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Abstract: We construct the thermodynamic limit of the stationary measures of the
Bak-Tang-Wiesenfeld sandpile model with a dissipative toppling matrix (sand grains
may disappear at each toppling). We prove uniqueness and mixing properties of this
measure and we obtain an infinite volume ergodic Markov process leaving it invariant.
We show how to extend the Dhar formalism of the ‘abelian group of toppling operators’
to infinite volume in order to obtain a compact abelian group with a unique Haar measure
representing the uniform distribution over the recurrent configurations that create finite
avalanches1.

1 Introduction

The abelian sandpile is a lattice model where a discrete height-variable (e.g. repre-
senting the slope of a sandpile at that site) is associated to each site. (Sand) grains
are randomly added and if at a site the height exceeds some critical value γ, then that
“unstable” site “topples”, i.e., gives an equal portion of its grains to each of its neigh-
boring sites which in turn can become “unstable” and “topple” etc., until every site has
again a subcritical height-value. An unstable site thus creates an “avalanche” involving
possibly the toppling of many sites around it. The reach of this avalanche depends on
the configuration making this dynamics highly non-local.
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Since their appearance in [1], sandpile models have been studied intensively. One
physical motivation is related to what was called self-organized criticality. The steady
state typically exhibits power law decay of correlations and of avalanche sizes with an
amazing universality of critical exponents found in many computer simulations and in
a wide range of natural phenomena. See e.g. [16] for an overview of various models.
The advantage of the abelian sandpile model lies in its rich mathematical structure,
first discovered by Dhar, see for instance [4, 5, 8, 14], and also [12] for a mathematical
review of the main properties of the model in finite volume. The main technical tool in
the analysis is the “abelian group” of toppling operators which can be identified with
the set of recurrent configurations.

Our aim is to define the model on infinite graphs or better, to understand how the
process settles down in a stationary regime as the volume increases. The main problem
to overcome is the non-locality or extreme sensitivity to boundary-conditions or surface
effects of the dynamics which is of course directly related to its physical interest. We
have constructed in [9] and [10] the infinite volume standard sandpile process on the
one-dimensional lattice and on homogeneous trees. In the present paper we focus on the
thermodynamic limit for dissipative models. There, the infinite graph S is a subgraph
of the regular lattice Zd and on each site the height has a critical value γ ≥ N =
the maximal number of neighbors of a site in S. The finite volume rule now starts as
follows: choose a site x at random from the volume V and add one grain to it. Suppose
that x has Nx nearest neighbors and that the new height at x is γ +1. Then, it topples
by giving to each of its nearest neighbors one grain and dissipating γ − Nx grains to
a sink associated to the volume. We say that the site x is dissipative when γ > Nx

and the model is dissipative when this happens for a considerable fraction of sites.
This condition can be rephrased in terms of the simple random walk on S with a sink
associated to the dissipative sites: the model is dissipative when the Green’s function
decays fast enough in the lattice distance, see (2.12) below for a precise formulation.
Dissipative abelian sandpile models have appeared in the physics literature in [15, 11]
and [3], where it was argued that dissipation removes criticality, that is, correlation
functions decay exponentially fast uniformly in the volume. From the point of view
of defining the thermodynamic limit, the main simplification of dissipative models is
that there is a stronger control of the non-locality: more precisely, the probability
that a site y is influenced by addition on x decays exponentially fast (or at least in a
summable way) in the distance between the sites. Hence “avalanche clusters” are almost
surely finite. As we will see, the avalanche clusters in a dissipative model behave as
“subcritical percolation” clusters, with a characteristic size (in particular they have a
finite first moment).

Dissipative models as studied in the present paper teach us little about the original
goal of sandpile models, i.e., about self-organized criticality. One gains however in
providing a rather complete mathematical analysis. There are various reasons to be
interested in dissipative models. One still obtains a nonlocal dynamics in analogy
with the original models but, as we will show, the nonlocality can be better controlled
mathematically. Secondly, one can hope to approach the thermodynamic limit of the
original critical model again, by letting the dissipation approach to zero. Thirdly, the
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claim in the physics literature that the dissipative model is noncritical has only been
proved for very special explicitly computable correlation functions. We give a complete
analysis and prove that correlations of all local observables decay exponentially. Finally,
it will turn out that the dissipative model shows the interesting structure of a compact
abelian group of addition operators, also in the infinite volume limit. That generalizes
the Dhar formalism to infinite volume and can stand example of what to expect for the
orginal critical model.

1.1 Results

Our three main results are:

1. The extension of the Dhar formalism to infinite volume sandpile dynamics. That
includes the construction of a compact abelian group of recurrent configurations
on which we can define addition (of sand) operations.

2. The construction of the thermodynamic limit of the finite volume stationary mea-
sure with exponential decay of correlations in the case of “strong dissipativity”.

3. The construction of an infinite volume sandpile process which converges exponen-
tially fast to its unique stationary measure.

1.2 Plan of the paper

The paper is organized as follows: in Section 2 we repeat some of the basic results on the
abelian sandpile model in finite volume and we introduce the definition of dissipativity,
with examples. In Section 3 we show how to extend the dynamics on infinite volume
recurrent configurations and we recover the group structure of “addition of recurrent
configurations.” In Section 4 we prove existence and ergodic properties of the infinite
volume dynamics. Section 5 is devoted to the proof of exponential decay of correlations.

2 Finite volume model

In this section we recall some definitions and properties of abelian sandpiles in finite
volume. In [4], [5], [8], [14] and [12], the reader will find more details.

The infinite graphs S on which we construct the dissipative abelian sandpile dy-
namics are S = Zd, and “strips”, that is, S = Z × {1, . . . , `}, for some integer ` > 1
(notice that ` = 1 corresponds to S = Zd with d = 1). Finite subsets of S will be
denoted by V,W ; we write S = {W ⊂ S : W finite}. We denote by ∂V the external
boundary of V : all the sites in S \ V that have a nearest neighbor in V . Let N be
the maximal number of neighbors of a site in S, e.g., N = 2d for S = Zd and N = 4
for S = Z × {1, . . . , `}, ` ≥ 3. The state space of the process in infinite volume is
Ω = {1, . . . , γ}S, with some integer γ ≥ N .
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We fix V ∈ S, a nearest neighbor connected subset of S. Then ΩV = {1, . . . , γ}V is
the state space of the process in the finite volume V . We denote by NV (x) the number
of nearest neighbors of x in V .

A (infinite volume) height configuration η is a mapping from S to N = {1, 2, ...}
assigning to each site x a “number of sand grains” η(x) ≥ 1. If η ∈ Ω, it is called a
stable configuration. Otherwise η is unstable. For η ∈ Ω, ηV is its restriction to V ,
and for η, ζ ∈ Ω, ηV ζV c denotes the configuration whose restriction to V (resp. V c)
coincides with ηV (resp. ζV c).

