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1 Introduction

A carousel is an automated storage and retrieval system consisting of a large number of shelves
rotating in a circle. In this note we study a system consisting of two identical carousels and
one picker. At each carousel there is an infinite supply of pick orders needing to be processed.
The picker alternates between the two carousels, picking one order at a time. An important
performance characteristic is the throughput, i.e. the number of orders processed per unit time.
Park et al. [1] determine the throughput when the pick times are deterministic or exponen-
tially distributed. We consider pick times following a phase-type distribution and derive explicit
expressions for the throughput. Phase-type distributions may be used to approximate any pick-
time distribution; see Schassberger [2].

Following Park et al. [1] we model a carousel as a circle of length 1 and assume it rotates in
one direction at unit speed. Each pick order requires exactly one item. The picking process may
be visualized as follows: When the picker is about to pick an item at one of the carousels, he
may have to wait until the item is rotated in front of him. In the meantime, the other carousel
rotates towards the position of the next item. After completion of the first pick, the picker turns
to the other carousel, where he may have to wait again, and so on. Let the random variables
Pn, Rn and Wn (n > 1) denote the pick time, rotation time and waiting time for the nth item.
Clearly, the waiting times Wn satisfy the recursion

Wn+1 = (Rn+1 − Pn −Wn)+, n = 0, 1, . . . ; P0 = W0
def= 0, (1.1)

where (x)+ = max{0, x}. Note the striking similarity to Lindley’s equation for the waiting times
in a single-server queue. The only difference is the sign of Wn. We assume that both {Pn, n > 1}
and {Rn, n > 1} are sequences of independent identically distributed random variables, also
independent of each other. The pick times Pn have a phase-type distribution G(·) and the
rotation times Rn are uniformly distributed on [0, 1) (which means that the items are randomly
located on the carousels). Then {Wn} is a Markov chain, with state space [0, 1). In equilibrium,
equation (1.1) becomes

W
D= (R− P −W )+. (1.2)

Let π0 = P(W = 0) and f(·) denote the density of W on (0, 1). From (1.2) it readily follows
that (cf. equation (3) in Park et al. [1])

f(x) = π0G(1− x) +
∫ 1−x

0
G(1− x− z)f(z)dz, 0 6 x < 1, (1.3)

and the normalisation equation

π0 +
∫ 1

0
f(x)dx = 1. (1.4)

Once the solution to equations (1.3) and (1.4) is known, we can compute E[W ] and thus also
the throughput τ from

τ =
1

E[W ] + E[P ]
. (1.5)

As pointed out before, equation (1.2) (with a plus sign instead of minus sign for W ) is precisely
Lindley’s equation for the stationary waiting time in a PH/U/1 queue. This equation has no
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simple solution, but it will appear that the one for the waiting time of the picker can be solved
explicitly. In the following we shall explore various methods to solve (1.2), or equivalently (1.3)
and (1.4).

Since equation (1.3) is a Fredholm type equation, a natural way to proceed is by successive
substitutions. This yields the formal solution

f(x) = π0

∞∑

j=1

Gj ∗(1− x), 0 6 x < 1, (1.6)

where

G1 ∗(1− x) def= G(1− x); Gn ∗(1− x) def=
∫ 1−x

0
G(1− x− z) G(n−1) ∗(1− z) dz, n > 2.

Since G(·) is a distribution, from the last relation we have for n > 1 that

G(n+2) ∗(x) 6
∫ x

0
G(n+1) ∗(1− z) dz 6

∫ x

0

∫ 1−z

0
Gn ∗(1− y) dydz =

∫ x

0

∫ 1

z
Gn ∗(y) dydz,

which implies that G3 ∗(x) 6 1/2. Now, by induction, it can be easily shown that for n > 1

G(2n+1) ∗(x) 6 1
2n

, 0 6 x < 1,

and thus also
G2(n+1) ∗(x) 6

∫ x

0
G(2n+1) ∗(1− z) dz 6 1

2n
, 0 6 x < 1.

This means that the infinite sum (1.6) converges (uniformly) for 0 6 x < 1.
However, for a non-trivial distribution G(·), one cannot easily compute f(·) using (1.6). The

difficulty lies in the fact that Gn ∗(·) is not the n-fold convolution of the distribution function
G(·). Therefore, we continue by applying transforms to solve equation (1.3). This approach
yields explicit and computable expressions for the density f(·) and the throughput τ , involving
roots of a certain equation. An alternative approach that is presented, is by means of differenti-
ation. Although the two methods superficially appear to be different, they are strongly related
and we shall try to highlight the analogies between them.

