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Jürg Hüsler, Vladimir Piterbarg

February 11, 2003

Abstract: The maximum MT of the storage process Y (t) = sups≥t(X(s) −
X(t) − c(s − t)) in the interval [0, T ] is dealt with, in particular for growing inter-
val length T . Here X(s) is a fractional Browninan motion with Hurst parameter,
0 < H < 1. For fixed T the asymptotic behaviour of MT was analysed by Piterbarg
(2001) by determining an approximation for the probability P{MT > u} for u →∞.
Using this expression the convergence P{MT < uT (x)} → G(x) as T → ∞ is de-
rived where uT (x) →∞ is a suitable normalization and G(x) = exp(− exp(−x)) the
Gumbel distribution. Also the relation to the maximum of the process on a dense
grid is analysed.
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1 Introduction

We consider the storage process

Y (t) = sup
s≥t

(X(s)−X(t)− c(s− t))

where X(t), t ≥ 0, is a Fractional Brownian Motion (FBM) with Hurst param-
eter H, 0 < H < 1 and the constant c > 0 is the service rate. The FBM is
a centered Gaussian process with stationary increments having a.s. continu-
ous sample paths such that E(X(t)−X(s))2 = |t− s|2H , hence with variance
Var(X(t)) = |t|2H .
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This storage process was considered in Piterbarg (2001) who derived re-
sults on the large deviations. The particular probability P{Y (0) > u} =
P{supt≥0 X(t)− ct > u} was studied by Duffield and O’Connel (1996), Norros
(1997) and Nayaran (1998). In particular for u →∞ the asymptotic behaviour
was derived in Hüsler and Piterbarg (1999) and Nayaran (1998). Albin and
Samorodnitsky generalize the result of Piterbarg (2001) for infinitely divisible
input processes.

Piterbarg (2001) analysed the supremum M(T ) = supt∈[0,T ] Y (t) of the
process Y (t) in a finite interval [0, T ]: P{M(T ) > u} for large u. His proofs
showed that T can even depend on u, if T is contained in a certain interval
depending on u, without changing the results (see Corollary 2). We continue
in this paper to investigate the asymptotic behaviour of the supremum M(T )
where T is growing in relation to u, now growing faster, so that T is not
included in that interval. However, we assume that u = uT depends on T , in
the sense of a normalization, such that we get an asymptotic distribution for
the supremum M(T ) (Theorem 1):

P{M(T ) ≤ uT (x)} → G(x) = exp(−e−x)

for any x ∈ R and some suitable normalization uT (x) = a(T )x + b(T ) where
a(T ) and b(T ) are given in (6). The derivation of this result reveals also the

complete dependence of the maximum M
(δ)
T defined with respect to X(iδ),

taken on a discrete grid with mesh δ = δ(T ) > 0. This maximum depends on
the observations X(iδ), only, hence Ỹ (iδ) = supl≥0(X((l + i)δ)−X(iδ)− clδ).
We will note that if H > 1/2, then δ does not tend to 0, but tends to ∞.
(Theorem 2).

The next section discusses some properties of the storage process needed
for the derivation of the two main results treated in Section 3.

2 Preliminaries

We state here some needed relations which were derived in Piterbarg (2001).
We begin with the relation

P

(
sup

t∈[0,T ]

Y (t) ≤ u

)
= P

(
sup

s∈[0,T/u], τ≥0

Z(s, τ) ≤ u1−H

)

where

Z(s, τ) =
X(u(s + τ))−X(su)

τHuHv(τ)
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with v(τ) = τ−H + cτ 1−H . The variance of the field is v−2(τ). Note that
Z(s, τ) is not dependent on u, that means for any u the Gaussian field Z(s, τ)
has the same distribution. Thus we do not use u as additional parameter in
the notation of Z(s, τ). This is relation (3) of Piterbarg (2001). It is basic for
the derivation of the limit distribution of M(T ).

The correlation function r(s, τ ; s′, τ ′) of Z(s, τ) equals

r(s, τ ; s′, τ ′) = EZ(s, τ)Z(s′, τ ′)v(τ)v(τ ′)

=
−|s− s′ + τ − τ ′|2H + |s− s′ + τ |2H + |s− s′ − τ ′|2H − |s− s′|2H

2τHτ ′H
.

