈ E : ‖x‖inv > 1} is the compact
hypercube, whose diagonally opposite vertices are 1 and ∞. This has the advantage of being immune to
whether the hidden angular measure is infinite or not. Thus, if ν0 is the limit measure in the definition of
regular variation on E0,

Sinv(Λ) := ν0

({
x ∈ E : ‖x‖inv > 1;

x

‖x‖inv
∈ Λ

})
is a finite measure on ℵinv. Because of homogeneity of both ‖ · ‖inv and ν0 we also have the product form:

ν0

({
x ∈ E : ‖x‖inv > r;

x

‖x‖inv
∈ Λ

})
= r−α0Sinv(Λ)

for r > 0 and Λ a Borel subset of ℵinv. Note for d = 2, Sinv(ℵinv) > 0 but for d > 2, it is possible that
Sinv ≡ 0. See Example 5.2 below.
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Recall from Section 1.3, that the domain of the polar coordinate transform is [0,∞) \ {0}. Define

Tinv : (0,∞]d \ {∞} 7→ (0,∞)× ℵinv; Tinv(x) =
(
‖x‖inv,

x

‖x‖inv

)
,

so that T←inv : (0,∞)× ℵinv 7→ (0,∞]d \ {∞}. For a random vector V defined on (0,∞]d define

Tinv(V ) = (Rinv,Θinv).

Regular variation on the subcone (0,∞] can be characterized in terms of these coordinates.

Theorem 5.2. For a random vector V on E, V is regularly varying on E00 := (0,∞] with scaling function
b00(t), limit measure ν00:

t P
[

V

b00(t)
∈ ·
]

v→ ν00,

in M+(E00) iff

t P
[(

Rinv

b00(t)
,Θinv

)
∈ ·
]

v→ c00να00 × Sinv

in M+((0,∞]× ℵinv), with c00 ∈ (0,∞).

The proof is similar to the one used to express multivariate regular variation on E in terms of the usual
polar coordinates and is hence omitted.

Remark 5.1. The characterization in Theorem 1 of Resnick (2002b) shows why in Theorem 5.2 we cannot
get a characterization in terms of transformed coordinates on E0. Note, however, when d = 2 that E0 = E00.
The following example gives further insight into why a characterization on E0 is not possible.

Example 5.1. Suppose d = 3 and X1, X2, X3 are i.i.d. Pareto random variables with parameter 1. Then
one checks that α = 1, α0 = 2 and α00 = 3. Thus the regular variation behavior on E00 is essentially different
from the regular variation on E0, as the latter is determined by the behavior on the two-dimensional faces.

Except for some clearly noted exceptions, we proceed assuming d = 2 and assuming ‖x‖inv = x(1) ∧ x(2).

5.3. Hidden regular variation in standard form. Theoretical developments are often worked out for
multivariate regular variation when a standard form is assumed (cf. Resnick, 1987, pp. 265, 277) which
allows the scaling function to be linear. For hidden regular variation, there are two scaling functions and
we have to choose which one to make linear. It is more convenient to transform so that the hidden scaling
function b0(t) becomes linear.

Theorem 5.3. The vector V possesses hidden regular variation and is regularly varying on E and E0

with limit measures ν, ν0, indices α, α0, and scaling functions b(t), b0(t) = (1/ P[‖V ‖inv > ·])←(t) with
b(t)/b0(t) →∞ iff for

(5.2) U(x) =
1

P [‖V ‖inv > x]
,

we have U(V ) :=
(
U(V (1)), U(V (2))

)
regularly varying on E, E0 with limit measures ν∗, ν0∗, indices (α/α0, 1)

and scaling functions b∗(t) = U ◦ b(t) and b0∗(t) = t.

Proof. For regular variation on E0: We have

U ◦ b0(t) ∼ t,

and therefore for x > 0,

t P
[
U(V )

t
> x

]
=t P

[
V >

(
U←(tx(1)), U←(tx(2))

)]
=t P

[
V

U←(t)
>

(
U←(tx(1))

U←(t)
,
U←(tx(2))

U←(t)

)]
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→ν0

(((
(x(1))1/α0 , (x(2))1/α0

)
,∞

])
=: ν0∗

(
(x,∞]

)
.

For regular variation on E: We have

lim
t→∞

t P
[
U(V (i))
U(b(t))

> x

]
= lim

t→∞
t P

[
V (i)

b(t)
>

U←
(
xU(b(t))

)
b(t)

]

= lim
t→∞

t P

[
V (i)

b(t)
>

U←
(
xU(b(t))

)
U←(U(b(t)))

]

since U← ◦ U(t) ∼ t and because U(b(t)) →∞, we get this limit to be

= lim
t→∞

(
U←(tx)
U←(t)

)−α

= x−α/α0 ,

where α/α0 6 1. �

Take the inverse norm transform of the coordinates in standard form. Define

R∗ = ‖U(V )‖inv = U(V (1)) ∧ U(V (2)); Θ∗ =
U(V )
R∗

.

Corollary 5.1. Suppose the vector V possesses hidden regular variation and is regularly varying on E and
E0 with limit measures ν, ν0, indices (α, α0), and scaling functions b(t), b0(t) = (1/ P[‖V ‖inv > ·])←(t) with
b(t)/b0(t) →∞. In standard form, for (R∗,Θ∗) we have

t P
[(

R∗
t

,Θ∗

)
∈ dr × dθ

]
v→ r−2dr × Sinv∗(dθ)

in M+((0,∞]× ℵinv), where Sinv∗ is a finite measure on ℵinv.
If U given in (5.2) is continuous and strictly increasing, R∗ is Pareto with parameter 1.