In Section 2 we will first consider pick times with an Erlang distribution and prove that the
density of the waiting time can be expressed as a sum of exponentials. In the next section we
extend this result to pick times with a phase-type distribution. In Section 4 we proceed with
some numerical results demonstrating that the throughput is fairly insensitive to the squared
coefficient of variation of the pick times; the dominant factor is just the mean. We conclude
with a brief summary and further research plans in Section 5.
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2 Erlang pick times

In this section we assume that the pick times follow an Erlang distribution Erl(µ, n) with scale
parameter µ and n stages, that is

G(x) = 1− e−µx
n−1∑

j=0

(µx)j

j!
, x > 0.

In the first part we obtain the density of the waiting time through Laplace transforms. In the
second part we present an alternative approach to the problem. Specifically we construct a
differential equation that together with some initial conditions gives the solution to (1.3).

2.1 Laplace transform approach

Let φ(·) denote the Laplace transform of f(·) over the interval (0, 1), which means

φ(s) =

1∫

0

e−sxf(x)dx.

We should emphasise that for the Laplace transform over a bounded interval, the standard prop-
erties are, unfortunately, no longer valid. For example, the Laplace transform of a convolution
is not the product of the transforms of the functions involved. Note that φ(·) is analytic in the
whole complex plane. It is convenient to replace x by (1− x) in (1.3), yielding

f(1− x) = π0G(x) +
∫ x

0
G(x− z)f(z)dz, 0 6 x < 1. (2.1)

By taking the Laplace transform of (2.1) and using (1.4) we get

e−sφ(−s) = π0


1− e−s

s
−

n−1∑

j=0

µj

(µ + s)j+1
+

n−1∑

j=0

j∑

i=0

µj

i!(µ + s)j+1−i
e−(µ+s)




− e−s

s
(1− π0) +

1
s
φ(s)−

n−1∑

j=0

µj

(µ + s)j+1
φ(s)

+ e−(µ+s)
n−1∑

j=0

j∑

i=0

i∑

`=0

(
i

`

)
µj

i!(µ + s)j+1−i
φ(`)(−µ),

which, by rearranging terms and using the identity

n−1∑

j=0

µj

(µ + s)j+1
=

(µ + s)n − µn

s(µ + s)n
,
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can be simplified to

e−sφ(−s)− µn

s(µ + s)n
φ(s) = π0


 µn

s(µ + s)n
+ e−(µ+s)

n−1∑

j=0

j∑

i=0

µj

i!(µ + s)j+1−i




− e−s

s
+ e−(µ+s)

n−1∑

j=0

j∑

i=0

i∑

`=0

(
i

`

)
µj

i!(µ + s)j+1−i
φ(`)(−µ). (2.2)

In the above expression, φ(`)(·) denotes the derivative of order ` of φ(·). Note that both φ(−s)
and φ(s) appear in (2.2). To obtain an additional equation we replace s by −s in (2.2) and form
a system from which φ(s) can be solved, yielding:

Theorem 1. For all s, the transform φ(s) satisfies

φ(s)R(s) = −e−ss(µ + s)nA(−s)− µnA(s), (2.3)

where

R(s) = s2(µ2 − s2)n + µ2n,

A(s) = π0


µn + e−(µ+s)

n−1∑

j=0

j∑

i=0

sµj(µ + s)n−j−1+i

i!


− e−s(µ + s)n

+e−(µ+s)
n−1∑

j=0

j∑

i=0

i∑

`=0

(
i

`

)
sµj(µ + s)n−j−1+i

i!
φ(`)(−µ).

In (2.3) we still need to determine the n + 1 unknowns π0 and φ(`)(−µ) for ` = 0, . . . , n− 1.
Note that for any zero of the polynomial R(·), the left-hand side of (2.3) vanishes (since φ(·) is
analytic everywhere). This implies that the right-hand side should also vanish. Hence, the zeros
of R(·) provide the equations necessary to determine the unknowns.

Lemma 1. The polynomial R(·) has exactly 2n+2 simple zeros r1, . . . , r2n+2 satisfying r2n+3−i =
−ri for i = 1, . . . , n + 1.