The configuration space Ω is endowed with the product topology, making it into a
compact metric space. A function f : Ω → R is local if there is a finite W ⊂ S such
that ηW = ζW implies f(η) = f(ζ). The minimal (in the sense of set ordering) such W
is called the dependence set of f , and is denoted by Df . A local function can be seen
as a function on ΩW for all W ⊃ Df , and every function on ΩW can be seen as a local
function on Ω. The set L of all local functions is uniformly dense in the set C(Ω) of all
continuous functions on Ω.

2.1 The dynamics in finite volume

The toppling matrix ∆ on S is defined by, for x, y ∈ S,

∆xx = γ,

∆xy = −1 if x and y are nearest neighbors,

∆xy = 0 otherwise (2.1)

We denote by ∆V the restriction of ∆ to V × V .

A site x ∈ V is called a dissipative site in the volume V if
∑
y∈V

∆xy > 0.

Thus if γ > N , every site is dissipative. If γ = N , the internal boundary sites of V
(that is all the sites in V that have a nearest neighbor in S \V ), are the only dissipative
sites in V .

To define the sandpile dynamics, we first introduce the toppling of a site x as the
mapping Tx : NV → NV defined by

Tx(η)(y) = η(y)−∆V
xy if η(x) > ∆V

xx,

= η(y) otherwise. (2.2)

In words, site x topples if and only if its height is strictly larger than ∆V
xx = γ, by

transferring −∆V
xy ∈ {0, 1} grains to site y 6= x and losing itself in total ∆V

xx = γ grains.
As a consequence, if the site is dissipative, then, upon toppling, some grains are lost.
Toppling rules commute on unstable configurations, that is, for x, y ∈ V such that
η(x) > γ = ∆V

xx and η(y) > γ = ∆V
yy:

Tx (Ty(η)) = Ty (Tx(η))
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For η ∈ NV , we say that ζ ∈ ΩV arises from η by toppling if there exists a k-tuple
(x1, . . . , xk) of sites in V such that

ζ = (
k∏

i=1

Txi
)(η)

The toppling transformation is the mapping T : NV → ΩV defined by the requirement
that T (η) arises from η by toppling. The fact that stabilization of an unstable configu-
ration is always possible follows from the existence of dissipative sites. The fact that T
is well-defined, that is, that the same final stable configuration is obtained irrespective
of the order of the topplings, is a consequence of the commutation property, see [12] for
a complete proof.

For η ∈ NV and x ∈ V , let ηx denote the configuration obtained from η by adding
one grain to site x, that is ηx(y) = η(y) + δx,y. The addition operator defined by

ax,V : ΩV → ΩV ; η 7→ ax,V η = T (ηx) (2.3)

represents the effect of adding a grain to the stable configuration η and letting a stable
configuration arise by toppling. Because T is well-defined, the composition of addition
operators is commutative. We can now define a discrete time Markov chain {ηn : n ≥ 0}
on ΩV by picking a point x ∈ V randomly at each discrete time step and applying the
addition operator ax,V to the configuration. We define also a continuous time Markov
process {ηt : t ≥ 0} with infinitesimal generator

L0,ϕ
V f(η) =

∑
x∈V

ϕ(x)[f(ax,V η)− f(η)]; (2.4)

this is a pure jump process on ΩV , where ϕ : S → (0,∞) is the addition rate function.

2.2 Recurrent configurations, invariant measure

The Markov chain {ηn, n ≥ 0} (or its continuous time version {ηt}) has a unique
recurrent class RV , and its stationary measure µV is the uniform measure on that class,
that is,

µV =
1

|RV |
∑

η∈RV

δη. (2.5)

A configuration η ∈ ΩV belongs to RV if it passes the burning algorithm (see [4]),
which is described as follows. Pick η ∈ ΩV and erase the set E1 of all sites x ∈ V with a
height strictly larger than the number of neighbors of that site in V , that is, satisfying
the inequality

η(x) > NV (x)

Iterate this procedure for the new volume V \ E1, and so on. If at the end some
non-empty subset Vf is left, η satisfies, for all x ∈ Vf ,

η(x) ≤ NVf
(x)
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The restriction ηVf
is then called a forbidden subconfiguration (fsc). If Vf is empty, the

configuration is called allowed. The set AV of allowed configurations coincides with the
set of recurrent configurations, AV = RV (see [8], [12], [14]).

A recurrent configuration is thus nothing but a configuration without forbidden
subconfigurations. This extends to infinite volume:

Definition 2.6 A configuration η ∈ Ω is called recurrent if for any V ∈ S, ηV ∈ RV .

The set R of all recurrent configurations forms a perfect (hence uncountable) subset of
Ω. This means that R is closed (hence compact) and every element η ∈ R is the limit
of a sequence ηn ∈ R, ηn 6= η.

On the set RV , the finite volume addition operators ax,V can be inverted and they
generate a finite abelian group. This group is characterized by the closure relation

∏
y∈V

a
∆V

xy

y,V = Id (2.7)

By the group property, the uniform measure µV is invariant under the action of ax,V

and of a−1
x,V .

2.3 Toppling numbers

For x, y ∈ V and η ∈ ΩV , let nV (x, y, η) denote the number of topplings at site y by
adding a grain at x, that is, the number of times we have to apply the operator Ty to
stabilize ηx in the volume V . We have the relation

η(y) + δx,y = ax,V η(y) +
∑
z∈V

∆V
yznV (x, z, η) (2.8)

Defining

GV (x, y) =

∫
µV (dη) nV (x, y, η) (2.9)

one obtains, by integrating (2.8) over µV :

GV (x, y) = (∆V )−1
xy . (2.10)

In the limit V ↑ S, GV converges to the Green’s function G of the simple random walk
on S with a sink associated to the dissipative sites (that is every site x is linked with
γ −NS(x) edges to a sink and the walk stops when it reaches the sink). By (2.9), the
probability that a site y topples by addition at x in volume V is bounded by GV (x, y).

Definition 2.11 We say that the sandpile model is dissipative if

sup
x∈S

∑
y∈S

G(x, y) < +∞ (2.12)
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In our examples, if γ > 2d for Zd or γ ≥ 4 for strips, the Green’s function G(x, y)
decays exponentially in the lattice distance between x and y and hence (2.1) defines a
dissipative model. From now on, we restrict ourselves to these cases.