Proof. This follows from the fact that U is non-decreasing and

U
(
V (1)

)
∧ U

(
V (2)

)
= U

(
V (1) ∧ V (2)

)
.

�

5.3.1. Identifying an infinite hidden angular measure. We can identify when the hidden angular measure is
infinite using Sinv∗. Define the finite measures Gi, i = 1, 2 by

Ḡ1(s) = Sinv∗
(
{1} × (s,∞]

)
, Ḡ2(s) = Sinv∗

(
(s,∞× {1}]

)
, s > 1.

Proposition 5.1. The limit measure for regular variation on E0 has infinite angular measure, or equiva-
lently,

ν0∗{x ∈ E0 : ‖x‖ > 1} = ∞,

iff

(5.3) max
i=1,2

∫ ∞
1

Ḡi(s)ds = ∞.

Without standardization, the condition corresponding to (5.3) becomes

max
i=1,2

∫ ∞
1

sα0−1Ḡi(s)ds = ∞,

where Ḡ1(s) = ν0

({(
x(1), x(2)

)
: x > 1, x(1)/x(2) > s

})
and Ḡ2(s) is defined similarly.
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Proof. Let 0 < x(1) < x(2). We have

ν0∗
(
(x,∞]

)
=ν0∗

(
{y ∈ E0 : y > x}

)
= ν0∗

(
{y : ‖y‖inv ·

y

‖y‖inv
> x}

)
=
∫∫

r∈(0,∞)
θ∈ℵinv
rθ>x

ν0∗(dr × dθ) =
∫∫

r∈(0,∞)
θ∈ℵinv
rθ>x

r−2drSinv∗(dθ)

=
∫

θ∈ℵinv

∫
r> x(1)

θ(1) ∨
x(2)

θ(2)

r−2drSinv∗(dθ)

=
∫

θ∈ℵinv

(
x(1)

θ(1)
∨ x(2)

θ(2)

)−1

Sinv∗(dθ)

and splitting ℵinv = {1} × (1,∞] ∪ (1,∞]× {1} we get

=
∫ ∞

1

( 1
x(1)

∧ s

x(2)

)
G1(ds) +

∫ ∞
1

( s

x(1)
∧ 1

x(2)

)
G2(ds)

and thus

(5.4) ν0∗
(
(x,∞]

)
=
(
x(2)

)−1
[∫ x(2)/x(1)

1

sG1(ds) + G2((1,∞])

]
+ (x(1))−1Ḡ1(x(2)/x(1)).

Let x(1) → 0. Then ν0∗
(
((0, x(2)),∞]

)
= ∞ iff

∫∞
1

Ḡ1(s)ds = ∞.
Similarly, if we interchange the roles of x(1) and x(2), we get that ν0∗

(
((x(1), 0),∞]

)
= ∞ iff

∫∞
1

Ḡ2(s)ds =
∞. �

If we suppose Sinv∗ is a probability measure on ℵinv and that Θinv∗ is a random vector on ℵinv with
distribution Sinv∗, then the previous result requires

max
i=1,2

E
[
Θ(i)

inv∗

]
= ∞.

Though the above proposition has been given only for the case d = 2, it can be easily extended to d > 2.
The extension follows from the following lemma, where we use the max-norm, namely ‖x‖ = ∨d

i=1x
(i):

Lemma 5.1. Suppose X is a random vector of dimension d > 2, which is multivariate regularly varying
on E with hidden regular variation on E0, having limit measures ν, ν0. Define Ẽ and Ẽ0 to be the spaces
corresponding to E and E0 in two dimensions; that is

Ẽ = [0,∞]2 \ {(0, 0)}; Ẽ0 = (0,∞]2.

Then for some pair 1 6 i < j 6 d, we must have

(5.5) ν0({x ∈ E0 : x(i) > 0, x(j) > 0}) 6= 0

and for all such pairs we must have (X(i), X(j)) to be multivariate regularly varying on Ẽ with hidden regular
variation on Ẽ0. Also the hidden angular measure of X is finite iff for all pairs 1 6 i < j 6 d, satisfying the
condition (5.5), the hidden angular measure of (X(i), X(j)) is finite.

Remark 5.2. Condition (5.5) is automatic when d = 2 but cannot be dropped for d > 2. The identical
marginal distributions do not impose any restriction on the two-dimensional behavior as is illustrated in the
following example.

Example 5.2. Suppose Ui, i = 1, 2, 3 are i.i.d. Pareto random variables on [1,∞) with parameter 1. Let
Bi, i = 1, 2 be i.i.d. Bernoulli random variables with

P [Bi = 0] = P [Bi = 1] =
1
2
,



13

and {Bi} and {Ui} are independent. Define

W = (1−B1)U3, X = B2(U1, 0,W ) + (1−B2)(0, U2,W ).