We note that Z(s, τ) is stationary in s, but not in τ . σZ(τ) = v−1(τ) has a
single maximum point at τ0 = H/(c(1−H)). Taylor expansions show that

σZ(τ) = v−1(τ) =
1

A
− B

2A2
(τ − τ0)

2 + O((τ − τ0)
3) (1)

as τ → τ0, where

A :=
1

1−H

(
H

c(1−H)

)−H

= v(τ0),

B := H

(
H

c(1−H)

)−H−2

= v′′(τ0).

and also

r(s, τ ; s′, τ ′) = 1− 1 + o(1)

2τ 2H
0

(|s− s′ + τ − τ ′|2H + |s− s′|2H) (2)

as s−s′ → 0, τ → τ0, τ ′ → τ0. These relations are derived in Piterbarg (2001).
We need in addition an expression of the correlation function for |s−s′| → ∞.
By series expansion we find for any τ, τ ′ with 0 < τ1 < τ, τ ′ < τ2 < ∞, with
fixed τ1 < τ0 < τ2

|r(s, τ ; s′, τ ′)| ≤ C|s− s′|2H−2

for some constant C > 0 and all s, s′ with |s− s′| sufficiently large, since

|r(s, τ ; s′, τ ′)| =
|s− s′|2H

2(ττ ′)H

(
−|1 +

(τ − τ ′)
(s− s′)

|2H + |1 +
τ

(s− s′)
|2H

+|1− τ ′

(s− s′)
|2H − 1

)

≤ |s− s′|2H

τ 2H
1

2H|2H − 1||s− s′|−2τ 2
2 ≤ C|s− s′|2H−2
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if 2H 6= 1. For 2H = 1, we have r(s, τ, s, τ ′) = 0 for large |s − s′| since the
increments of the Brownian motion on disjoint intervals are independent.

3 Asymptotic approximations

Lemma 2 of Piterbarg (2001) says that we can restrict the considered domain
of (s, τ) to a domain with |τ − τ0| ≤ log v/v, since there exists a constant C
such that for any v, T

P{ sup
|τ−τ0|≥log v/v

0≤s≤T

AZ(s, τ) > v} ≤ CTv2/H exp

(
−1

2
v2 − b log2 v

)
(3)

where b = B/(2A). We will choose v = Au1−H
T .

Then we need Lemma 5 from Piterbarg (2001) for the remaining domain
(with a correction of a misprint). Pickands constants with repect to α = 2H
in the case of FBM are denoted by H2H .

Lemma 1. (Lemma 5, Piterbarg, 2001). For any L > 0, with b = B/(2A)
and a = 1/(2τ 2H

0 )

P{ sup
|τ−τ0|≤log v/v

0≤s≤L

AZ(s, τ) > v} =
√

πa
2
H b−

1
2H2

2HLv
2
H
−1Ψ(v)(1 + o(1))

as v →∞. This holds also for L = v−1/H′
, with 1 > H ′ > H.

Actually we need the slightly more general result mentioned above which
readily follows from the proof of the Lemma:

Corollary 2. The assertion of the Lemma 1 holds true for L, depending of v
such that v−1/H′

< L < exp(cv2), for any H ′ ∈ (H, 1) and c ∈ (0, 1/2).

For any L such that L/u satisfies the restriction of Corollary 2 we have
together with (3) and Lemma 1 where v = Au1−H → ∞, setting τ ∗(u) =
log(Au1−H)/Au1−H , with u →∞
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P


 sup

s∈[0,L/u]
τ≥0

AZ(s, τ) > Au1−H


 = P


 sup

s∈[0,L/u]
|τ−τ0|≤τ∗(u)

AZ(s, τ) > Au1−H




+ O


P


 sup

s∈[0,L/u]
|τ−τ0|>τ∗(u)

AZ(s, τ) > Au1−H







∼ c1 (L/u)
(
Au1−H

)2/H−1
Ψ

(
Au1−H

)

∼ c2Luh exp

(
−1

2
A2u2−2H

)
, (4)

with h = 2(1−H)2

H
− 1 where

c1 =
√

πa2/Hb−1/2H2
2H and c2 = a2/H (2b)−1/2H2

2H A2/H−2

are constants evaluated from Lemma 1.
We are going to apply (4) for subdomains {(s, τ) : s ≤ L/u, τ > 0} of the

domain {(s, τ) : s ≤ T/u, τ > 0} with suitably chosen L = L(T ) such that
L/u satisfies the restriction of Corollary 2. Obviously u = uT depends on T
as mentioned. Then we will show that the exceedances in these subdomains
are asymptotically independent. The product of these probabilities will reveal
the asymptotic law for the supremum on the whole domain. This asymptotic
expression is based on the summation of the probabilities (4) related to the
subdomains. In the next step we derive uT = uT (x) = a(T )x + b(T ).