Definition 2.13 For any integer n, let νWn be a probability measure on ΩWn, with
Wn ∈ S, Wn ↑ S. Then νWn converges to a probability measure ν on Ω if for any
f ∈ L,

lim
n→∞

∫
fdνWn =

∫
fdν.

We denote by I the set of all limit points of {µV : V ∈ S} in the sense of Definition
2.13. By compactness of Ω, I is a non-empty compact convex set. Moreover, by (2.5)
and Definition 2.6, any µ ∈ I concentrates on R (see [10]).

2.4 Untoppling numbers

On the set RV the addition operators ax,V are invertible. The action of the inverse
operator on a recurrent configuration can be defined recursively as follows, see [8].
Consider η ∈ RV and x ∈ V . Remove one grain from η at site x. If the resulting
configuration is recurrent, it is a−1

x,V η, otherwise it contains a forbidden subconfiguration
(fsc) in V1 ⊂ V . In that case “untopple” the sites in V1. By untoppling of a site z we
mean that the sites are updated according to the rule η(y) → η(y) + ∆zy. Iterate this
procedure until a recurrent configuration is obtained: the latter coincides with a−1

x,V η.
As an example, consider a graph with just three sites a ∼ b ∼ c for γ = 2. The
configuration 212 is recurrent. After removal of one grain at site c, we get 211, which
contains the fsc 11. Untoppling site b gives 130, and untoppling site c gives 122, which is
recurrent. Conversely, one verifies that addition at site c on 122 gives back the original
configuration 212.
Call n−V (x, y, η) the number of untopplings at site y by removing one grain from x and
from untoppling sites until a recurrent configuration is obtained. As in the previous
section, one easily proves the relation

∫
n−V (x, y, η)µV (dη) = GV (x, y) (2.14)

3 The group of addition operators in infinite volume

In this section we show how to obtain the group of addition operators in the infinite
volume limit. The assumption of dissipativity is crucial in order to obtain a compact
abelian group in the thermodynamic limit.

3.1 Addition operator

The finite volume addition operators ax,V (cf. (2.3)) are defined on Ω via

ax,V : Ω → Ω : η 7→ ax,V η = (ax,V ηV )V ηV c . (3.1)
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(with some slight abuse of notation). Similarly, the inverses are defined on R via

a−1
x,V : R→ Ω : η 7→ (a−1

x,V ηV )V ηV c (3.2)

Remark that if η ∈ R, then (ax,V η)W ∈ RW for all W ⊂ V but ax,V η is not necessarily
an element of R.

Definition 3.3 For η ∈ Ω, we say that the limit of the finite volume addition operators
is defined on η if for every x ∈ S, there exists Λ0 ∈ S such that for any Λ ∈ S, Λ ⊃ Λ0,
ax,Λη = ax,Λ0η; in that case, we write

axη = ax,Λ0η

Similarly, for η ∈ R, we say that the limit of the finite volume inverse addition operators
is defined on η if for every x ∈ S, there exists Λ0 ∈ S such that for any Λ ∈ S, Λ ⊃ Λ0,
a−1

x,Λη = a−1
x,Λ0

η; we write

a−1
x η = a−1

x,Λ0
η

Remark that if η ∈ R and ax is defined on η, then axη ∈ R.

Lemma 3.4 Assume (2.12). For any µ ∈ I there exists a tail measurable subset Ω ⊂ Ω
such that:

1. µ(Ω) = 1;

2. The limit of the finite volume addition operators and their inverses is defined on
every η ∈ Ω.

Moreover, every µ ∈ I is invariant under the action of ax and a−1
x , that is, for all

x ∈ S and f ∈ L
∫

f(axη)µ(dη) =

∫
f(a−1

x η)µ(dη) =

∫
f(η)µ(dη) (3.5)

and axa
−1
x = a−1

x ax = id on Ω.

Proof. We prove the result for the addition operators, the analogue for the inverses is
proved along the same lines by replacing “number of topplings” by “number of untop-
plings”.

Pick Wk ∈ S,Wk ↑ S such that µWk
→ µ and x ∈ S. We have to prove that

µ [∀Λ0 ∈ S,∃V ⊃ Λ0 : ax,V η 6= ax,Λ0η] = 0 (3.6)

We enumerate S = {xn : n ∈ N}, with Vn = {x1, . . . , xn} such that Vn ↑ S, xn ∈ ∂Vn−1.
If ax,V η 6= ax,Vnη, then some boundary site of Vn has toppled under addition at x in
volume V . This implies that for every m such that Vm ⊃ V some external boundary
site of Vn topples upon addition at x in Vm. Therefore, the left hand side of (3.6) is
bounded by

µ
[∀n ∈ N,∃p ≥ n, ∃y ∈ ∂Vn : nVp(x, y, η) ≥ 1

]
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and we have to estimate

µ
[∃p ≥ n,∃y ∈ ∂Vn : nVp(x, y, η) ≥ 1

]
(3.7)

Since nVp(x, y, η) ≤ nVp+1(x, y, η),

µ
(∃p ≥ n, ∃y ∈ ∂Vn : nVp(x, y, η) ≥ 1

) ≤ lim
k→∞

µ (∃y ∈ ∂Vn : nVk
(x, y, η) ≥ 1)

≤ lim
k→∞

∑

y∈∂Vn

∫
nVk

(x, y, η)µ(dη)

≤ lim
k→∞

∑

y∈∂Vn

∫
nWk

(x, y, η)µWk
(dη)

=
∑

y∈∂Vn

G(x, y)

which implies that (3.7) converges to zero as n tends to infinity, by condition (2.12).
Finally, (3.5) follows easily from Definition 3.3, µ(Ω) = 1, f ∈ L, and the invariance of
µV under the finite volume addition operators ax,V and a−1

x,V .

Notice that for η ∈ Ω, we can take the limit V ↑ S in (2.8) and write

η(y) + δx,y = axη(y) +
∑
z∈S

∆yznS(x, z, η) (3.8)

for any x, y ∈ S, where nS(x, z, η), the number of topplings at site z ∈ S by adding a
grain at x, satisfies

∑
z∈S nS(x, z, η) < +∞.

Lemma 3.9 Assume (2.12). For any µ ∈ I there exists a tail measurable subset Ωo ⊂
Ω with µ(Ωo) = 1 such that for any V ∈ S and nx, x ∈ V integers, the product

∏
x∈V anx

x

is well-defined, as the limit of
∏

x∈V anx
x,Λ as Λ → S, on every η ∈ Ωo.