Then
X(1) = B2U1, X(2) = (1−B2)U2, X(3) = W

are identically distributed, having atom sized 1
2 at 0 and having a Pareto density with parameter 1 and total

mass 1
2 on [1,∞). The distribution of X is supported on the planes where either of the first two coordinates

vanish and furthermore ‖X‖inv = 0. Thus Sinv ≡ 0. It is easy to see that X is multivariate regularly varying
on E with α = 1 and b(t) = t and has hidden regular variation on E0 with α0 = 2 and b0(t) =

√
t. However,

ν0({x : x(1) > 0, x(2) > 0}) = 0. Also, this is an example, where we have hidden regular variation on E0, but
not E00. This emphasizes the lesson learned in Example 5.1, that regular variation on E0 and E00 can be
quite different.

Proof of Lemma 5.1. First observe that E0 = ∪16i<j6d{x : x(i) > 0, x(j) > 0} and since ν0 is a non-zero
measure on E0, the condition (5.5) holds for some pair 1 6 i < j 6 d.

As usual, let b and b0 be the scaling functions for X with indices 1/α and 1/α0 respectively. Now, for
x̃ = (x(1), x(2)), the d-dimensional set Aij = {y : y(i) > x(1), y(j) > x(2)} is relatively compact in E0 and
hence

t P
[

X(i)

b0(t)
> x(1),

X(j)

b0(t)
> x(2)

]
= t P

[
X

b0(t)
∈ Aij

]
→ ν0(Aij) =: ν̃0,i,j

(
(x(1),∞]× (x(2),∞]

)
.

Note that whenever the pair (i, j) satisfies the condition (5.5), the limiting measure ν̃0,i,j is non-zero. Also,
for any i = 1, . . . , d

t P
[
X(i)

b(t)
> x

]
→ x−α.

So if (i, j) satisfies the condition (5.5), (X(i), X(j)) is multivariate regularly varying on Ẽ and has hidden
regular variation on Ẽ0. The scaling functions and indices remain the same. Also if the pair (i, j) does not
satisfy the condition (5.5), then clearly ν̃0,i,j is identically the zero measure.

Now for a pair (i, j) satisfying the condition (5.5), the hidden angular measure of (X(i), X(j)) is finite iff

ν̃0,i,j{(x(1), x(2)) ∈ Ẽ0 : x(1) ∨ x(2) > 1} = ν0{x ∈ E0 : x(i) ∨ x(j) > 1} < ∞.

Suppose X has finite hidden angular measure. Then

∞ >ν0

(
{x ∈ E0 : ∨d

i=1x
(i) > 1}

)
= ν0

(
d⋃

i=1

{x ∈ E0 : x(i) > 1}

)
>ν0

(
{x ∈ E0 : x(i) > 1} ∪ {x ∈ E : x(j) > 1}

)
=ν̃0,i,j

(
{(x(1), x(2)) : x(1) ∨ x(2) > 1}

)
.

Conversely, if for all 1 6 i < j 6 d satisfying (5.5), the vector (X(i), X(j)) has finite hidden angular measures,
then

ν0

(
{x ∈ E0 : ∨d

i=1x
(i) > 1}

)
=ν0

x ∈ E0 :
∨

16i<j6d

(x(i) ∨ x(j)) > 1




6
∑
i 6=j

ν0

(
{x ∈ E0 : x(i) ∨ x(j) > 1}

)
=

∑
16i<j6d

ν̃0,i,j

(
{(x(1), x(2)) : x(1) ∨ x(2) > 1}

)
< ∞,

since we are summing a finite number of finite terms and zeros. �

Combining Proposition 5.1 and Lemma 5.1, we have the following result:
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Theorem 5.4. Suppose X is a d-dimensional random vector defined on [0,∞) which is multivariate regu-
larly varying on E and has hidden regular variation on E0 with limit measure ν0. Then ν0 has finite angular
measure iff for all pairs (i, j), i 6= j the function

Ḡi,j(s) := ν0

({
x ∈ E : x > 1,

x(i)

x(j)
> s

})
satisfies ∫ ∞

1

sα0−1Ḡi,j(s)ds < ∞.

5.4. A partial converse to a theorem of Breiman. A theorem of Breiman (1965) discusses the tail
behavior of a product of two independent, non-negative random variables, one of which has regularly varying
tail probabilities and the other has a lighter tail. Our class of examples in the next section requires the
following partial converse.

Proposition 5.2. Suppose ξ and η are two independent, non-negative random variables and ξ has a Pareto
distribution with parameter 1:

P[ξ > x] = x−1, x > 1.

(a) We have
P[ξη > x] ∈ RV−α, α < 1,

iff
P[η > x] ∈ RV−α,

and then
P[ξη > x]
P[η > x]

→ 1
1− α

.

(b) If P[ξη > x] ∈ RV−1 and ξη has a heavier tail than ξ meaning

P[ξη > x]
P[ξ > x]

=
∫ x

0

P[η > y]dy →∞,

i.e., E[η] = ∞, then ∫ x

0

P[η > s]ds =: L(x) ↑ ∞

is slowly varying. If in addition L(x) ∈ Π, the de Haan function class Π (cf. Bingham et al., 1987, de Haan,
1970, Geluk and de Haan, 1987, Resnick, 1987), then

P[η > x] ∈ RV−1

and
L(x)

xP[η > x]
=

P[ξη > x]
P[η > x]

→∞.

Remark 5.3. The assumption that the integral is Π-varying in (b) is implied by supposing that P[η > x] ∈
RV−1. We see from [b], that the product has a heavier tail than either factor random variable.

