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1 Introduction

We consider a storage model which can be on or off. When on, the buffer content
(storage level) increases at some state-dependent rate and the system can switch
to the off state at a state-dependent rate as well. When off, the content decreases
at some state-dependent rate (unless it is at zero) and the system can switch to
the on position at a state-dependent rate. The two-dimensional Markov process
M = {(Xt, It)|t ≥ 0}, where Xt denotes the buffer content and the “background
state” It is alternatingly on and off, is a special case of a piecewise determinis-
tic Markov process [5]. This type of model is often referred to as a fluid queue.
Fluid queues have frequently been used to model production systems, as well as
telecommunication systems at the burst level.

An interesting class of fluid queues is formed by the Markov-modulated fluid
queues, in which {It|t ≥ 0} is an underlying Markov process that determines the
rate at which the buffer content Xt increases or decreases; a key reference is [3].
An important recent generalization is the feedback fluid queue [1], in which not
only is the buffer content determined by the background process, but also is the
background process influenced by the buffer content. Feedback fluid queues may be
used for studying the interaction between a communication network and its sources.
E.g., feedback schemes in access communication networks were analyzed in [10, 11]
via a feedback fluid queue.

The model under consideration in the present paper may be viewed as a feedback
fluid queue with two background states and unlimited buffer content. The buffer
content Xt decreases or increases with a rate which depends on It, while changes
in It are determined by Xt. In addition, the rate at which Xt changes is also
determined by its own level. In storage processes, there is a long tradition of
studying storage systems, or dams, with a general release rate [6, 7]. Our main
goals are to study conditions for the existence of a stationary distribution of the
Markov process M, and to determine that stationary distribution as well as some
related quantities.

The paper is related to [8], which considers a fluid queue with i.i.d. (rather
than state dependent) on and off time pairs and state dependent production and
release rates. The paper also bears some relation to [14], which considers a feedback
fluid queue with state-dependent release rates. Scheinhardt et al. [14] allow a finite
number N ≥ 2 of background states, but restrict themselves to a finite buffer
content. The paper is also related to [4]. When restricting consideration of our
model to the states in which the buffer content is decreasing, one obtains a queue
with workload-dependent arrival and service rates, and with service requests that
depend on the workload found at the time of their arrival. In [4] queues with
workload-dependent arrival and service rates have been studied, mainly with the
restriction of i.i.d. service requests. The close relation between fluid queues and
ordinary queues has been extensively studied in [9].
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The paper is organized as follows. Section 2 contains a model description. The
stationary distribution of the Markov process under consideration is determined in
Section 3. The conditions for the existence of a stationary distribution are quite
intricate; they are discussed in Section 4. Sections 5, 6 and 7 are respectively
devoted to the return time to a given buffer level, to the process restricted to down
(off) or up (on) intervals, and to the stationary distribution of the buffer content
at times when the process changes direction (from up to down or vice versa). In
Section 8 we prove that, under some additional conditions, convergence to the
stationary distribution is at an exponential rate.

2 The Model

We consider a storage system, or fluid queue, which may be modelled as a piecewise
deterministic Markov process M = {(Xt, It)| t ≥ 0} with state space [0,∞)×{0, 1}.
When in state (x, 1), the process decreases at rate r1(x) or switches to state (x, 0)
with rate λ1(x). When in state (x, 0), the process increases at rate r0(x) or switches
to state (x, 1) with rate λ0(x). We assume that r1(x) and λ1(x) are left continuous
and that r0(x) and λ0(x) are right continuous. To avoid an infinite number of
switches we assume that both λ0(·) and λ1(·) are bounded. We further assume
that r0(x) > 0 for all x ≥ 0 and that r1(x) > 0 for all x > 0 and r1(0) = 0 and
that λ1(0) > 0 (so that the process does not get stuck in state (0, 1) forever). With
these assumptions the extended generator of this process can be written as follows:

Af(x, 1) = −r1(x)f ′(x, 1) − λ1(x)f(x, 1) + λ1(x)f(x, 0),
Af(x, 0) = r0(x)f ′(x, 0) − λ0(x)f(x, 0) + λ0(x)f(x, 1),

(1)

for differentiable f(x, i), where f ′(x, i) is the derivative with respect to x.