The normalizating functions b(T ) and a(T ) are such that the asymptotic
equation, for T →∞, holds:

c2T
[
b(T ) + xa(T )

]h

exp

(
−1

2
A2(b(T ) + xa(T ))2−2H

)
→ e−x. (5)

We get by a lengthy calculation that

b(T ) = (2A−2 log T )1/(2(1−H)) +

[
h(2A−2)1/(2(1−H)) log(2A−2 log T )

4(1−H)2

+
(2A−2)1/(2(1−H)) log c2

2(1−H)

]
(log T )−(1−2H)/(2(1−H)

a(T ) =
(2A−2)1/(2(1−H))

2(1−H)
(log T )−(1−2H)/(2(1−H)) (6)
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as T →∞. Note that a(T ) is a positive function with

a(T )/ b(T ) → 0 as T →∞, (7)

for any H < 1 and that

b(T ) ∼ (2A−2 log T )1/(2(1−H)). (8)

These normalizations are derived as follows. Observe that

1

2
A2(b(T ) + xa(T ))2(1−H) = log T

[
1 +

(
h log(2A−2 log T )

4(1−H)2

+
log c2

2(1−H)
+

x

2(1−H)

)
(log T )−1

]2(1−H)

= log T +

(
h log(2A−2 log T )

2(1−H)
+ log c2 + x + o(1)

)

With this expression in the exponential term, the left hand side of (5) is
asymptotically equivalent to

c2Tbh(T )T−1(2A−2 log T )−h/2(1−H)c−1
2 exp(−x + o(1)) → exp(−x)

as T →∞. So we state the limit distribution of MT .

Theorem 1. Let MT = sup0≤t≤T Y (t) be the supremum of the storage
process Y (t) with FBM as input, with Hurst parameter H < 1. Then with the
normalizations a(T ) and b(T ) we have

P{MT ≤ b(t) + x a(T )} → exp(−e−x)

as T →∞.

By (4) and (5) we find also for any fixed x and suitably large L(T ) which
defines the subdomain {(s, τ) : s ≤ L(T ), τ ≥ 0}

P

(
sup

s∈[0,L(T )], τ≥0

Z(s, τ) > (b(T ) + xa(T ))1−H

)

∼ c2L(T )(b(T ) + xa(T ))h+1 exp

(
−A2

2
(b(T ) + xa(T ))2−2H

)

∼ (L(T )b(T )/T ) exp(−x).
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if L(T ) satisfies A1/H′
(b(T ) + xa(T ))−(1−H)/H′ ≤ L(T ) ≤ exp(cA2(b(T ) +

xa(T ))2(1−H)) for some 1 > H ′ > H and c < 1/2. The condition of Corol-
lary 2 holds for L(T ), if

(1 + o(1))A1/H′
[b(T )]−(1−H)/H′ ≤ L(T ) ≤ exp((2 + o(1))c log T ) = T (2+o(1))c

for some c < 1/2, by using (8). We choose a slowly increasing L(T ): L(T ) =
vT = Au1−H

T ∼ A(b(T ))1−H ∼ (2 log T )1/2 which satisfies the condition of
Corollary 2. Hence, we will use

P

(
sup

s∈[0,L(T )], τ≥0

Z(s, τ) > (b(T ) + xa(T ))1−H

)

∼ c2 L(T ) (b(T ))h+1 exp

(
−A2

2
(b(T ) + xa(T ))2−2H

)
(9)

as T →∞.

Now we work in the following tedious, but known way (cf. Leadbetter et
al. (1983)). For L(T ) and 0 < δ < L(T ) define the two-dimensional intervals
Ik = [(k − 1)L(T ), kL(T ) − δ) × J(τ0) and I∗k = [kL(T ) − δ, kL(T )) × J(τ0)
for any k ≥ 1, where J(τ0) = {τ : |τ − τ0| ≤ τ ∗(u)}. These are in the first
components ’long’ and ’short’ intervals, respectively. They depend on T which
we do not denote. Then

[0, T/uT ]× J(τ0) = ∪KT
k=1(Ik ∪ I∗k) ∪ IKT +1

where IKT +1 = [KT L(T ), T/uT ]× J(τ0) with KT = [T/(uT L(T ))] ∈ N. Hence
|IKT +1| ≤ 2L(T )×τ ∗(u). Thus with the chosen L(T ) we get KT = [T/uT L(T )] ∼
T/(Au2−H

T ).