As an example, consider

P[η > x] =
e log x

x
, x > e.

An easy calculation shows that

P[ξη > x] ∼ 1
2
ex−1(log x)2, x →∞.
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Proof of Proposition 5.2. (a) If part: If P[ξη > x] ∈ RV−α, the result follows from Breiman (1965).
Only if part: We have

P[ξη > x] =
∫ ∞

1

P
[
η >

x

s

]
s−2ds = x−1

∫ x

0

P[η > y]dy.

So

P[ξη > x] ∈ RV−α, α < 1 iff
∫ x

0

P[η > y]dy ∈ RV1−α.

By the monotone density theorem and Karamata’s theorem (Bingham et al., 1987, Geluk and de Haan, 1987,
Resnick, 1987), we have P[η > y] ∈ RV−α and then by Karamata’s theorem

P[ξη > x]
P[η > x]

=

∫ x

0
P[η > y]dy

xP[η > x]
→ 1

1− α
.

(b) This follows from the fact that the derivative of a Π-varying function U with a non-increasing derivative
U ′ is −1-varying with auxiliary function xU ′(x) and that U(x)/(xU ′(x)) →∞. See Bingham et al. (1987),
de Haan (1976), Geluk and de Haan (1987), Resnick (1987). �

Remark 5.4. The result is not true without supposing ξ has a Pareto tail. The following very clever example
devised by Daren Cline is an example where ξη has a Pareto tail, the tail of ξη is heavier than that of ξ, but
η does not have a regularly varying tail.

Example 5.3 (Cline). Let F1 be any distribution on (0,∞) with finite first moment and set F2(x) =
F1(e−π/αx). Define

Ci =
∫ ∞

0

x cos(log x)Fi(dx) and Si =
∫ ∞

0

x sin(log x)Fi(dx).

Then C2 = −eπC1 and S2 = −eπS1. Define

F (x) =
eπF1(x) + F2(x)

eπ + 1
,

so that ∫ ∞
0

x cos(log x)F (dx) =
∫ ∞

0

x sin(log x)F (dx) = 0.

Now let
Ḡ(y) = (1 + .5 sin(log y))y−1,

for y > 1. Note that its derivative is

− (1 + .5 sin(log y) + .5 cos(log y)) y−2 < 0.

Suppose ξ has distribution F and η has distribution G. Then

P[ξη > t] =
∫ ∞

0

Ḡ(t/x)F (dx) =
∫ ∞

0

(1 + .5 sin(log(t/x)))(t/x)−1F (dx)

=t−1

(∫ ∞
0

xF (dx) + .5 sin(log t)
∫ ∞

0

x cos(log x)F (dx)

− .5 cos(log t)
∫ ∞

0

x sin(log x)F (dx)

)

=t−1

∫ ∞
0

xF (dx).

Thus, P[ξη > t] is −1-varying, Ḡ is not −1-varying and F̄ (t) = o(P[ξη > t]).
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5.5. A class of examples of hidden regular variation with infinite hidden angular measure.
Suppose Reg is a Pareto random variable on [1,∞) with parameter 1 and Θeg is a random vector living on
ℵinv and for some probability distribution G concentrating on [1,∞), we have

(5.6) P[Θeg ∈ {1} × (s,∞]] = P[Θeg ∈ (s,∞]× {1}] =
1
2
Ḡ(s), s > 1.

Suppose Reg and Θeg are independent. Define

(5.7) V eg = Reg ·Θeg.

The assumption (5.6) is the same as assuming that

(5.8) V
(1)
EG

d= V
(2)
EG

which is consistent with our standing assumption that marginal distributions are equal. Observe that by
(5.6), we have for s > 1,

P[Θ(1)
EG > s] = P[Θeg ∈ (s,∞]× {1}] =

1
2
Ḡ(s) = P[Θeg ∈ {1} × (s,∞]] = P[Θ(2)

EG > s],

so that (5.6) implies (5.8). Conversely, if (5.8) holds, then RegΘ(1)
EG

d= RegΘ(2)
EG and therefore∫ ∞

1

P
[
Θ(1)

EG >
x

y

]
y−2dy =

∫ ∞
1

P
[
Θ(2)

EG >
x

y

]
y−2dy.

This is equivalent to ∫ x

0

P
[
Θ(1)

EG > s
]
ds =

∫ x

0

P
[
Θ(2)

EG > s
]
ds

and it follows that

P
[
Θ(1)

EG > s
]

=P
[
Θ(2)

EG > s
]
, ∀s > 1.

Proposition 5.3. With V eg as specified, V eg is regularly varying on E0 with index α0 = 1. The limit
measure νeg,0 has infinite angular measure iff

(5.9)
∫ ∞

1

Ḡ(s)ds = ∞.

Furthermore, if (5.9) holds:
(i) V eg is regularly varying on E with index α < 1 (and hence possesses hidden regular variation with

infinite hidden angular measure) iff

1−G ∈ RV−α.

In this case, for i = 1, 2, we have

P
[
V

(i)
EG > x

]
∼ 1

2(1− α)
Ḡ(x), x →∞.

(ii) V eg is regularly varying on E with index α = 1 (and hence possesses hidden regular variation with
infinite hidden angular measure) iff

L(x) :=
∫ x

0

Ḡ(s)ds ∈ RV0 and L(x) ↑ ∞.