3 The Stationary Distribution

In this section we shall compute the unique stationary distribution for the Markov
process M = {(Xt, It)| t ≥ 0}. To this end we notice that the process sampled at
exponential times is Feller; i.e., x → U1f(x, j) where U1 is the transition function
of the process sampled at exp(1) distributed times (independent of our process),
is continuous in x for all f(x, j) that are continuous in x. When all states com-
municate, which will be the case under some natural conditions that are discussed
in Section 4, M is an irreducible T-chain and the existence of a finite invariant
measure for it will make it automatically Harris recurrent [12]. Furthermore, the
equation (I −A)U1 = I implies that a measure µ that satisfies∫

Af(x, 0)µ(dx, 0) +
∫

Af(x, 1)µ(dx, 1) = 0,

is invariant for U1 and by the results of [2] it is also invariant for the original process.
If the measure µ is finite, M is immediately positive Harris recurrent. With that
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in mind we are now set to compute an invariant distribution for M. Let us assume
that a stationary distribution π exists and is of the form

Eπf(Xt, It) = c0

∫ ∞

0
g0(x)f(x, 0)dx + c1

∫ ∞

0
g1(x)f(x, 1)dx + pf(0, 1) , (2)

where gi(·) are densities (integrate to 1) and c0 +c1 +p = 1. In particular, for every
Borel set A, and with 1A(0) denoting the indicator function of the event {0 ∈ A},
the stationary distribution π is given by

π(A, 0) = c0
∫
A g0(x)dx,

π(A, 1) = c1
∫
A g1(x)dx + p1A(0) .

(3)

Theorem 1 Assume that a stationary distribution π exists and is of the form (2).
(i) If

∫ ε
0

(
λ0(u)
r0(u) − λ1(u)

r1(u)

)
du is finite for some ε > 0 then

gi(x) =
1

αiri(x)
e
−

∫ x

0

(
λ0(u)
r0(u)

−λ1(u)
r1(u)

)
du

, (4)

where

αi =
∫ ∞

0

1
ri(x)

e
−

∫ x

0

(
λ0(u)

r0(u)
−λ1(u)

r1(u)

)
du

dx ; (5)

furthermore,
ci =

αi

α0 + α1 + 1
λ1(0)

, i = 0, 1,

p =
1

λ1(0)

α0 + α1 + 1
λ1(0)

.

(6)

(ii) Otherwise,

gi(x) =
1

αiri(x)
e
−

∫ x

ε

(
λ0(u)
r0(u)

−λ1(u)
r1(u)

)
du

, (7)

where
∫ x
ε = − ∫ ε

x for x < ε, and

αi =
∫ ∞

0

1
ri(x)

e
−

∫ x

ε

(
λ0(u)
r0(u)

−λ1(u)
r1(u)

)
du

dx ; (8)

furthermore,
ci =

αi

α0 + α1
, i = 0, 1,

p = 0.

(9)
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Proof: From the form of the generator we have that

0 = c0
∫ ∞
0 g0(x)Af(x, 0)dx + c1

∫ ∞
0 g1(x)Af(x, 1)dx + pAf(0, 1)

= c0
∫ ∞
0 [r0(x)g0(x)f ′(x, 0) − λ0(x)g0(x)f(x, 0) + λ0(x)g0(x)f(x, 1)]dx

+c1
∫ ∞
0 [−r1(x)g1(x)f ′(x, 1) − λ1(x)g1(x)f(x, 1) + λ1(x)g1(x)f(x, 0)]dx

−pλ1(0)f(0, 1) + pλ1(0)f(0, 0) .

(10)
Taking f(x, 1) ≡ f(x, 0) we obtain

c0

∫ ∞

0
r0(x)g0(x)f ′(x, 0)dx = c1

∫ ∞

0
r1(x)g1(x)f ′(x, 0)dx . (11)

Since (11) should hold for all differentiable functions f(·, 0) for which the integrals
are well defined, this yields the expected level crossings identity (rate up = rate
down):

c0r0(x)g0(x) = c1r1(x)g1(x). (12)

Taking either f(x, 0) ≡ 0 and f(x, 1) ≡ 1, or f(x, 0) ≡ 1 and f(x, 1) ≡ 0, gives

c0

∫ ∞

0
λ0(x)g0(x)dx = c1

∫ ∞

0
λ1(x)g1(x)dx + pλ1(0), (13)

which is also expected, as it implies that the stationary rate at which the second
coordinate of the process moves from state 0 to state 1 is equal to the rate at which
it moves from state 1 to state 0. This is also a type of level crossings identity.