Proof. We fix V ∈ S, x ∈ V, nx a positive integer, and we prove that anx
x is well-

defined on Ω (the case of negative nx is similar and the extension to finite products it
straightforward). Following the same lines as in the preceding proof, we have to replace
(3.6) by

µ
[∀Λ0 ∈ S,∃Λ ⊃ Λ0 : anx

x,Λη 6= anx
x,Λ0

η
]

= 0

We denote by EVp(nx, x, z, η) the event that addition in Vp of nx grains at x causes at
least one toppling at z. As these events are increasing in p, we estimate

µ
(∃p ≥ n,∃y ∈ ∂Vn : EVp(nx, x, y, η) ≥ 1

) ≤ lim
k→∞

∑

y∈∂Vn

µWk
(EWk

(nx, x, y, η))

≤
∑

y∈∂Vn

nxG(x, y)
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where the last inequality is a consequence of (2.10) and (3.5). From this we deduce that
for any V ∈ S, n = (nx, x ∈ V ) ∈ ZV , the product

∏
x∈V anx

x is well-defined on a tail
measurable set Ω(V, n) of µ-measure one. The set Ωo is then the countable intersection

Ωo = ∩V ∈S,n∈ZV Ω(V, n)

of tail measurable µ-measure one sets.

The following proposition extends this to addition on infinite products.

Proposition 3.10 Assume (2.12). If n = (nx, x ∈ S) ∈ ZS satisfies
∑

x∈S |nx|G(0, x) <
+∞, the product

∏
x∈S anx

x is well-defined on a set Ω(n) of µ-measure 1, for every µ ∈ I.

Proof. Take nx ≥ 0 for every x ∈ S; the case of negative nx is treated again by replacing
“topplings” with “untopplings”. It suffices to show that for every Λ0 ∈ S

µ

(
∃V0,∀V ⊃ V0, ∀y ∈ Λ0 :

(∏
x∈V

anx
x η

)
(y) =

( ∏
x∈V0

anx
x η

)
(y)

)
= 1

or

lim
V0↑S

µ

(
∃V ⊃ V0,∃y ∈ Λ0 :

(∏
x∈V

anx
x η

)
(y) 6=

( ∏
x∈V0

anx
x η

)
(y)

)
= 0 (3.11)

The left hand side of (3.11) is bounded by the sum

∑
y∈Λ0

µ

(
∃V ⊃ V0 :

(∏
x∈V

anx
x η

)
(y) 6=

( ∏
x∈V0

anx
x η

)
(y)

)
(3.12)

If none of the external boundary points of Λ0 topples upon addition of nz grains at
z ∈ V \ V0 to the configuration

(∏
x∈V0

anx
x η

)
, we have that for all y ∈ Λ0:

(∏
x∈V

anx
x η

)
(y) =

( ∏
x∈V0

anx
x η

)
(y)

Since µ is invariant under the ax, see (3.5), the sum (3.12) is bounded from above by

∑
y∈Λ0

∑

|x−y|=1

∑
z∈V c

0

µ (ES(nz, z, x, η)) ≤
∑
y∈Λ0

∑

|x−y|=1

∑
z∈V c

0

nzG(z, x)

which implies (3.11) by the hypothesis on n.
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3.2 Group structure

Here we show that the product
∏

x∈S anx
x can be defined on any recurrent configuration,

provided we identify recurrent configurations which differ by a multiple of ∆.

Given n ∈ ZS and η ∈ R, we consider the set

An(η) = {ξ ∈ R : ∃m ∈ ZS, η + n = ξ + ∆m}

Similarly, for subtraction,

Sn(η) = {ξ ∈ R : ∃m ∈ ZS, η − n = ξ + ∆m}

Fix n ∈ ZS so that

sup
y∈S

∑
x∈S

[|nx|+ 2γ]G(y, x) = B < +∞ (3.13)

and let
Ωn = {η ∈ R : Sn(η) 6= ∅, An(η) 6= ∅}

be the set of recurrent configurations for which both addition and subtraction with n
gives rise to a new recurrent configuration, modulo the toppling matrix applied to an
integer function.

Lemma 3.14 Ωn = R.

Proof. We prove that Ωn is closed. Let (ηk)k≥0 be a sequence in Ωn which converges to
η as k →∞. For each k, there exist η±k ∈ R and m±

k ∈ [−B, B]S such that

ηk ± n = η±k + ∆m±
k (3.15)

Since R× [−B, B]S is compact, there exists a subsequence ki →∞ such that η±ki
→ η±

and m±
ki
→ m±. Taking limits along this subsequence in (3.15) yields

η ± n = η± + ∆m±,

that is, η ∈ Ωn. Looking back at Proposition 3.10, Ω(n) ∩ R ⊂ Ωn and Ω(n) is a
µ-measure one (hence non-empty) tail set. Therefore it is dense and Ωn = R.

Definition 3.16 Two recurrent configurations η, ζ ∈ R are called equivalent, and we
write η ∼ ζ, if there exists m ∈ ZS such that

η = ζ + ∆m (3.17)

Remark 3.18 1. For all n ∈ ZS, η ∈ R, if ζ, ζ ′ ∈ An(η) (or ζ, ζ ′ ∈ Sn(η)), then
ζ ∼ ζ ′.

2. If η ∼ η′, then An(η) = An(η′), Sn(η) = Sn(η′) for all n ∈ ZS.
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3. In the finite volume case one can prove that every equivalence class in ZV /∆VZV

contains exactly one recurrent configuration, that is, η, ζ ∈ RV and

η = ζ + ∆V m

imply η = ζ. This is no longer true in infinite volume. As an example we take
S = Z × {1, 2}, γ = 4. Then the recurrent configurations η(x) = 3 for all x and
ζ(x) = 4 for all x (denoted by 3 and 4) are equivalent:

ζ = η + ∆m

where m(x) = 1 for all x.

We can now introduce the addition operator on classes: take the class [η] containing
the recurrent configuration η, let ξ ∈ An(η) and define

∏
x∈S

anx
x [η] = [ξ]

Notice that if η ∈ Ω (that is, η ∈ R is such that ax is the limit of ax,V on η), then

ax[η] = [axη] (3.19)

Proposition 3.20 Assume (2.12). R/ ∼ is a compact metric space.

Proof. It suffices to show that equivalence classes are closed. Suppose we have sequences
(ηk), (ξk) of recurrent configurations with ηk ∼ ξk, ηk → η, ξk → ξ. Then, there exist
mk ∈ [−M, M ]S with M = 2γ supx∈S

∑
y∈S G(x, y) such that

ηk = ξk + ∆mk (3.21)

We can choose a subsequence ki → +∞ such that mki
→ m. Taking limits along this

subsequence in (3.21) yields
η = ξ + ∆m,

giving η ∼ ξ.

By point 2 of Remark 3.18 the addition of equivalence classes of configurations in
R is well-defined.