A sufficient condition is Ḡ ∈ RV−1 with
∫∞
0

Ḡ(s)ds = ∞ in which case

lim
x→∞

P
[
V

(i)
EG > x

]
P [Reg > x]

= lim
x→∞

P
[
V

(i)
EG > x

]
P
[
Θ(i)

EG > x
] = ∞,

for i = 1, 2.
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Proof. Note, that since Θeg lives on ℵinv, we have ‖Θeg‖inv = 1 and thus Rinv = Reg. Similarly, since

‖RegΘeg‖inv = Reg‖Θeg‖inv

we have
V eg

‖V eg‖inv
= Θeg.

Hence, for this example,

t P
[(

‖V eg‖inv

t
,

V eg

‖V eg‖inv

)
∈ dr × dθ

]
= t P

[
Reg

t
∈ dr

]
P[Θeg ∈ dθ] → r−2dr × P[Θeg ∈ dθ].

Regular variation on E0 follows from Theorem 5.2. The statement about when the angular measure is infinite
follows from Proposition 5.1. The statement about regular variation on E comes from Proposition 5.2 and
Theorem 5.1. The asymptotic form for the marginal tail of V eg comes from the fact that for x > 1,

P
[
V

(i)
EG > x

]
=P

[
RegΘ(i)

EG > x
]

=
∫ ∞

1

P
[
Θ(i)

EG >
x

r

]
r−2dr

=x−1

∫ x

0

P[Θ(i)
EG > y]dy

=x−1

∫ x

0

1
2
(1 + Ḡ(y))dy

and the result follows from application of Karamata’s theorem. �

This result shows that the class of multivariate distributions which are regularly varying on E0 with
infinite angular measure is at least as large as the class of distributions on [1,∞) which have infinite mean.
The class of multivariate distributions on E which are regularly varying and possess hidden regular variation
is at least as large as the class of distributions on [1,∞) which have regularly varying tails of index less than
1.

For this class of examples, we have V eg = Reg ·Θeg, and thus

V
(1)
EG

V
(2)
EG

=
Θ(1)

EG

Θ(2)
EG

.

Let Θ be a random variable concentrating on [1,∞) with distribution G and suppose B is a Bernoulli random
variable with equally likely values 0 and 1, independent of Θ and Reg and then set

Θeg = B(Θ, 1) + (1−B)(1,Θ),

so that Θeg concentrates on ℵinv and has distribution given in (5.6). Then

Θ(1)
EG

Θ(2)
EG

= BΘ + (1−B)
1
Θ

.

Since 1/Θ 6 1 it does not affect tail behavior in the mixture and we can write, as x →∞,

P

[
Θ(1)

EG

Θ(2)
EG

> x

]
=P

[
Θ(2)

EG

Θ(1)
EG

> x

]
=

1
2

P[Θ > x] +
1
2

P[Θ−1 > x]

∼1
2

P[Θ > x] =
1
2
Ḡ(x).

We conclude that for this class of examples, V eg is regularly varying on both E and E0 with indices (α, 1),

with α < 1, iff V
(1)
EG

V
(2)
EG

∈ RV−α.

However, more general cases of regular variation on E and E0 will not necessarily follow this pattern.
Consider the following example.
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Example 5.4. Suppose β < α < 1 and that Ui, i = 1, 2 are i.i.d. random variables concentrating on [1,∞)
having Pareto distributions with parameter β. Let M be a multinomial random variable with values {1, 2, 3}
and equal probabilities 1/3. Suppose M is independent of Ui, i = 1, 2 and V eg constructed above. Define

X = 1[M=1]V eg + 1[M=2]

(
1,

1
U1

)
+ 1[M=3]

(
1
U2

, 1
)

.

Since 1/Ui 6 1, these terms cannot affect tail behavior:

t P
[
X

t
> x

]
∼1

3
t P
[
V eg

t
> x

]
, x > 0,

tP

([
X

b(t)
6 x

]c)
∼1

3
tP

([
V eg

b(t)
6 x

]c)
,

showing that X is regularly varying on E and E0. However,

X(1)

X(2)
= 1[M=1]

V
(1)
EG

V
(2)
EG

+ 1[M=2]U1 + 1[M=3]
1
U2

so that

P
[
X(1)

X(2)
> x

]
∈ RV−β .

Example 5.5. Suppose Z = (Z(1), Z(2)) are i.i.d. Pareto random variables on [1,∞) with parameter 1/2.
Then

t P
[
Z

t
∈ ·
]

v→ ν0

in E0 where

ν0(x,∞] =
1√

x(1)x(2)
, x > 0,

which has density

ν′0(x) =
1
4
(x(1)x(2))−3/2.

An easy calculation shows that

ν0

{
x : x > 1;

x(1)

x(2)
> θ

}
= θ−1/2(const),

which is consistent with the class of examples discussed.

The following gives conditions for a distribution having hidden regular variation to be tail equivalent on
E and E0 to V eg.

Proposition 5.4. Suppose X has a distribution possessing hidden regular variation in standard form on E
and E0, with limit measures ν, ν0 with ν0{x : ‖x‖ > 1} = ∞, scaling functions b(t) ∈ RV1/α, α < 1, b0(t) = t,
and such that

Sinv(ℵinv) = ν0{x ∈ E0 : x > 1, ‖x‖inv = 1} = 1.