We now substitute (13) in (10) to obtain

0 = c0
∫ ∞
0

[
r0(x)g0(x)f ′(x, 0) − λ0(x)g0(x)[f(x, 0) − f(0, 0)]

+λ0(x)g0(x)[f(x, 1) − f(0, 1)]
]
dx

+c1
∫ ∞
0

[
− r1(x)g1(x)f ′(x, 1) − λ1(x)g1(x)[f(x, 1) − f(0, 1)]

+λ1(x)g1(x)[f(x, 0) − f(0, 0)]
]
dx .

(14)

With f(x, i) − f(0, i) =
∫ x
0 f ′(u, i)du and a change of the order of integration, (14)

becomes

0 =
∫ ∞
0 [c0r0(x)g0(x) − c0

∫ ∞
x λ0(u)g0(u)du + c1

∫ ∞
x λ1(u)g1(u)du] f ′(x, 0)dx

+
∫ ∞
0 [−c1r1(x)g1(x) − c1

∫ ∞
x λ1(u)g1(u)du + c0

∫ ∞
x λ0(u)g0(u)du] f ′(x, 1)dx .

(15)
Since (15) should hold for all differentiable functions for which the integrals are
well defined, we obtain that necessarily

0 = c0r0(x)g0(x) − c0

∫ ∞

x
λ0(u)g0(u)du + c1

∫ ∞

x
λ1(u)g1(u)du, (16)
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as well as

0 = −c1r1(x)g1(x) − c1

∫ ∞

x
λ1(u)g1(u)du + c0

∫ ∞

x
λ0(u)g0(u)du . (17)

Due to (12) the last two equations are identical.
Let Di(x) be such that D′

i(x) = λi(x)/ri(x). Then, with h(x) = c0r0(x)g0(x) =
c1r1(x)g1(x) we have that

0 = h(x) −
∫ ∞

x
D′

0(u)h(u)du +
∫ ∞

x
D′

1(u)h(u)du, (18)

and thus
h′(x) = −(D′

0(x) − D′
1(x))h(x). (19)

This implies that
h(x) = ce−[D0(x)−D1(x)]. (20)

Since the gi(x) are densities, (4) follows. It remains to compute the constants
c0, c1 and p. Firstly, recall that c0 + c1 + p = 1. Secondly, (12) implies that
c1/c0 = α1/α0. Finally, letting x → 0 in (16) and using (13), one obtains that
pλ1(0) = c0r0(0)g0(0). If D0(x) − D1(x) → ∞ as x → 0 or λ1(0) = ∞, then
necessarily p = 0. Otherwise (4) with x = 0 yields:

p =
c0

λ1(0)α0
. (21)

The theorem follows.

Remark 1 Several special cases of this result are contained in the literature. E.g.,
(i) the case λi(x) ≡ λi, µi(x) ≡ µi gives a classical two-state fluid queue with
exponential buffer content densities g0(·) and g1(·). And (ii) if λ0(x) and r0(x)
go to infinity with λ0(x)

r0(x) ≡ µ, one obtains an M/M/1 queue with exp(µ) service
time distribution, and with state-dependent service rate r1(x) and state-dependent
arrival rate λ1(x). The stationary workload distribution of that model has already
been derived in Section 4 of [4].

Remark 2 It should be noted that gi(x)ri(x) depends on λj(x) and rj(x), j = 0, 1,
only via their ratio. Similar observations for related models have been made in [4],
and have been explained there via a rescaling of time.

It is evident that a necessary condition for the results of the theorem to be valid
is that α0 and α1 are both finite. In the next section we study the conditions for
the existence of a stationary distribution of M in detail.
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4 Conditions for Irreducibility

Since we showed that whenever λ1(0) > 0, α0 < ∞ and α1 < ∞ there is a sta-
tionary distribution, in order to show that it is unique it suffices to prove that the
process M is irreducible and nonexplosive. This will also imply that the process is
positive Harris recurrent. We shall show that the following set of conditions implies
that M is indeed irreducible and nonexplosive.