Definition 3.22 Assume (2.12). For [η], [ξ] in R/ ∼ we define

[η]⊕ [ξ]

to be the class which contains Aξ(η).

Theorem 3.23 (R/ ∼,⊕) is a compact abelian group, hence it admits a unique Haar
measure.

12



Proof. The group property is immediate; the compactness follows from Proposition
3.20. For the consequence see e.g. [7] p. 31.

The next result shows that from a measure theoretic perspective, there is no dif-
ference between classes of the relation ∼ and recurrent configurations. As a corollary,
we obtain that the set I of possible weak limit points of the finite volume stationary
measures is a singleton.

Proposition 3.24 For every µ ∈ I there exists a set Ω̂ ⊂ R of µ-measure one such
that for all η ∈ Ω̂, [η] = {η}.

Before proving the proposition, we state and prove

Theorem 3.25 The set I is a singleton.

Proof. Suppose that I contains two different measures µ, ν. Then there exists a mea-
surable subset A such that

µ(A) 6= ν(A).

µ and ν are lifted to R/ ∼ via

µ̄([A]) = µ(∪η∈A[η])

Using Proposition 3.24

µ̄([A]) = µ (∪η∈A[η])

= µ
(
(∪η∈A[η]) ∩ Ω̂

)

= µ (∪η∈A{η})
= µ(A). (3.26)

Analogously ν̄([A]) = ν(A). Hence µ̄ and ν̄ are different. Because µ and ν are
invariant under the action of the addition operators ax, it follows that µ̄ and ν̄ are
different and invariant under the group action. This contradicts the uniqueness of the
Haar measure.

Proof. [Proposition 3.24]. Let the set Ω̂ consist of recurrent configurations η that satisfy

1. For all x ∈ S, ax and a−1
x are well defined as limits of the corresponding finite

volume operators, and axa
−1
x η = a−1

x axη = η (that is η ∈ Ω).

2. For all finite volumes V0, there is a volume Λ, V0 ⊂ Λ so that, whenever W is a
finite set outside Λ,W ∩ Λ = ∅ and for all n ∈ [−B, B]S

∏
x∈W

anx
x η(y) = η(y), for all y ∈ V0 (3.27)
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That µ(Ω̂) = 1 follows from the same kind of arguments as for µ(Ω) = 1 in lemma 3.4.

Moreover, µ(axΩ̂) = µ(a−1
x Ω̂) = 1 by invariance. Consider an arbitrary finite volume

V and abbreviate V1 = V ∪ ∂V , V2 = V1 ∪ ∂V1. By the closure relation for the infinite
volume addition operators, see (2.7), we have the identity

∏
x∈V1

∏
y∈V2

a∆xynx
y = id

This gives
∏
y∈V

a∆n(y)
y =

∏
y∈V

∏
x∈V1

a∆xynx
y

=
∏
x∈V1

∏
y∈V

a∆xynx
y

=
∏
x∈V1

∏
y∈V2

a∆xynx
y

∏
x∈V1

∏

y∈V2\V
a−∆xynx

y

=
∏
x∈V1

∏

y∈V2\V
a−∆xynx

y

Therefore, from (3.27) it follows that for every n ∈ [−B,B]S,

lim
p↑∞


 ∏

x∈Vp

a∆n(x)
x


 (η) = η (3.28)

along some sequence of increasing volumes. Therefore, if η, ξ ∈ Ω̂ satisfy

η + ∆n = ξ (3.29)

then, using (3.28) and (3.29):

η = lim
p→∞

∏
x∈Vp

a∆n(x)
x (η) = ξ

which shows the desired property of the set Ω̂.

From now on we denote by µ the unique element of I as well as the Haar measure.

4 Infinite volume dynamics

From the previous sections we know that I contains a unique element µ and that
addition operators as well as their inverses are well-defined on µ-typical configurations.
This measure µ is the natural candidate for a stationary measure of a Markov process
on infinite volume recurrent configurations. The construction of this Markov process
is completely identical to what was done in [10]. We therefore state the results on
existence and Poisson representation of this process without proofs, in the following
section, and proceed in section 4.2 to the proof of its ergodic properties, which was
open in [10].
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4.1 Infinite volume Markov process

For the unique µ ∈ I we can construct a stationary Markov process on µ-typical infinite
volume configurations, as in [10].

We assume that the addition rate function ϕ introduced in (2.4) satisfies

sup
y∈S

∑
x∈S

ϕ(x)G(y, x) < ∞ (4.1)

This condition ensures that the number of topplings at any site x ∈ S remains finite
almost surely in any finite interval of time when grains are added at intensity ϕ. Notice
that for dissipative systems, by (2.12), we can take the addition rate function constant.

To each site x ∈ S we associate a Poisson process N t,x
ϕ (for different sites these

Poisson processes are mutually independent) with rate ϕ(x). At the event times of N t,x
ϕ

we “add a grain” at x, that is, we apply the addition operator ax to the configuration.
For every finite volume V ∈ S, the natural extension of (2.4)

Lϕ
V =

∑
x∈V

ϕ(x)(ax − I) (4.2)

is the Lp(µ) generator of the stationary pure jump process on Ω with semigroup

Sϕ
V (t) = exp(tLϕ

V )f =

∫ (∏
x∈V

aNt,x
ϕ

x f

)
dP, (4.3)

where P denotes the joint distribution of the independent Poisson processes {N t,x
ϕ },

and f ∈ Lp(µ). The following theorems can be derived directly from the techniques
developed in [10].

Theorem 4.4 If ϕ satisfies condition (4.1), then

1. The semigroups Sϕ
V (t) converge strongly in L1(µ) to a semigroup Sϕ(t).

2. Sϕ(t) is the L1(µ) semigroup of a stationary Markov process {ηt : t ≥ 0} on Ω.

3. For any f ∈ L,

lim
t↓0

Sϕ(t)f − f

t
= Lϕf =

∑
x∈S

ϕ(x)[axf − f ],

where the limit is taken in L1(µ).

4. The process {ηt : t ≥ 0} admits a càdlàg version (right-continuous with left limits).

The intuitive description of the process {ηt : t ≥ 0} is correct under condition (4.1),
that is, the process has a representation in terms of Poisson processes:
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Theorem 4.5 Assume (4.1). For µ× P almost every (η, ω) the limit

lim
V ↑S

∏
x∈V

aNt,x
ϕ (ω)

x η = ηt

exists. The process {ηt : t ≥ 0} is a version of the process of Theorem 4.4, that is, its
L1(µ) semigroup coincides with Sϕ(t).