Define
Ḡ(t) = Sinv

(
{1} × (t,∞]

)
= Sinv

(
(t,∞]× {1}

)
,

and V eg as in (5.7). Then

X
te(E,E0)∼ V eg

iff the following hold:
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(i) We have

lim
t→∞

t P
[
X(1) ∧X(2) > t,

X(2)

X(1)
> θ

]
=

1
2
Ḡ(θ),

lim
t→∞

t P
[
X(1) ∧X(2) > t,

X(1)

X(2)
> θ

]
=

1
2
Ḡ(θ),

and
(ii) we have

Ḡ(·) ∈ RV−α, and
P[X(i) > x]

Ḡ(x)
→ c ∈ (0,∞), x →∞.

If α = 1, b(t)/t →∞ as t →∞, the result continues to hold provided (ii) is replaced by
(ii′) We have ∫ x

0

Ḡ(s)ds ∈ RV0 and
∫ x

0

Ḡ(s)ds ∼ cxP[X(i) > x], x →∞

for some c > 0.

Proof. Suppose X has a distribution which is regularly varying on E, E0 with parameters (α, 1) and which
is tail equivalent to V eg on E, E0. Then from tail equivalence on E, for i = 1, 2:

P[X(i) > t] ∼ cP[V (i)
EG > t] = cP[RegΘ(i)

EG > t]

which implies P[Θ(i)
EG > t] ∈ RV−α, by Proposition 5.2. Therefore, Ḡ(t) ∈ RV−α which gives (ii).

Furthermore, tail equivalence on E0 gives

lim
t→∞

t P
[
X(1) ∧X(2) > t,

X

X(1) ∧X(2)
∈ {1} × (θ,∞]

]
= lim

t→∞
t P
[
X(1) > t,

X(2)

X(1)
> θ

]
= lim

t→∞
t P[Reg > t] P[Θeg ∈ {1} × (θ,∞]]

=
1
2
Ḡ(θ),

which gives (i).
Conversely, suppose X has a distribution which is regularly varying on E, E0 and (i) and (ii) hold.

Condition (i) implies

X
te(E0)∼ V eg.

Condition (ii) guarantees (in light of Theorem 5.1) tail equivalence on E. �

Referring to Example 5.5 we observe for θ > 1,

t P
[
Z(1) > t,

Z(2)

Z(1)
> θ

]
=t

∫ ∞
t

1
2
s−3/2(θs)−1/2ds

=θ−1/2 t

2

∫ ∞
t

s−2ds =
θ−1/2

2
= Ḡ(θ).

Full disclosure: While this result clarifies when a distribution possessing hidden regular variation with
infinite angular measure has the structure of V eg, it does not provide a full characterization.

5.6. Random vectors with prescribed infinite hidden angular measure. The examples of random
vectors with infinite hidden angular measure given in the earlier subsections are of dimensions 2 and 3.
The construction given in Subsection 5.5 is for dimension 2. In this subsection, we again consider general
dimensions. Given an infinite hidden angular measure S0 and scaling function b satisfying b(t)/t → ∞, we
construct a random vector Z in standard form with scaling function b on E and hidden angular measure S0.
We use the standard form for notational simplicity. The case of a general scaling function b0 for the subcone
E0 can be easily obtained through the transformation outlined in Theorem 5.3.
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As in Theorem 4.1, define the random variables I,X1, . . . , Xd. Each Xi has the property that for x > 0,

tP [Xi > b(t)x] → x−α.

Now we specify the random vector V which will give regular variation on E0. Define the non-decreasing, left
continuous function

Φ(t) = S0

({
a ∈ ℵ0 : ∧d

i=1‖a− ei‖ >
1
t

})
.

Since the hidden angular measure S0 is infinite, Φ increases to ∞. Also define a non-decreasing function φ
as follows:

φ(t) = inf
{

log
b(2u)
2u

: u > t

}
.

Since b(t)/t →∞, φ also increases to ∞. Further observe that

φ(log2 t) = inf
{

log
b(2u)
2u

: u > log2 t

}
= inf

{
log

b(u)
u

: u > t

}
6 log

b(t)
t

and hence we have

lim
t→∞

φ(log2 t)t
b(t)

= 0,

which further implies

(5.10) lim
t→∞

b←(φ(log2 t)t)
t

= 0,

since b is regularly varying of index α > 0. Now we define an increasing sequence of pre-compact open covers
{Gn}∞n=0 for ℵ0, none of which has too large S0-mass: G0 = ∅ and for n > 1,

Gn =
{

a ∈ ℵ0 : ∧d
i=1‖a− ei‖ >

1
Φ←(φ(n))

}
.