Proof: Since R(s) is a polynomial of degree n + 1 of s2, it follows that R(s) has exactly 2n + 2
zeros, with the property that each zero s has a companion zero −s. Furthermore, it is easily
verified that gcd[R(s), R′(s)] = 1. This means that the polynomials R(s) and R′(s) have no
common factor of degree greater than zero or that R(s) has only simple zeros. ¤

In the following lemma we prove that the 2n + 2 zeros of R(·) produce n + 1 independent
linear equations for the unknowns.

Lemma 2. The probability π0 and the parameters φ(`)(−µ) for ` = 0, . . . , n− 1 are the unique
solution to the n + 1 linear equations,

e−riri(µ + ri)nA(−ri) + µnA(ri) = 0, i = 1, . . . , n + 1.
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Proof: For any zero of R(·) the right-hand side of (2.3) should vanish. Hence, for two companion
zeros ri and r2n+3−i = −ri, i = 1, . . . , n + 1, we get

e−riri(µ + ri)nA(−ri) + µnA(ri) = 0, (2.4)
−eriri(µ− ri)nA(ri) + µnA(−ri) = 0. (2.5)

The determinant of (2.4) and (2.5), treated as equations for A(−ri) and A(ri), is equal to
R(ri) = 0. Hence, (2.4) and (2.5) are dependent, so we may omit one of them. This leaves a
system of n + 1 linear equations for the unknowns π0 and φ(`)(−µ) for ` = 0, . . . , n − 1. The
uniqueness of the solution follows from the general theory of Markov chains that implies that
there is a unique equilibrium distribution and thus also a unique solution to (2.2). ¤

Once π0 and φ(`)(−µ) for ` = 0, . . . , n − 1 are determined, the transform φ(·) is known. It
remains to invert the transform. By collecting the terms that include e−s we can rewrite (2.3)
in the form

φ(s) =
P (s)
R(s)

+ e−s Q(s)
R(s)

, (2.6)

where P (s) and Q(s) are polynomials of degree 2n + 1 and n + 1, respectively. Since deg[R] is
greater than deg[P ] and deg[Q], expression (2.6) can be decomposed into distinctive irreducible
fractions. This leads to

φ(s) =
c1

s− r1
+ · · ·+ c2n+2

s− r2n+2
+ e−s

[
ĉ1

s− r1
+ · · ·+ ĉ2n+2

s− r2n+2

]
, (2.7)

where the coefficients ci and ĉi are given by

ci = lim
s→ri

P (s)
R(s)

(s− ri) =
P (ri)
R′(ri)

, ĉi = lim
s→ri

Q(s)
R(s)

(s− ri) =
Q(ri)
R′(ri)

. (2.8)

Note that the derivative R′(ri) is non-zero, since ri is a simple zero. Since the numerator of the
right-hand side of (2.6) vanishes at all points ri, we have

P (ri) = −e−riQ(ri), i = 1, . . . , 2n + 2.

Hence, from (2.8) it follows that
ci = −e−ri ĉi, (2.9)

and thus

φ(s) =
2n+2∑

i=1

ci

s− ri

[
1− eri−s

]
,

which is the transform of a mixture of 2n + 2 exponentials. These findings are summarised in
the following theorem.

Theorem 2. The density of the waiting time is given by

f(x) =
2n+2∑

i=1

cie
rix, 0 6 x < 1. (2.10)

Corollary 1. The throughput τ satisfies

τ−1 = E[P ] + E[W ] =
n

µ
+

2n+2∑

i=1

ci

r2
i

[1 + (ri − 1)eri ].

5



2.2 Differential equations approach

An alternative method to calculate the density f(·) is by means of differentiation. More precisely,
we differentiate (2.1) with respect to x obtaining

d

dx
f(1− x) = π0µ

ne−µx xn−1

(n− 1)!
+

∫ x

0
µne−µ(x−z) (x− z)n−1

(n− 1)!
f(z) dz. (2.11)

Multiplying with eµx and differentiating m more times, m = 1, . . . , n−1, with respect to x gives
us

dm

dxm

[
eµx d

dx
f(1− x)

]
= π0µ

n xn−m−1

(n−m− 1)!
+

∫ x

0
µneµz (x− z)n−m−1

(n−m− 1)!
f(z) dz. (2.12)

Note that the integral at the right hand side does not vanish. We shall need this remark later
in order to derive the initial conditions of the differential equation. Now, by differentiating the
one for m = n− 1 we have

dn

dxn

[
eµx d

dx
f(1− x)

]
= eµxf(x)µn or

n∑

k=0

(
n

k

)
µ−k dk+1

dxk+1
f(1− x) = f(x).