Lemma 3. With the definitions of Ik, k ≥ 1, and some δ > 0, we get for
T →∞

P{sup
t≤T

Y (t) > uT} ∼ P{ sup
(s,τ)∈∪k≤KT

Ik

AZ(s, τ) > Au1−H
T }

Proof: With v = Au1−H
T = A(bT + xa(T ))1−H , any x, we have for large T

P{sup
t≤T

Y (t) > uT} ∼ P{ sup
|τ−τ0|≤τ∗(uT )

0≤s≤T/uT

AZ(s, τ) > Au1−H
T }

≥ P{ sup
(s,τ)∈∪kIk

AZ(s, τ) > Au1−H
T }
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as lower bound, and with the Bonferroni inequality the upper bound

P{ sup
|τ−τ0|≤τ∗(uT )

0≤s≤T/uT

AZ(s, τ) > Au1−H
T } ≤ P{ sup

(s,τ)∈∪kIk

AZ(s, τ) > Au1−H
T }

+P{ sup
(s,τ)∈IKT +1

AZ(s, τ) > Au1−H
T }+ P{ sup

(s,τ)∈∪kI∗k

AZ(s, τ) > Au1−H
T }

We show that the last two probabilities of the upper bound are asymptotically
negligible. For δ > 0 by Corollary 2

P{ sup
(s,τ)∈∪kI∗k

AZ(s, τ) > Au1−H
T } ≤

∑

k≤KT

P{ sup
(s,τ)∈I∗k

AZ(s, τ) > Au1−H
T }

≤ CKT δ u
(1−H)( 2

H
−1)

T Ψ(Au1−H
T )

∼ CδT/(uT L(T ))uh+1
T exp(−(1/2)A2u

2(1−H)
T )

= O (δ/L(T )) = o(1)

since L(T ) →∞ where C and in the following also C̃ denote generic positive
constants. We used that the term in (5) tends to a constant by the choice of
uT . In the same way the probability that an exceedance of uT happens in the
interval IKT +1, is asymptotically negligible, for

P{ sup
(s,τ)∈IKT +1

AZ(s, τ) > Au1−H
T } ≤ CL(T )u

(1−H)( 2
H
−1)

T Ψ(Au1−H
T )

= O(L(T )uT /T ) = o(1)

since L(T ) = o(T/uT ). 2

It means we deal now only with the intervals Ik and show in a following step
that the suprema of these intervals are asymptotically independent. To estab-
lish this claim we apply Berman’s inequality which holds only for sequences
of Gaussian r.v.’s. Therefore we define a family of grid points (s, τ) in our
domain of interest, depending on T .

For some small d > 0 and any T , let

q = q(T ) = du
−(1−H)/H
T

and define the grid points

sk,l = (k − 1)L(T ) + lq and τj = τ0 + jq
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with (sk,l, τj) ∈ Ik for integers j ∈ Z, l ≥ 0, k ≥ 1. These grid points are
denoted simpler by (s, τ) ∈ Ik ∩ R for fixed k, without mentioning the de-
pendence on T . We need later to select d = d(T ) → 0 slowly. We select
d = d(T ) = 1/ log log T .

For any k the index l of points sk,l is bounded by L∗ = [L(T )/q] ∼
Au

(1−H2)/H
T /d →∞ as T →∞. In the whole for sk,l ≤ T/uT we have less than

L(T )KT /q ∼ d−1Tu
(1−2H)/H
T number of points sk,l in the first component. Since

|τ−τ0| ≤ τ ∗(uT ) we have also |j| ≤ [(τ ∗(uT )/q)] ∼ 1−H
Ad

(log uT )u
(1−H)2/H
T →∞

for any H < 1. intreval (τ0 − (log uT )/uT , τ0 + (log uT )/uT ). For the other
cases H > 1/2, there is only one point in this interval, namely τj = τ0.

The steps of proof are as follows. We show that with w = u1−H
T

P{sup
t≤T

Yt ≤ uT} ∼ P{ sup
(s,τ)∈∪kIk

AZ(s, τ) ≤ Au1−H
T }

∼ P{ sup
(s,τ)∈∪kIk∩R

Z(s, τ) ≤ w} (10)

∼
KT∏

k=1

P{ sup
(s,τ)∈Ik∩R

Z(s, τ) ≤ w} (11)

∼
KT∏

k=1

P{ sup
(s,τ)∈Ik

Z(s, τ) ≤ w} (12)

∼ exp

(
−KT P{ sup

(s,τ)∈I1

Z(s, τ) > w}
)

(13)

→ exp(−e−x). (14)

Note that P{sup(s,τ)∈Ik
Z(s, τ) ≤ w} is the same for each k, since the FBM

X(t) has stationary increments, implying the mentioned stationarity in the first
component. Hence (13) is immediate. We have shown already the convergence
(14) by the proper choice of uT . (10) and (12) hold by the same reasoning in
Lemma 6 and (11) will be shown by Berman’s inequality in Lemma 8.