Thus

(5.11) S0(Gn \Gn−1) 6 S0(Gn) = Φ
(
Φ←
(
φ(n)

))
6 φ(n),

since Φ is left continuous. Define the function

f(a) =
∞∑

n=1

2nφ(n)1Gn\Gn−1(a)

on ℵ0. Then f is bounded on compact subsets of ℵ0 and also satisfies

(5.12) c :=
∫
ℵ0

(
f(a)−1 ∧ 1

)
S0(da) 6

∫
ℵ0

f(a)−1S0(da) =
∞∑

n=1

2−n S0(Gn \Gn−1)
φ(n)

6
∞∑

n=1

2−n = 1 < ∞,

since by (5.11), we have S0(Gn \Gn−1) 6 φ(n).
Now define a pair of random variables (R0,Θ0), taking values in (0,∞)×ℵ0, independent of I,X1, . . . , Xd,

with joint distribution
1
c
S0(dθ)F0(dr)1{(r′,θ′):r′>f(θ′)}(r, θ),

where F0 is as defined in (4.1), with b0 as the identity function. Hence F0 is nothing but Pareto distribution
function with parameter 1. The joint distribution is a probability distribution since

1
c

∫∫
{(r,θ)∈(0,∞)×ℵ0:r>f(θ)}

S0(dθ)F0(dr) =
1
c

∫
ℵ0

S0(dθ)F0(f(θ)) =
1
c

∫
ℵ0

(
f(θ)−1 ∧ 1

)
S0(dθ) = 1,

by (5.12). Define V = R0Θ0. Finally define Z as in (4.2) by

Z = 1[I=0]V +
d∑

i=1

1[I=i]Xiei.

This is the required random vector Z.
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To verify the hidden regular variation of Z on the cone E0, first observe that given any compact subset
Λ of ℵ0 and x > 0, we may choose N such that Λ ⊂ GN . Then for all t > 2Nφ(N)/x and θ ∈ Λ, we have,
f(θ) < tx and hence

(5.13) t P [R0 > tx,Θ ∈ Λ] = S0(Λ)tF0(tx) → 1
x

S0(Λ),

which is the analog of (4.3) in the finite hidden angular measure case with α0 = 1. The decompositions (4.5)
and (4.4) of RZ and ΘZ respectively continue to hold. So we get the analogs of (4.6) in the infinite case as
well.

Verifying regular variation on the bigger cone E is more difficult. We first check that scaling by b is too
large for V on the cone E by checking that for any x > 0,

t P[R0 > b(t)x] → 0.

It suffices to suppose x = 1. First define, for t > 0,

κ(t) = sup {u : 2uφ(u) 6 b(t)} .

Then κ is increasing to ∞. Also we have

(5.14) φ(κ(t))2κ(t) 6 b(t).

Furthermore, we have,

φ(κ(t) + 1)2κ(t)+1 > b(t)

and hence

b←
(
φ(κ(t) + 1)2κ(t)+1

)
> t(5.15)

Then observe that,

f(θ) 6 φ(bκ(t)c)2bκ(t)c 6 b(t), for θ ∈ Gbκ(t)c,

and

f(θ) > φ(bκ(t)c+ 1)2bκ(t)c+1 > b(t), for θ /∈ Gbκ(t)c.

Then we have

ct P[R0 > b(t)] = ct P
[
R0 > b(t),Θ0 ∈ Gbκ(t)c

]
+ t P

[
R0 > b(t),Θ0 /∈ Gbκ(t)c

]
= t

∫
Gbκ(t)c

F0(b(t))S0(dθ) + t

∫
Gc
bκ(t)c

F0(b0(f(θ)))S0(dθ)

=
tS0(Gbκ(t)c)

b(t)
+ t

∫
Gc
bκ(t)c

f(θ)−1S0(dθ)

6
tφ(bκ(t)c)

b(t)
+ t

∞∑
n=bκ(t)c+1

2−n S0(Gn \Gn−1)
φ(n)

, by (5.11)

6
tφ(κ(t))

b(t)
+ 2t2−κ(t), since φ is increasing and by (5.11)

6 3t2−κ(t), by (5.14)

< 6
b←
(
φ(κ(t) + 1)2κ(t)+1

)
2κ(t)+1

, by (5.15)

= 6
b←(φ(log2 u)u)

u
, substituting u = 2κ(t)+1

∼ 6
b←(φ(log2 u)u)

u
.
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Now, using (5.10), we have this quantity going to zero, as required. Then, again as in Theorem 4.1, Z is
regularly varying on E.

So Z is a random vector having multivariate regular variation on E with scaling function b and having
hidden regular variation on E0 with scaling by the identity function and having prescribed infinite hidden
angular measure S0. Thus, any random vector Y which is regularly varying on E and E0 with scaling
functions b, b0 and infinite hidden angular measure S0 is tail equivalent to a mixture

1[I=0]V + 1[I 6=0]X

where X is completely asymptotically independent and V is regularly varying on E0 with

tP [V > b(t)x] → 0, x > 0.

6. Can hidden regular variation influence the tail behavior of the product of the
components?

The tail behavior of distributions of products of heavy tailed variables arises fairly frequently. For the
study of the heavy tailed sample correlation function, the tail behavior of X1X2 (where X1, X2 are iid with
regularly varying tails of index −α) was crucial and found to partly depend on whether E(Xα

1 ) was finite or
infinite. See Cline (1983), Davis and Resnick (1985, 1986). In Internet studies of file downloads, download
throughput or rate R and download duration L are heavy tailed and determine the size of the file F since
F = RL (Maulik et al., 2002).

Hidden regular variation condition on the cone C0 = E0 may or may not influence the tail behavior of
the distribution of the product of the components. For dimensions 3 or higher, problems may be more
pathological due to the flexibility in the choice of the subcone C0. (See Example 5.2.) The hidden regular
variation definition does not prevent the limiting measure ν0 from concentrating on the hyperfaces of the
d-dimensional non-negative orthant. On the hyperfaces, at least one of the coordinates will be zero and so
will be the product. This problem suggests we examine the convergence more carefully and seek the right
scaling to understand the behavior on the subcone E00 = (0,∞] = (0,∞]d instead of E0. However, the
problem is deeper than the choice of the correct subcone. In case d = 2, the cone (0,∞] coincides with
E0. As the following counterexample shows, even in that case hidden regular variation is not enough to
characterize the behavior of the product of the components.