Up to this point we have differentiated with respect to x a total of n + 1 times. In order to
derive a homogeneous linear differential equation we replace x by 1 − y and repeat the same
procedure. This means that we shall differentiate (with respect to y now) a total of n + 1 times
more. We replace x by 1− y in the last relation and we obtain

n∑

k=0

(
n

k

)
µ−k(−1)k+1 dk+1

dyk+1
f(y) = f(1− y). (2.13)

The change of variables is practically equivalent to the replacement of s by −s that we did in
order to obtain equation (2.3). Differentiating once (2.13) with respect to y and combining the
result with (2.11) yields

n∑

k=0

(
n

k

)
µ−k(−1)k+1 dk+2

dyk+2
f(y) = π0µ

ne−µy yn−1

(n− 1)!
+

∫ y

0
µne−µ(y−z) (y − z)n−1

(n− 1)!
f(z) dz.

As before, we multiply with eµy and we differentiate m more times with respect to y, for
m = 1, . . . , n − 1. Furthermore, the remark we made before is still valid. Namely, all the
intermediate steps have a right hand side of the same form as in (2.12). One more differentiation
gives us

n∑

k=0

(
n

k

)
µ−k(−1)k+1 dn

dyn

[
eµy dk+2

dyk+2
f(y)

]
= eµyf(y)µn,

which after rewriting the derivatives and arranging the terms becomes

n∑

k=0

(
n

k

)
µ−k(−1)k+1

n∑

j=0

(
n

j

)
µ−j dj+k+2

dyj+k+2
f(y) = f(y). (2.14)
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Equation (2.14) is a homogeneous linear differential equation of order 2n+2. For the solution
we need the roots of the characteristic function

n∑

k=0

(
n

k

)
µ−k(−1)k+1

n∑

j=0

(
n

j

)
µ−jrj+k+2 = 1 or − r2

(
1− r

µ

)n (
1 +

r

µ

)n

= 1,

which agrees with R(r) = 0. By Lemma 1 we know that the roots of this equation are simple,
which means that the general solution of (2.14) is given by

f(x) =
2n+2∑

i=1

die
rix, 0 6 x < 1.

This proves Theorem 2, except that we still need to determine the coefficients di, i = 1, . . . , 2n+2.
For the solution we need as many initial conditions as the order of the differential equation.

We are going to derive them from the intermediate steps of differentiation. From (1.3) we have
that f(1) = 0 and this will be the first condition. We derive the other 2n + 1 conditions from
evaluating at zero each equation that we obtained from the intermediate steps of differentiation.
We do not use the last differentiation with respect to y, because this yields equation (2.14),
which is the differential equation. We summarise the above in the following relations: For
m = 1, . . . , n− 2 we have

d

dx
f(1− x)

∣∣∣∣
x=0

= 0,
dm

dxm

[
eµx d

dx
f(1− x)

]∣∣∣∣
x=0

= 0,

dn−1

dxn−1

[
eµx d

dx
f(1− x)

]∣∣∣∣
x=0

= π0µ
n,

dn

dxn

[
eµx d

dx
f(1− x)

]∣∣∣∣
x=0

= f(0)µn,

n∑

k=0

(
n

k

)
µ−k(−1)k+1 dk+2

dyk+2
f(y)

∣∣∣∣∣
y=0

= 0,
n∑

k=0

(
n

k

)
µ−k(−1)k+1 dm

dym

[
eµy dk+2

dyk+2
f(y)

]∣∣∣∣∣
y=0

= 0,

and
n∑

k=0

(
n

k

)
µ−k(−1)k+1 dn−1

dyn−1

[
eµy dk+2

dyk+2
f(y)

]∣∣∣∣∣
y=0

= π0µ
n.