To prove (10) and (12) we investigate now the exceedances in a small do-
main {(s, τ) ∈ [sk,l, sk,l+1)× [τj, τj+1)} by conditioning on the value Z(sk,l, τj).
We define for fixed k, l, j the Gaussian field

Z̃(u)(t, ξ) = Z̃
(u)
k,l,j(t, ξ) = w(Z(sk,l + tq, τj + ξq)− w)
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with 0 ≤ t, ξ ≤ 1 where

E(Z̃(u)(t, ξ)) = −w2

Var(Z̃(u)(t, ξ)) = w2v2(τj + ξq)

and also with r(s, τ, s′, τ ′) given in Section 2

Corr(Z̃(u)(t, ξ), Z̃(u)(t′, ξ′)) = r(u)(t, ξ, t′, ξ′)

=
−|q(t− t′ + ξ − ξ′)|2H + |q(t− t′) + τj + ξq|2H + |q(t− t′)− τj − ξ′q|2H − |q(t− t′)|2H

τ2H
0 (1 + (j + ξ)q/τ0)H(1 + (j + ξ′)q/τ0)H

The conditional mean, variance and covariance and their approximations are
as follows. For the conditional mean we get with 0 ≤ t, ξ ≤ 1

E(Z̃(u)(t, ξ)|Z̃(u)(0, 0) = y) = −w2 + r(u)(t, ξ, 0, 0)
v−1(ξ̃)

v−1(τj)
(y + v2)

= y + (y + w2)

(
v(τj)

v(ξ̃)
− 1

)
− (1− r(u)(t, ξ, 0, 0))

v(τj)

v(ξ̃)
(y + v2)

where ξ̃ = τj + ξq. Since the lags tq and ξq tend to 0, using the Taylor
expansion for v(τ), we get an approximation for v(τj)/v(ξ̃), and using (2) an
approximation for the correlation function. Thus the conditional mean is for
fixed y

= y − 1 + o(1)

2τ 2
0

d2H((t + ξ)2H + t2H) =: µ(t, ξ, y) . (15)

However, for all y ≤ −γ we derive with the same expansions that µ(t, ξ, y) =
y(1 + O(d2H)/γ)), uniformly in y. We have to choose γ → 0 also, so let
γ = γ(T ) = dH → 0. For the selected d = d(T ) and γ, the term O(d2H/γ)
tends to 0. This bound is sufficient for our approximations.

Next we derive a bound for the conditional variance. We have by (2)

Var(Z̃(u)(t, ξ)|Z̃(u)(0, 0) = y) = Var(Z̃(u)(t, ξ))(1− [r(u)(t, ξ, 0, 0)]2)

=
w2

v2(τj + ξq)

2 + o(1)

2τ 2H
0

((t + ξ)2H + t2H) q2H

≤ Cw2q2H = Cd2H (16)

for all t, ξ ≤ 1, with some constant C > 0.
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We need also an upper bound for the variance of the conditional increments
of Z̃(u)(t, ξ) which is

Var(Z̃(u)(t, ξ)− Z̃(u)(t′, ξ′)|Z̃(u)(0, 0) = y) =

=
Var(Z̃(u)(t, ξ)− Z̃(u)(t′, ξ′))− [Cov(Z̃(u)(t, ξ)− Z̃(u)(t′, ξ′), Z̃(u)(0, 0))]2

w2v−2(τj)
.

The variance of the increments is approximated first.