To formulate next theorem we need a partial order on configurations, functions, and
probability measures on Ω. For η, ξ ∈ Ω, η ≤ ξ if η(x) ≤ ξ(x) for all x ∈ S. A function
f : Ω → R is monotone if η ≤ ξ implies f(η) ≤ f(ξ), for all η, ξ ∈ Ω. For two probability
measures ν, ν ′ on Ω, ν ≤ ν ′ if ν(f) ≤ ν ′(f) for all monotone bounded Borel measurable
function f .

Theorem 4.6 Let ν ≤ µ. For ν × P almost every (η, ω) the limit

lim
V ↑S

∏
x∈V

aNt,x
ϕ (ω)

x η = ηt

exists. The process {ηt : t ≥ 0} is Markovian with η0 distributed according to ν.

Remark 4.7 Theorem 4.6 implies that η ≡ 1 can be taken as initial configuration.

4.2 An ergodic theorem

In the rest of this section, we assume for simplicity that the rate function ϕ ≡ 1 is
constant, and we write S(t) (see Theorem 4.4), N t,x, L and L0

V (see (2.4)) without
subscript ϕ.
We investigate the convergence of νS(t) to µ for a probability measure ν ≤ µ.
Before we give the statement and its proof, observe that the role of the dissipativity
parameter γ here is double. First, the approximation (and even the existence) of the
infinite volume process by finite volume ones gets nicer and easier to prove when γ
increases. It is essentially based on the dissipativity condition (2.12). On the other
hand, in finite volume, the exponential relaxation to the stationary measure µV also
depends on γ and in fact, becomes slower for larger γ. This can be seen from ignoring
(as would be reasonable for very large γ and dimension d) the interaction with other
sites: we then have essentially a one site dynamics by which at exponential times one
grain is added to the site until the latter reaches a height γ + 1, after which it topples
to height 1 and so on. The relaxation time of this dynamics being clearly proportional
to γ, the convergence is slower for larger γ.

Theorem 4.8 Suppose ν is a probability measure on Ω such that ν ≤ µ. There is a
constant C2 > 0 so that for all f ∈ L, there exists Cf < +∞ such that

∣∣∣∣
∫

S(t)fdν −
∫

fdµ

∣∣∣∣ ≤ Cf exp(−C2t) (4.9)

In particular, νS(t) converges weakly to µ, uniformly in ν ≤ µ and exponentially fast.
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Proof. The idea is to approximate S(t) by finite volume semigroups, and to estimate
the speed of convergence as a function of the volume. More precisely, we split

∣∣∣∣
∫

S(t)fdν −
∫

fdµ

∣∣∣∣ ≤ AV
t (f) + BV

t (f) + CV (f) (4.10)

with

AV
t (f) =

∣∣∣∣
∫

S(t)fdν −
∫

SV (t)fdνV

∣∣∣∣

BV
t (f) =

∣∣∣∣
∫

SV (t)fdνV −
∫

fdµV

∣∣∣∣

CV (f) =

∣∣∣∣
∫

fdµV −
∫

fdµ

∣∣∣∣ .

where νV is the restriction of ν to V and

SV (t)f(η) =

∫
f

(∏
x∈V

aNt,x

x,V η

)
dP

By Theorem 3.25,
lim
V ↑S

CV (f) = 0. (4.11)

For the first term in the right-hand side of (4.10) we write

AV
t (f) =

∣∣∣∣∣
∫ ∫ (

f

(∏
x∈S

aNt,x

x η

)
− f

(∏
x∈V

aNt,x

x,V η

))
dPdν

∣∣∣∣∣ (4.12)

The integrand of the right hand side is zero if no avalanche from V c has influenced sites
of Df during the interval [0, t], otherwise it is bounded by 2‖f‖∞. Therefore, since N t,x

are rate one Poisson processes:

AV
t (f) ≤ κ‖f‖∞t

∑
y∈Df

∑
x∈V c

G(x, y) (4.13)

for some constant κ. Therefore that first term can be controlled by the dissipativity
condition (2.12).
The second term in the right hand side of (4.10) is estimated by the relaxation to
equilibrium of the finite volume dynamics. The generator L0

V has the eigenvalues

σ(L0
V ) =

{∑
x∈V

(
exp

(
2πi

∑
y∈V

GV (x, y)ny

)
− 1

)
: n ∈ ZV /∆VZV

}
(4.14)

The eigenvalue 0 corresponding to the stationary state arises from the choice n = 0.
For the speed of relaxation to equilibrium we are interested in the minimum absolute
value of the real part of the non-zero eigenvalues. More precisely:

BV
t (f) ≤ Cf exp(−λV t)
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where

λV = inf
{|Re(λ)| : λ ∈ σ(L0

V ) \ {0}}

= 2 inf

{∑
x∈V

sin2

(
π

∑
y∈V

GV (x, y)ny

)
: n ∈ ZV /∆VZV , n 6= 0

}

by (4.14). Since there is a constant c so that for all real numbers r

sin2(πr) ≥ c(min{|r − k| : k ∈ Z})2

we get

∑
x∈V

sin2
(
π((∆V )−1n)x

) ≥ c inf
{‖(∆V )−1n− k‖2 : n ∈ ZV /∆VZV , n 6= 0, k ∈ ZV

}

(4.15)
where ‖ · ‖ represents the Euclidian norm in ZV that we estimate by

‖(∆V )−1n− k‖2 = ‖(∆V )−1(n−∆V k)‖2 ≥ ‖∆V ‖−2

For any regular volume we have

‖∆V ‖ ≤
√

2γ2 + 16d2

This gives
BV

t (f) ≤ Cf exp(−Ct) (4.16)

where C > 0 is independent of V .
The statement of the theorem now follows by combining (4.11), (4.13), (4.16).

Remark 4.17 When we restrict ourselves to the case where

∑
x∈S

ϕ(x) = M < ∞, (4.18)

Lϕ becomes a bounded operator, hence it generates a pure jump process which is a
continuous time random walk on the group (R/ ∼,⊕). By the ergodic properties of
random walks on compact groups we then obtain that

lim
t→∞

νSϕ(t) = µ.

for every measure ν on R/ ∼ (see Theorems 2.5.14, 2.6.2 and Corollary 2.6.4 in [7]
for details).
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4.3 Mixing property

To the stationary process defined in Theorem 4.4, we associate the process on R/ ∼ by
putting

[η]t = [ηt]. (4.19)

For that, it is important to notice that the equivalence of recurrent configurations is
preserved in time (by Theorem 4.5, and points 1,2 of Remark 3.18): when η ∼ ξ,
then ηt ∼ ξt with P-probability one. For the following theorem, we abbreviate without
consequences [η]t = ηt

.