Note that all these conditions define uniquely the coefficients di, but involve the unknown pa-
rameter π0. We obtain this last parameter by using the normalisation equation (1.4) and this
concludes the proof of Theorem 2. One observation is that by using this method, one needs to
solve a system of linear equations twice as big as the one that appears in Lemma 2. Furthermore,
we know that the coefficients di are equal to the coefficients ci that appear in (2.10), thus they
satisfy relation (2.9). However, these relations do not become immediately obvious from the
analysis.
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3 Phase-Type pick times

Let us now assume that the pick times follow an Erl(µ, n) with probability αn, n = 1, . . . , N , in
other words,

G(x) =
N∑

n=1

αn


1− e−µx

n−1∑

j=0

(µx)j

j!


 , x > 0. (3.1)

The class of the phase-type distributions of the above form is dense in the space of distribution
functions defined on [0,∞). This means that for any such distribution function F (·), there is a
sequence Fn(·) of phase-type distributions of this class that converges weakly to F (·) as n goes
to infinity; for details see Schassberger [2]. Below we show that the results of Subsection 2.1 can
be extended to pick time distributions of the form (3.1).

Transforming now (2.1) gives us formulas analogous to the ones that appeared in the Laplace
transform approach for Erlang pick times. So we have (cf. equation (2.2))

e−sφ(−s) = π0

N∑

n=1

αn


 µn

s(µ + s)n
+ e−(µ+s)

n−1∑

j=0

j∑

i=0

µj

i!(µ + s)j+1−i




+
N∑

n=1

αn


−e−s

s
+ e−(µ+s)

n−1∑

j=0

j∑

i=0

i∑

`=0

(
i

`

)
µj

i!(µ + s)j+1−i
φ(`)(−µ)




+φ(s)
N∑

n=1

αn

(
µn

s(µ + s)n

)
.

In order to obtain the transform φ(s) we form once more a 2× 2 system of linear equations by
replacing s with −s. This leads to the following result.

Theorem 3. For all s, the transform φ(s) satisfies

φ(s)R̃(s) = −e−ss(µ + s)N Ã(−s)−
N∑

n=1

αnµn(µ− s)N−nÃ(s), (3.2)

where

R̃(s) = s2(µ2 − s2)N +
N∑

n=1

N∑

m=1

αnαmµnµm(µ− s)N−n(µ + s)N−m,

Ã(s) = π0

N∑

n=1

αn


µn(µ + s)N−n + e−(µ+s)

n−1∑

j=0

j∑

i=0

sµj(µ + s)N−j−1+i

i!




+
N∑

n=1

αn


−e−s(µ + s)N + e−(µ+s)

n−1∑

j=0

j∑

i=0

i∑

`=0

(
i

`

)
sµj(µ + s)N−j−1+i

i!
φ(`)(−µ)


 .
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The unknowns π0 and φ(`)(−µ) for ` = 0, . . . , n − 1 can be determined in the same way
as in Subsection 2.1. The polynomial R̃(·) has exactly 2N + 2 zeros, with the property that
each zero s has a companion zero −s. We assume that all zeros are simple and label them
r̃1, . . . , r̃2N+2 such that r̃2N+3−i = −r̃i for i = 1, . . . , N + 1. Then the following lemma can be
readily established.

Lemma 3. The probability π0 and the parameters φ(`)(−µ) for ` = 0, . . . , n− 1 are the unique
solution to the N + 1 linear equations,

e−r̃i r̃i(µ + r̃i)N Ã(−r̃i) +
N∑

n=1

αnµn(µ− r̃i)N−nÃ(r̃i) = 0, i = 1, . . . , N + 1. (3.3)

Given π0 and φ(`)(−µ) for ` = 0, . . . , n− 1, the transform φ(·) is completely known. Partial
fraction decomposition of the transform yields

φ(s) =
2N+2∑

i=1

c̃i

s− r̃i

[
1− er̃i−s

]
,

from which we conclude that the density of the waiting time is a mixture of 2N +2 exponentials.
Hence, as it was the case for Erlang pick times, the density is given by

f(x) =
2N+2∑

i=1

c̃ie
r̃ix.