Example 6.1. Let us consider the two-dimensional random vector Y , which is a mixture of extremally
dependent random vector U with multivariate regularly varying tail and a random vector V supported on a
curve to be described later. We assume that

P
[

U

b(t)
∈ ·
]

v→ ν(·) on [0,∞] \ {0},

where ν((0,∞]) 6= 0 and satisfies the scaling property ν(cA) = c−βν(A), for all A ⊂ [0,∞] \ {0}. We
denote the distribution function of the polar coordinate representation of U , (RU ,ΘU ) by F . (Since we are
in dimension 2, we resort to the abuse of notation indicated in Subsection 1.3. Thus θ denotes the polar
angle instead of the vector scaled to norm 1.) The other vector V , given in the polar coordinates (RV ,ΘV ),
has a distribution supported on the curve:

(6.1) {(r, θ) ∈ (0,∞)× [0, π/2] : r cos θ · r sin θ = r, or, r sin 2θ = 2, for θ ∈ (0, π/2)}.

Put another way, the distribution of V is supported on

(6.2)
{(

2
sin 2θ

, θ

)
: 0 < θ <

π

2

}
=
{(

r,
1
2

arcsin
2
r

)
,

(
r,

π

2
− 1

2
arcsin

2
r

)
: r > 2

}
.

Hence the product of the Cartesian coordinates of a point on this curve is equal to the norm of the point
and V1V2 = RV almost surely. Assume that RV has density 2ααr−α−1, for r > 2 and given RV = r, ΘV
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is equally likely to take values 1
2 arcsin 2

r and π
2 −

1
2 arcsin 2

r . Y is U with probability 1 − 2−α and V with
probability 2−α. Then, the polar coordinate transform (RY ,ΘY ) of the vector Y has distribution

(1− 2−α)F (dr, dθ) +
1
2
αr−α−1

(
δ 1

2 arcsin 2
r
(dθ)− δπ

2 + 1
2 arcsin 2

r
(dθ)

)
dr,

where δx is the Dirac’s delta measure. Further assume that β > α.
Next, we check the hidden regular variation property of the vector Y . We use Corollary 1 of Resnick

(2002b). First we consider the subcone E0. Let Λ be a compact sub-interval of (0, π
2 ). Observe that

1
2 arcsin 2

r → 0 as r → ∞. Thus, both 1
2 arcsin 2

r and π
2 −

1
2 arcsin 2

r do not belong to Λ for all sufficiently
large r. So, for sufficiently large t, we have

t P
[
RY

b(t)
> r,ΘY ∈ Λ

]
= (1− 2−α)t P

[
RU

b(t)
> r,ΘU ∈ Λ

]
→ (1− 2−α)ν({x : rx > r, θx ∈ Λ})

and hence we have

(6.3) t P
[

Y

b(t)
∈ ·
]

v→ (1− 2−α)ν.

For the marginal distributions, observe that

t P
[
Y (1)

t1/α
> x

]
= (1− 2−α)t P

[
U (1)

t1/α
> x

]
+ 2−αt P

[
RV cos ΘbV

t1/α
> x

]
.

The first term on the right side converges to 0, since the correct scaling for U (1) is b(t) = o(t1/α). Also since

cos(
1
2

arcsin
2
r
) → 1, and cos(

π

2
− 1

2
arcsin

2
r
) → 0

as r → 1, we have,

t P
[
RV cos ΘV

t1/α
> x

]
∼ 1

2
t P[RV > t1/αx] = 2α−1x−α.

So,

(6.4) t P
[
Y (1)

t1/α
> x

]
=

1
2
x−α.

Then, applying (6.3) and (6.4), we conclude that Y has hidden regular variation. Also, the limit measure
on the subcone E0, (1− 2−α)ν is Radon on E and hence is finite on ℵ0.

Now, observe that Y1Y2 is U1U2 with probability 1−2−α and RV with probability 2−α. Using Proposition
3.1 of Maulik et al. (2002), we have that P[U1U2 > ·] is regularly varying of index −β/2. On the other hand,
by assumption, RV has a regularly varying tail of index −α. Thus, Y1Y2 has a regularly varying tail of
index −γ, where γ = α∧ (β/2). We conclude that depending on the relationship of α, β, the hidden regular
variation might or might not affect the tail behavior of the distribution of Y (1)Y (2).

7. Concluding Remarks.

The inverse norm transformation of Subsection 5.2 seemed promising since choosing directions using a
unit sphere which is a neighborhood of ∞ rather than 0 allows one to ignore whether the hidden angular
measure is finite or infinite. However, this technique did not lead to a complete characterization but only
spawned a class of examples. The promise of this technique was not fully realized.

We were also frustrated that the mixture characterization in Subsection 5.6 did not lead to an entirely
satisfying characterization for the infinite angular measure case. We cannot say with certainty that the
hidden regular variation on E0 described by V can or cannot be extended to all of E, possibly with a
different index on E \ E0.

The behavior of the distribution tail of products of regularly varying components seems rather intricate.
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