Condition 1
∫ ∞
0

1
ri(x)e

−
∫ x

1

(
λ0(u)

r0(u)
−λ1(u)

r1(u)

)
du

dx < ∞ for i = 0, 1.

Condition 2
∫ y
x

1
ri(u)du < ∞ for all 0 < x < y < ∞ and i = 0, 1.

Condition 3
∫ y
x

λi(u)
ri(u) du < ∞ for all 0 < x < y < ∞ and i = 0, 1.

Condition 4
∫ ∞
x

1
r0(u)du = ∞ and

∫ ∞
x

λ0(u)
r0(u) du = ∞ for some (hence all) x > 0.

Condition 5 If
∫ y
0

1
r1(u)du = ∞ then

∫ y
0

λ1(u)
r1(u) du = ∞ for some (hence all) y > 0.

Remark 3 Note that Conditions 1 and 4 together imply that
∫ ∞
x

(
λ0(u)
r0(u) − λ1(u)

r1(u)

)
du=

∞ for any given x.

Condition 1 states that α0 < ∞ and α1 < ∞. Note that the lower limit of
the integral in the exponent is 1 and not 0. This is not a mistake, since we want
to allow for the case where D0(x) − D1(x) → ∞ as x → 0. When x < 1 then∫ x
1 = − ∫ 1

x , as usual.
Next assume that given we are in state 0 (1), the time to get from x to y (y to

x), where 0 < x < y < ∞, is finite. The condition for this is Condition 2. Two
types of explosion may be possible in such a process. One is where the content
reaches ∞ in a finite time and the other where there may be an infinite number
of switches between 0 and 1 in a finite time. To prevent the first it suffices to
assume that the first part of Condition 4 holds. In order to prevent the second we
have assumed that λi(·) are bounded. To make sure that all states are reachable,
it suffices to assume that starting from any state (x, 0) ((x, 1)), the time until a
switch is made is greater than the time to reach any level y > x (y < x) and is a.s.
finite. Starting from (x, 0) the time to reach y > x (provided there is no switch) is
θ(x, y) =

∫ y
x

1
r0(u)du. Denoting T to be the switching time and wx,0(t) the unique

solution of wx,0(t) = x +
∫ t
0 r0(wx,0(u))du, we have that

Px,0[T > θ(x, y)] = e−
∫ θ(x,y)

0
λ0(wx,0(s))ds = e

−
∫ y

x

λ0(u)
r0(u)

du
.

Therefore, it is immediate that in order for Px,0[T > θ(x, y)] to be positive for every
finite y > x , we need to assume that Condition 3 holds for i = 0. Since the first
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part of Condition 4 implies that θ(x, y) → ∞ as y → ∞, the second part assures
us that T is a.s. finite.

Similar reasoning applies to the switching time from 1 to 0 with the possible
exception when state (0, 1) is not reachable, in which case this state can be re-
moved from the state space in order to maintain irreducibility. This happens when∫ y
0

1
r1(u)du = ∞. In the latter case, the condition that the switching time is almost

surely finite is the necessary condition in Condition 5.

5 Expected Excursion Times

In this section we compute the expected time ER(y) that it takes for the buffer
content to return to a given level y after an instant where it crossed it from below.

Theorem 2
ER(y) = α0(y) + α1(y), y > 0, (22)

where

αi(y) =
∫ ∞

y

1
ri(x)

e
−

∫ x

y

(
λ0(u)

r0(u)
−λ1(u)

r1(u)

)
du

dx , i = 0, 1. (23)

If the conditions for p > 0 are satisfied, then it also holds for y = 0.

Proof: For y = 0, when p > 0, if µC is the expected regenerative epoch (cycle
time), then it is clear that

p =
1

λ1(0)

µC
,

where p is given by (6). So µC = α0 + α1 + 1
λ1(0)

. Hence, the expected return
time to zero must be α0 +α1, which indeed equals α0(0) + α1(0). By reflecting the
process at some positive level y instead of zero (that is by setting r1(y) = 0 and
starting the process at (y, 0)) the result for any y > 0 is easily concluded.

The following intuitive argument also leads to the same formula for µC . The fraction
of time the buffer content spends just above level zero in a given cycle can be
thought of as the density at zero c0g0(0+) + c1g1(0+). During a single cycle, the
buffer content spends the infinitesimal time 1

r0(0+) + 1
r1(0+) just above level zero.