Var(Z̃(u)(t, ξ)− Z̃(u)(t′, ξ′))/w2 =

=
v−2(τj + ξq) + v−2(τj + ξ′q)− 2r(u)(t, ξ, t′, ξ′)

v(τj + ξq)v(τj + ξ′q)

∼ A−4[(v(τj + ξq)− v(τj + ξ′q))2 + 2(1− r(u)(t, ξ, t′, ξ′))A2(1 + o(1))]

The first term, the difference of the v-values, is of o(q|ξ − ξ′|) because of the
behaviour of v in the neighbourhood of τ0, given in (1). The second term is
approximated by (2) to get

A2 (1 + o(1))

τ 2H
0

[|t− t′ + ξ − ξ′|2H + |t− t′|2H ]q2H

∼ w−2A2(d/τ0)
2H [|t− t′ + ξ − ξ′|2H + |t− t′|2H ]

Combining the two approximations, results in

Var(Z̃(u)(t, ξ)− Z̃(u)(t′, ξ′)) ∼
∼ A−2(d/τ0)

2H [|t− t′ + ξ − ξ′|2H + |t− t′|2H ] + o(|ξ − ξ′|2)
≤ G(|t− t′|2H + |ξ − ξ′|2H)

for some G > 0. The covariance of the increment and Z̃(u)(0, 0) is a bit more
tedious but straightforward with the same approximations.

Cov(Z̃(u)(t, ξ)− Z̃(u)(t′, ξ′), Z̃(u)(0, 0)) =

= Cov(Z̃(u)(t, ξ), Z̃(u)(0, 0))− Cov(Z̃(u)(t′, ξ′), Z̃(u)(0, 0))

∼ w2

A

v(τj + ξ′q)(r1 − r2)− r2[v(τj + ξq)− v(τj + ξ′q)]
v(τj + ξq)v(τj + ξ′q)

with r1 = r(u)(t, ξ, 0, 0) and r2 = r(u)(t′, ξ′, 0, 0) . By (2) the difference of r1−r2

is bounded by
O(q2H(|t− t′ + ξ − ξ′|α + |t− t′|α))
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with α = min(2H, 1). The difference of the v-terms is again O(q|ξ−ξ′|(log w)/w).
Together we have for

[Cov(Z̃(u)(t, ξ)− Z̃(u)(t′, ξ′), Z̃(u)(0, 0))]/w2 =

= w2
(
O(q4H(|t− t′ + ξ − ξ′|α + |t− t′|α)2) + o(q2(log w)2|ξ − ξ′|2/w2)

)

= o(1)(|t− t′|2H + |ξ − ξ′|2H).

Therefore the conditional variance of the increment, being the variance of the
increments minus the above squared covariance term divided by the variance
of Z̃(u)(0, 0), is bounded by

G(|t− t′|2H + |ξ − ξ′|2H)

for some G > 0. We are now ready to prove the following statement.

Lemma 4. With the definition of Z̃(u)(t, ξ) we get

P{ sup
0≤t,ξ≤1

Z̃(u)(t, ξ) > 0|Z̃(u)(0, 0) = y} ≤ CdH |y|2/H−1φ(C̃|y|/dH)

for y < −γ and T → ∞, with d = d(T ) → 0 and some constants C, C̃ > 0,
not depending on γ.

Proof: Since the conditioned centered process Z̃(u)(t, ξ)−µ(t, ξ, y)|Z̃(u)(0, 0)
is a Gaussian process with variance of the increments given above, where
µ(t, ξ, y) is derived in (15), we can apply Theorem 8.1 of Piterbarg (1996)
for

P{ sup
0≤t,ξ≤1

Z̃(u)(t, ξ)− µ(t, ξ) > −µ(t, ξ, y)|Z̃(u)(0, 0) = y} ≤

≤ Cσ∗|µ(t, ξ, y)|2/H−1φ(|µ(t, ξ, y)|/σ∗) (17)

with σ∗2 = supt,ξ≤1 Var (Z̃(u)(t, ξ)|Z̃(u)(0, 0)) and C not depending on γ. Note
that the conditional mean |µ(t, ξ, y)| = |y|(1+O(d2H/γ)) > |y|(1−ε), uniformly
in t, ξ ≤ 1, y ≤ −γ, with d sufficiently small (T large), with the chosen γ = dH .
By (16) σ∗ ≤ dH/C̃. Hence we get as upper bound for (17)

CdH |y|2/H−1φ(C̃|y|(1− ε)/dH) = CdH |y|2/H−1φ(C̃|y|/dH)

with suitable (generic) constants C, C̃ > 0, not depending on t, ξ, y and γ. 2
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This allows now the approximation of the supremum of the process Z(s, τ)
on the continuous points by the maximum on the grid in a small domain in
the following way.

Lemma 5. For the process Z(s, τ) we get for T large with γ = dH

P{Z(sk,l, τj) ≤ w − γ/w, sup
0≤t,ξ≤1

Z(sk,l + tq, τj + ξq) > w}

= O(dH+2)φ(wv(τj))/w

uniformly in k, l, j, and for any k ≤ KT

P{ max
(s,τ)∈Ik∩R

Z(s, τ) ≤ w − γ/w, sup
(s,τ)∈Ik

Z(s, τ) > w}

= O(dHL(T )w2(1−H)/Hφ(Aw)) = O(dH/KT )

with T large and d = d(T ) > 0 small.