Theorem 4.20 The process {ηt : t ≥ 0} is mixing, that is, for all f, g ∈ L:

lim
t→∞

∫
(S(t)f) gdµ =

∫
fdµ

∫
gdµ (4.21)

Proof. Since the semigroup is a normal operator on L2(µ), ergodicity of the process
implies the mixing property by [13]. It thus suffices to prove that for a bounded non-
negative function f such that

∫
fdµ > 0 and Lf = 0, then µ-a.s. f =

∫
fdµ. By the

invariance of µ under ax,

0 = −2

∫
(fLf) dµ =

∑
x∈S

∫
(axf − f)2dµ

which implies axf = f for all ax, µ-a.s. Hence, the measure

dνf =
fdµ∫
fdµ

is invariant under the action of ax, thus under the group action. By uniqueness of the
Haar measure, we conclude νf = µ.

5 Decay of correlations

In this section we prove that the infinite volume measure µ has exponential decay of
correlations under a condition of “strong dissipativity”. That means for the model (2.1)
with S = Zd that γ must be sufficiently large, e.g. γ > 13 for d = 2; for the strips
S = Z× {1, . . . , `} with finite ` it always suffices that γ > 3.
In [11] the exponential decay between very special local observables (indicators of so-
called weakly allowed clusters) is also obtained in the case where the Green function
decays exponentially. However, the technique developed in that paper does not apply
to all local functions.
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5.1 Decoupling argument

We start with the heuristics of the main ingredient in the proof of exponential decay of
correlations. The rest is based on quite general stochastic-geometric methods that are
reviewed in [6].
To be specific, suppose that S = Z2 and γ > 4 (in (2.1)). Then, for every volume
V ∈ S,

µV (η(x) = a|η(z) = c) = µV \z(η(x) = a) (5.1)

for all a, c ∈ {1, . . . , γ}, c > 4, x 6= z in V , because, by the burning algorithm, we
can burn away the sites on which we know that the configuration is sufficiently large.
Instead of fixing in (5.1) the height value at one site z, we could do the same thing on
some region C ⊂ V that does not contain x, see Lemma 5.4. On the other hand, if sites
x and y are not very close to each other, we can find volumes Λx, Λy ⊂ V that contain x,
respectively y, that also do not touch (more precisely, that satisfy (Λx∪∂Λx)∩Λy = ∅).
Then, see Lemma 5.7,

µΛx∪Λy(η(x) = a, η(y) = b) = µΛx(η(x) = a)µΛy(η(y) = b) (5.2)

The combination of (5.1) with (5.2) yields conditional independence of two events that
are separated by a region C where the configuration is sufficiently high, see Lemma 5.9.

Definition 5.3 Let V ∈ S, C ⊂ V , σ ∈ ΩV . The subconfiguration σC is V -burnable if
there exists a bijection f : {1, . . . , n} → C such that

NV (f(1)) < σ(f(1)),

and for every j = 1, . . . , n− 1,

NV \{f(1),...,f(j)}(f(j + 1)) < σ(f(j + 1)).

As an example, on Z2 with maximal height γ = ∆xx = 5, every closed curve along
which the heights are at least 4 and containing at least one point with height 5 is
burnable.

Lemma 5.4 Let V = Λ ∪ C ∈ S, Λ ∩ C = ∅ and fix an arbitrary configuration σ ∈ ΩV

so that σC is V -burnable. Put

EC = {η ∈ ΩV : ηC = σC}

Then, for all events A that depend only on the configuration in Λ (that is, A ∈ FΛ),

µV (A|EC) = µΛ(A) (5.5)
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Proof. By the burning algorithm, η ∈ RV ∩ EC if and only if ηΛ ∈ RΛ and ηC = σC .
Therefore,

µV (A|EC) =

∑
η∈RV

I(η ∈ A)I(η ∈ EC)∑
η∈RV

I(η ∈ EC)

=

∑
ηΛ∈RΛ

∑
ηC∈RC

I(η ∈ A)I(η ∈ EC)∑
ηC∈RC

I(η ∈ EC)|RΛ|
= µΛ(A).

Remark 5.6 We do not need to condition on one fixed burnable configuration. The
Lemma and its proof above remain unchanged when taking

EC = {η ∈ ΩV : ηC is V -burnable}
the event that we can burn away the sites of C first.

Lemma 5.7 Let Λ1, Λ2 ∈ S with

(Λ1 ∪ ∂Λ1) ∩ Λ2 = ∅. (5.8)

For A ∈ FΛ1 , B ∈ FΛ2,

µΛ1∪Λ2(A ∩B) = µΛ1∪Λ2(A)µΛ1∪Λ2(B)

Proof. We have η ∈ RΛ1∪Λ2 if and only if ηΛ1 ∈ RΛ1 and ηΛ2 ∈ RΛ2 . The rest is writing
out expectations as in the proof of Lemma 5.4.

We now state the conditional independence.

Lemma 5.9 For V ∈ S and C ⊂ V , suppose that V \C = Λ1∪Λ2 with Λ1, Λ2 satisfying
(5.8). Then, for all A ∈ FΛ1 , B ∈ FΛ2

µV (A ∩B|EC) = µV (A|EC)µV (B|EC)

Proof. By Lemma 5.4,
µV (A ∩B|EC) = µV \C(A ∩B)

and continuing via Lemma 5.7

µV (A ∩B|EC) = µΛ1∪Λ2(A)µΛ1∪Λ2(B). (5.10)

The proof is finished by applying again Lemma 5.4 to the two factors in the right-hand
side of (5.10).

The conditional independence (5.10) is reminiscent of the situation for Markov ran-
dom fields. Here µV is not Markovian but nevertheless for all A ∈ FΛ, Λ ⊂ V the
conditional probability of A given the configuration in V \ Λ is

µV (A|ηV \Λ) = µΛ(A) (5.11)

whenever η∂Λ∩V is V -burnable. In particular, this conditional probability (5.11) is then
independent of the particular ηV \Λ.
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5.2 Geometric argument

From the previous decoupling argument, it is clear how to proceed for the proof of
decay of correlations. What needs to be established is that there will be typically
some “circuit” C, separating two far away dependence sets, where the configuration
is burnable. We thus basically end up with a stochastic-geometric or percolation-like
argument as also reviewed in [6]. The first thing to see is that burnability is sufficiently
probable. We do that first for the strip in Lemma 5.12 and then for the full lattice in
Lemma 5.16.