Therefore

c0g0(0+) + c1g1(0+) =
1

r0(0+) + 1
r1(0+)

µC
.

Applying Theorem 1 we see that this is consistent with µC = α0 + α1 + 1
λ1(0) .
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6 The Process Restricted to Down or Up In-

tervals

The process restricted to down intervals (off state) decreases at a rate r1(x) when
at level x > 0 and has jumps up which are state-dependent. Standard regenerative
arguments imply that for the case p > 0, the stationary distribution function of
this restricted content process is given by

F (w) =
1

λ1(0) + α1
∫ w
0 g1(x)dx

1
λ1(0)

+ α1
. (24)

When λ1(x) = λ, r1(x) = 1 for x > 0, λ0(x)/r0(x) = µ for x ≥ 0, and λ < µ, it
is easy to check that 1 − F (w) = λ

µe−(µ−λ)w. For this case the restricted process is
the workload process of an M/M/1 queue for which this formula is well known.

As for the process restricted to the up intervals (on state), the stationary dis-
tribution of the content level has the density g0(·).

7 The Stationary Distribution of Peaks and

Valleys

In this section we want to compute the distribution of local minima and maxima
of M. Each forms a discrete time Markov process. We call the local maxima peaks
and the local minima valleys. Beginning with valleys and assuming that p > 0,
Theorem 5.1 and the resulting equation (20) of [4] cover the model considered
here, when we restrict M to down intervals. Therefore, if we denote by VD a
random variable that has the stationary distribution of the process restricted to
down intervals and by WD the stationary distribution of the discrete time process
of valleys (which in the restricted process are the states right before jumps up) then
for a given bounded Borel measurable function f ,

Ef(WD) =
Eλ1(VD)f(VD)

Eλ1(VD)
. (25)

Since, by (24), for a given bounded Borel measurable function h we have that

Eh(VD) =
1

λ1(0)h(0) + α1
∫ ∞
0 h(u)g1(u)du

1
λ1(0) + α1

, (26)

it follows that for a given bounded f ,

Ef(WD) =
f(0) + α1

∫ ∞
0 λ1(u)g1(u)f(u)du

1 + α1
∫ ∞
0 λ1(u)g1(u)du

. (27)

Taking f(u) = 1[0,x](u), this implies that the stationary distribution function of the
valleys is given by

FWD
(x) =

1 + α1
∫ x
0 λ1(u)g1(u)du

1 + α1
∫ ∞
0 λ1(u)g1(u)du

. (28)
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When p = 0 then WD has the density

fWD
(x) =

λ1(x)g1(x)∫ ∞
0 λ1(u)g1(u)du

. (29)

Similarly, it can be shown by identical methods that if WU denotes a random
variable having the stationary distribution of the discrete time peak process, then
it has the following density:

fWU
(x) =

λ0(x)g0(x)∫ ∞
0 λ0(u)g0(u)du

. (30)

Remark 4 Equations (28)-(30) show that the densities of valleys and peaks are
proportional to λ0(x)g0(x) and λ1(x)g1(x), respectively. A similar result, which
may be viewed as a PASTA generalization, was derived in [4] for an M/G/1 queue
with state-dependent arrival rate and service speed. It should also be noted that, cf.
Remark 2, the densities of valleys and peaks depend on λj(x) and rj(x), j = 0, 1,
only via their ratio.

8 Exponential Ergodicity

In this section we impose the following restrictions on the process parameters,
that will ensure that the convergence to the stationary distribution π is at some
exponential rate, i.e., that M is f-exponentially ergodic for some function f > 1:
Condition A.1. For some ε > 0,

sup
x≥1

∫ ∞

x

λ0(u)
r0(u)

e
−

∫ u

x

λ0(v)

r0(v)
dv[λ1(x)

∫ u

x
(

1
r0(v)

+
1

r1(v)
)dv]du ≤ 1 − ε.

Condition A.2. There exists a c∗ > 0 so that

sup
x>1

λ1(x)
∫ ∞

x

λ0(u)
r0(u)

e
−

∫ u

x

λ0(v)

r0(v)
dv

e
c∗

∫ u

x
( 1

r0(v)
+ 1

r1(v)
)dvdu = B < ∞.