Proof: For the process Z̃(u)(t, ξ) we apply Lemma 4

P{Z(sk,l, τj) ≤ w − γ/w, sup
0≤t,ξ≤1

Z(sk,l + tq, τj + ξq) > w} =

= P{Z̃(u)(0, 0) ≤ −γ, sup
0≤t,ξ≤1

Z̃(u)(t, ξ) > 0}

=

∫ −γ

−∞
P{ sup

0≤t,ξ≤1
Z̃(u)(t, ξ) > 0|Z̃(u)(0, 0) = y}fZ̃(u)(0,0)(y)dy

=

∫ −γ

−∞
φ(v(τj)(w + y/w)) CdH |y|2/H−1φ(C̃|y|/d2H)dyv(τj)/w

≤ O(dH)

w
φ(wv(τj))

∫ −γ

−∞
|y|2/H−1 exp{− C̃y2

2d2H
− yv2(τj)− y2v2(τj)

2w2
}dy

≤ O(dH)

w
φ(wv(τj))

∫ ∞

γ

y2/H−1 exp{−y2

2
(

C̃

d2H
+ o(1)) + yA2(1 + o(1))}dy

≤ CdH+2φ(wv(τj))/w

since the integral can be bounded by d2 for any γ ≥ 0. The constant C does
not depend on k, l, j.

13



The second claim follows by summing these bounds on l, j for fixed k. We
use that 0 ≤ v(τj)− v(τ0) = (B + o(1))(jq)2 ≥ B̃(jq)2.

∑

l,j

CdH+2φ(wv(τj))/w ≤ (L(T )/q)(CdH+2/w)
∑

j

φ(wv(τj))

= (L(T )/q)(CdH+2/w)φ(Aw)
∑

j

e−
1
2
(v(τj)−v(τ0))2w2−w2A(v(τj)−v(τ0))

≤ O(dH+2)(L(T )/qw)φ(Aw)
∑

j

e−B̃Aw2(jq)2

≤ O(dH+2)(L(T )/qw)φ(Aw)O(1/wq)

∫ ∞

0

e−B̃Ax2

dx

≤ O(dH+2 L(T )(d−2w2(1−H)/H)φ(Aw))

≤ O(dHw2(1−H)/Hu−h−1K−1
T ) [KT L(T )uh+1φ(Aw)]

≤ O(dH K−1
T )(Tuhφ(Aw))

≤ O(dH/KT )

using Tuh
T φ(Aw) = O(1) with w = u1−H

T . Because of the stationarity(homogeneity)
of Z(s, τ) in the first component, this holds for any k, hence uniformly. 2

We have by (9) and Lemma 1

P{ max
(s,τ)∈Ik

Z(s, τ) > w} = (1 + o(1))c2L(T ) exp(−1

2
A2w2)w2(1−H)/H

for any k. We want now to show that for any k and γ → 0 (slowly, chosen as
γ = dH as d = d(T ) → 0)

P{ max
(s,τ)∈Ik∩R

Z(s, τ) > w} = (1 + o(1))c2L(T ) exp(−1

2
A2w2)w2(1−H)/H

holds. This is true since by Lemma 5

P{ sup
(s,τ)∈Ik∩R

Z(s, τ) > w} ≤ P{ sup
(s,τ)∈Ik

Z(s, τ) > w}

≤ P{ sup
(s,τ)∈Ik∩R

Z(s, τ) > w − γ/w}

+P{ sup
(s,τ)∈Ik∩R

Z(s, τ) ≤ w − γ/w, sup
(s,τ)∈Ik

Z(s, τ) > w}

≤ (1 + O(dH))P{ sup
(s,τ)∈Ik

Z(s, τ) > w − γ/w}

= (1 + O(dH) + O(γ))P{ sup
(s,τ)∈Ik

Z(s, τ) > w}

14



using (w − γ/w)2 = w2 − 2γ + o(1) for small γ. With this result it is also
straightforward to show that for small γ

P{w − γ/w < sup
(s,τ)∈Ik∩R

Z(s, τ) ≤ w} = O(γL(T )φ(Aw)w2(1−H)/H) (18)

and

0 ≤ P{ sup
(s,τ)∈Ik∩R

Z(s, τ) ≤ w} − P{ sup
(s,τ)∈Ik

Z(s, τ) ≤ w}

= O(cdL(T )φ(Aw)w2(1−H)/H) (19)

where cd = γ+dH = 2dH → 0 as d → 0. Hence we get the following statements.