Lemma 5.12 Let V = {(x, y) ∈ Z2 : |x| ≤ k, y = 1, . . . `} and γ ≥ 4 in (2.1). Fix
some x1, |x1| ≤ k and let C = {(x1, y) ∈ V : y = 1, . . . `}. There is p = p(`, γ) > 0
(uniformly in k) such that for all events E(x1) that only depend on the heights η(x, y)
with (x, y) 6∈ C,

µV (η(x, y) ≥ 4 for all (x, y) ∈ C|E(x1)) ≥ p > 0 (5.13)

Proof. Via Bayes’rule,

µV (η(x, y) ≥ 4 for all (x, y) ∈ C|E(x1)) = (5.14)

µV (E(x1)|η(x, y) ≥ 4 for all (x, y) ∈ C)
µV (η(x, y) ≥ 4 for all (x, y) ∈ C)

µV (E(x1))

If η(x, y) ≥ 4 for the points (x, y) ∈ C, then ηC is V -burnable, and by Lemma 5.4

µV (E(x1)|η(x1, y1) ≥ 4 whenever |y1| ≤ `) = µV \C(E(x1))

On the other hand, by counting,

µV \C(E(x1))

µV (E(x1))
≥ |RV |
|RV \C ||RC |

and

µV (η(x, y) ≥ 4 for all (x, y) ∈ C) = (γ − 4 + 1)` |RV \C |
|RV |

As a consequence we can take

0 < p ≤ (γ − 4 + 1)`

|RC | =
γ − 3

γ − 3 + `

Remark 5.15 Obviously, p ↓ 0 as ` ↑ ∞.

For the regular lattice S = Zd we have:
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Lemma 5.16 Consider the model (2.1) with S = Zd. For all ε > 0, there is a γ0 < +∞
so that for all V ∈ S, all x ∈ V and all events E ∈ FV \x,

µV (η(x) > 2d|E) > 1− ε

whenever γ ≥ γ0.

Proof. We can repeat the steps of the proof in Lemma 5.12. At the end we must
estimate the number of burnable heights at x divided by the number of configurations
at x. That is,

µV (η(x) > 2d|E) >
γ − 2d

γ

It thus suffices that 2d < γε.

We need one more lemma before giving the geometric argument, because the latter
requires stochastic domination by Bernoulli measure.

Lemma 5.17 The invariant probability measure µV for the sandpile dynamics in V
is irreducible,that is, for two given recurrent configurations η, η′, there is a sequence
η0 = η, . . . , ηm = η′ of recurrent configurations such that ηi and ηi+1 differ only in one
site.

Proof. Since η′ can be reached from η by a finite number of additions, it is enough to
show that for any x ∈ V , there is such a sequence from η to axη. Let

Γ+
x (η) = {y ∈ V ; (axη)(y) > η(y)},

Γ−x (η) = {y ∈ V ; (axη)(y) < η(y)}.
We first add sand grains one by one on the sites y ∈ Γ+

x (η), to reach the value (axη)(y).
Each step leads to a configuration larger than η, thus recurrent. We denote by η+ = η+

0

the recurrent configuration (axη)Γ+
x (η)η[Γ+

x (η)]c . If Γ−x (η) = ∅ we are finished. If not,

we write Γ−x (η) = {z1, . . . , zn} and we pass from η+
k = (axη){z1,...,zk}η

+
{z1,...,zk}c to η+

k+1

for every 1 ≤ k ≤ n (η+
k ≥ axη is recurrent and differs from η+

k−1 in one site) to reach
η+

n = axη.

We are now in a position to give the main stochastic-geometric argument leading
to exponential decay of correlations. It copies the proof that complete analyticity for
Markovian random fields follows from absence of disagreement percolation, as done in
[2], see Theorem 7.1 in [6], except that we can replace the Markov property by the
decoupling property (5.11).

Let pc(d) denote the percolation threshold for Bernoulli site percolation on Zd. Let
V ∈ S and let Λ ⊂ V on which we fix two arbitrary height configurations ηΛ and η′Λ to
consider two conditional probabilities µ1 = µV (·|ηΛ) and µ2 = µV (·|η′Λ).
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Theorem 5.18 Suppose that γ ≥ 4 for S = Z× {1, . . . , `} or 4d < γpc(d) for S = Zd

in (2.1). There exist constants α > 0, C < +∞ so that for all V ∈ S, Λ ⊂ V, W ⊂
V \ Λ, η ∈ R and for every event A ∈ FW ,

|µ1(A)− µ2(A)| ≤ Ce−αdist (W,Λ) (5.19)

where dist(·, ·) is the nearest neighbor distance between the two subsets.

Proof. We give the proof for the lattice S = Zd. The case of the strip is analogous but
a little simpler (using Lemma 5.12).
We use a coupling argument. First, we introduce some linear ordering on V \ Λ. We
construct via iteration a coupling between µ1 and µ2 which is a random field (X, X ′). We
start by setting X(x) = η(x), X ′(x) = η′(x) on Λ. Suppose that we have already realized
the coupling as (X, X ′) = (η, η′) on all sites outside some non-empty set T ⊂ V \ Λ.
Consider then the conditional distributions µV (·|ηV \T ) and µV (·|η′V \T ). One possibility
is that on the external boundary both η∂T and η′∂T are V -burnable. But then, via
(5.11), these two conditional probabilities are equal on T and we can take the optimal
coupling for which X = X ′ on T . Alternatively, we choose the smallest site x ∈ T
having a nearest neighbor y ∈ V \ T , for which X(y) ≤ 2d or X ′(y) ≤ 2d and we
find the value (η(x), η′(x)) for the coupling at x from sampling the optimal coupling
between the single site distributions µV (X(x) = ·|ηV \T ) and µV (X ′(x) = ·|η′V \T ). At

this step the coupling is defined outside T \ x and we can repeat the iteration giving us
a coupling between µ1 and µ2.
From the above construction, it is possible that in the coupling X(x) 6= X ′(x) at some
x ∈ W , only if there is a nearest neighbor path from x to Λ on which X(y) ≤ 2d or
X ′(y) ≤ 2d. On the other hand, no matter what we fix off y,

P (X(y) ≤ 2d or X ′(y) ≤ 2d|η(z), η′(z), z ∈ V \ y) ≤ 2(1− µV (η(y) > 2d|η(z), z 6= y))
(5.20)

For γ large enough (from Lemma 5.16), this is bounded by pc(d). The proof is then con-
cluded via an application of stochastic domination with the Bernoulli product measure
(thanks to Lemma 5.17, see Theorem 4.8 in [6]) and using that the cluster-diameter in
sub-critical Bernoulli site percolation has an exponential tail.

Examples.

1. The dissipative system in dimension 2: we have pc(2) = 0.5927 (as numerical
result). Thus we need to take γ > 13 so that 8 < γpc(2).

2. The dissipative system in high dimension. Since pc(d) ' 1/(2d) for large d, we
conclude exponential decay of correlations as soon as γ > 8d2.
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