Remark 1. The analysis proceeds essentially in the same way when R(·) has multiple zeros. For
example, if r̃1 = r̃2 (so r̃1 and thus also r̃2N+2 are double zeros), then equation (3.3) for i = 1 is
identical to the one for i = 2. Nonetheless an additional equation can be obtained by requiring
that also the derivative of the right-hand side of (3.2) at s = r1 should vanish. The partial
fraction decomposition of φ(·) now becomes

φ(s) =
c̃1

(s− r̃1)2
[
1− er̃1−s − (s− r̃1)er̃1−s

]
+

2N+1∑

i=2

c̃i

s− r̃i

[
1− er̃i−s

]

+
c̃2N+2

(s− r̃2N+2)2
[
1− er̃2N+2−s − (s− r̃2N+2)er̃2N+2−s

]
,

the inverse of which is given by

f(x) = c̃1xer̃1x +
2N+1∑

i=2

c̃ie
r̃ix + c̃2N+2xer̃2N+2x.

Remark 2. In case the pick times follow a phase-type distribution of the form (3.1), we can still
obtain the solution by similar methods as in the differential equations approach of Subsection
2.2. If R̃(·) has only simple roots, then there are no differences in the analysis. If there are roots
with multiplicity greater than 1, the differential equation is solved in a similar but not identical
manner, involving exponentials multiplied with powers of x (cf. Remark 1). For each root r of
multiplicity k we need to have k linearly independent solutions, which in this case will be of the
form xierx, for i = 0, . . . , k − 1.
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Remark 3. Hyper-exponential distributions form another useful class of phase-type distribu-
tions. These distributions may be used to model pick times with squared coefficient of variation
greater than 1. The analysis for hyper-exponential pick times is very similar to the one presented
in this section.

4 Numerical results

This section is devoted to some numerical results. For various values of the mean pick time
E[P ] we show in Figure 1 the throughput τ versus the squared coefficient of variation of the
pick time, c2

P . The mean pick time is chosen comparable to the mean rotation time, which is
1/2. For each setting we fitted a mixed Erlang or hyper-exponential distribution to E[P ] and
c2
P , depending on whether the squared coefficient of variation is less or greater than 1 (see, for

example, Tijms [3]). More specifically, if 1/n 6 c2
P 6 1/(n − 1) for some n = 2, 3, . . ., then the

mean and squared coefficient of variation of the mixed Erlang distribution

G(x) = p


1− e−µx

n−2∑

j=0

(µx)j

j!


 + (1− p)


1− e−µx

n−1∑

j=0

(µx)j

j!


 , x > 0,

matches with E[P ] and c2
P , provided the parameters p and µ are chosen as

p =
1

1 + c2
P

[nc2
P − {n(1 + c2

P )− n2c2
P }1/2], µ =

n− p

E[P ]
.

On the other hand, if c2
P > 1, then the mean and squared coefficient of variation of the hyper-

exponential distribution

G(x) = p1(1− e−µ1x) + p2(1− e−µ2x), x > 0,

match with E[P ] and c2
P provided the parameters µ1, µ2, p1 and p2 are chosen as

p1 =
1
2

(
1 +

√
c2
P − 1

c2
P + 1

)
, p2 = 1− p1,

µ1 =
2p1

E[P ]
and µ2 =

2p2

E[P ]
.

For single-server queuing models it is well-known that the mean waiting time depends (approx-
imately linearly) on the squared coefficient of variation of the inter-arrival (and service) time.
The results in Figure 1, however, show that for the carousel model, the mean waiting time is
not very sensitive to the squared coefficient of variation of the pick time and thus neither is the
throughput τ ; it indeed decreases as c2

P increases, but very slowly. This phenomenon may be
explained by the fact that the waiting time of the picker is bounded by 1, i.e. the time for a full
rotation of the carousel.
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Figure 1: Plot of throughput vs. the squared coefficient of variation of the pick time.

5 Concluding remarks and further research

In this paper we have considered a system with two carousels operated by one picker. We have
shown that if the pick time follows a phase-type distribution, then the density of the waiting time
is a mixture of exponentials. Numerical results show that the squared coefficient of variation of
the pick time does not influence the throughput significantly.

We have solved recursion (1.1) under specific assumptions for the random variables Rn and
Pn. In particular, we assumed that Rn is uniformly distributed on [0, 1) and Pn follows a
phase-type distribution, for every n. This makes sense if one has a carousel application in mind.
Nonetheless, it is mathematically interesting to try and solve this recursion under less restrictive
assumptions. In further research we shall try to solve (1.1) allowing Rn and Pn to follow a more
general distribution.
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