We shall show that under those conditions the process M is f -exponentially ergodic
as defined in [13], with f = V + 1, V to be defined below:

V (x, 1) =




1 if x < 1,

e
c
∫ x

1
1

r1(u)
du if x ≥ 1,

V (x, 0) =
∫ ∞

x

λ0(u)
r0(u)

e
−

∫ u

x

λ0(v)

r0(v)
dv

e
∫ u

x
c

r0(v)
)dv

V (u, 1)du.

We do this by verifying that AV (x, i) ≤ −k1V (x, i) + k2 for some k1 > 0 and
k2 < ∞, thus verifying Condition (CD3) of [13]. The verification for AV (x, 0) is
easy:

AV (x, 0) = r0(x)(−λ0(x)
r0(x) V (x, 1) + λ0(x)

r0(x) V (x, 0) − c
r0(x)V (x, 0))

−λ0(x)V (x, 0) + λ0(x)V (x, 1)
= −cV (x, 0).

(31)
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Now consider AV (x, 1). With R1(x) =
∫ x
1

1
r1(u)du for x ≥ 1, we have

AV (x, 1) = −cecR1(x)1{x>1} − λ1(x)V (x, 1) + λ1(x)V (x, 0). (32)

It is easy to see that for x < 1, AV (x, 1) is bounded as a product of a continuous
function and a bounded function λ1(x). For x ≥ 1,

AV (x, 1) = λ1(x)cecR1(x)
∫ ∞
x

λ0(u)
r0(u) e

−
∫ u

x

λ0(v)

r0(v)
dv

[c−1(ec
∫ u

x
( 1

r0(v)
+ 1

r1(v)
)dv − 1) − 1

λ1(x) ]du.
(33)

Using the Taylor expansion

e
c
∫ u

x
( 1

r0(v)
+ 1

r1(v)
)dv ≤ 1 + c

∫ u
x ( 1

r0(v) + 1
r1(v))dv

+ c2

2 (
∫ u
x ( 1

r0(v) + 1
r1(v))dv)2ec

∫ u

x
( 1

r0(v)
+ 1

r1(v)
)dv

,
(34)

it follows that

AV (x, 1) ≤ cecR1(x){∫ ∞
x

λ0(u)
r0(u) e

−
∫ u

x

λ0(v)

r0(v)
dv[λ1(x)

∫ u
x ( 1

r0(v) + 1
r1(v) )dv − 1]

+λ1(x)ecR1(x) c
2(

∫ u
x ( 1

r0(v) + 1
r1(v) )dv)2ec

∫ u

x
( 1

r0(v)
+ 1

r1(v)
)dv}du.

(35)

But by Condition A.1 above and Condition 4, for x ≥ x0,
∫ ∞

x

λ0(u)
r0(u)

e
−

∫ u

x

λ0(v)
r0(v)

dv[λ1(x)
∫ u

x
(

1
r0(v)

+
1

r1(v)
)dv − 1]du < −ε. (36)

As for the second term in the expression for AV (x, 1), we use the inequality x2 ≤
2∆−2e∆x with ∆ = c∗

2 and c < ∆ to show that

(
∫ u

x
(

1
r0(v)

+
1

r1(v)
)dv)2ec

∫ u

x
( 1

r0(v)
+ 1

r1(v)
)dv

< 2∆−2e
c∗

∫ u

x
( 1

r0(v)
+ 1

r1(v)
)dv

, (37)

and according to Condition A.2 above,

cecR1(x){∫ ∞
x

λ0(u)
r0(u) e

−
∫ u

x

λ0(v)

r0(v)
dv

λ1(x) c
2

∫ u
x ( 1

r0(v) + 1
r1(v))dv)2ec

∫ u

x
( 1

r9(v)
+ 1

r1(v)
)dvdu}

< c2ecR1(x)∆−2B.

(38)
It thus follows that with c as above and x > 1,

AV (x, 1) ≤ ecR1(x)[−cε + c2∆−2B]. (39)

We now choose c < ε∆2

2B and we get that for x ≥ x0,

AV (x, 1) ≤ −cε

2
V (x, 1), (40)

and it is bounded for x < x0. It follows that the functions V (x, i), i = 0, 1, satisfy
condition (CD3) of [13] and thus Theorem 6.1 of [13] implies that M is exponentially
ergodic.
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