Lemma 6. For d → 0 with γ = dH → 0

0 ≤ P{ sup
(s,τ)∈∪kIk∩R

Z(s, τ) ≤ u1−H
T } −P{ sup

(s,τ)∈∪kIk

Z(s, τ) ≤ u1−H
T } → 0

and also

0 ≤
KT∏

k=1

P{ sup
(s,τ)∈Ik∩R

Z(s, τ) ≤ u1−H
T } −

KT∏

k=1

P{ sup
(s,τ)∈Ik

Z(s, τ) ≤ u1−H
T } → 0.

Proof: We have

0 ≤ P{ sup
(s,τ)∈∪kIk∩R

Z(s, τ) ≤ w} −P{ sup
(s,τ)∈∪kIk

Z(s, τ) ≤ w}

≤
KT∑

k=1

(
P{ sup

(s,τ)∈Ik∩R
Z(s, τ) ≤ w} −P{ sup

(s,τ)∈Ik

Z(s, τ) ≤ w}
)

Using (19) this term is bounded by

O
(
KT L(T )cdφ(Aw)w2(1−H)/H

)
= O

(
(T/uT )cdφ(Aw)u2(1−H)2/H

)

= O
(
cd T uh

T exp(−1

2
A2u

2(1−H)
T )

)
→ 0

as d → 0. This shows the first claim. It implies also the second claim using
the stationarity (homogeneity) of Z(s, τ) with respect to the first parameter
s. 2

Now we are considering the proof of (11). We begin with the approximation
of the sum in Berman’s comparison lemma.
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Lemma 7. Under the above definitions and properties of Z(s, τ) we have

ST =
∑

k 6=k′

∑

(sk,l,τj)∈Ik×τd

(sk′,l′ ,τ
′
j)∈Ik′×τd

|r(sk,l, τj, sk′,l′ , τj′)| exp{− A2v2

1 + r(sk,l, τj, sk′,l′ , τj′)
} → 0.

Proof: Since |sk,l − sk′,l′| ≥ δ by definition, r(sk,l, τ0, sk′,l′ , τ0) ≤ ρ < 1. Fur-
thermore we showed that

sup
|sk,l−sk′,l′ |≥s

|r(sk,l, τ0, sk′,l′ , τ0)| ≤ Csλ

for λ = 2H − 2 < 0 and some constant C > 0, since also τj and τj′ tend
to τ0. If H = 1

2
we have r(sk,l, τj, sk′,l′ , τj′) = 0 if |sk,l − sk′,l′| is large. Set

β = (1 − ρ)/(1 + ρ) and split the sum into two sums ST,1 and ST,2 with
|sk,l − sk′,l′| < T̃ β = (T/uT )β and |sk,l − sk′,l′| ≥ T̃ β, respectively. For the
first sum there are T̃ 1+β/q2 many combinations of two points sk,l, sk′,l′ ∈ ∪kIk.
Together with the τj combinations there are T̃ 1+β(2τ ∗(uT ))2/q4 terms in the
sum ST,1. Thus ST,1 is bounded by

ρ
T̃ 1+β(2τ ∗(uT ))2

q4
exp{−A2w2

1 + ρ
}

≤ 4ρ exp

{
(1 + β) log T̃ + 2 log(τ ∗(uT )/q2)− (2(1 + o(1)) log T

1 + ρ

}

≤ 4 exp

{
−(log T )

[
2(1 + o(1))

1 + ρ
− (1 + β)(1− log uT

log T
)− 2

log(τ ∗(uT )/q2)

log T

]}

→ 0

since 1+β < 2/(1+ρ) by the choice of β, using log(τ ∗(uT )/q2) = o(log T ) and
log uT = O(log log T ) = o(log T ).
For the second sum ST,2 with |sk,l − sk′,l′| ≥ T̃ β, we use that

sup
|sk,l−sk′,l′ |≥T̃ β

|r(sk,l, τ0, sk′,l′ , τ0)| ≤ CT̃ βλ

with λ = 2H − 2 < 0. In this case there are (T̃ /q)2 many combinations of two
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points sk,l, sk′,l′ ∈ ∪kIk. Hence ST,2 has the upper bound

CT̃ βλ (2T̃ τ ∗(uT ))2

q4
exp{− A2w2

1 + CT̃ βλ
}

≤ C exp

{
βλ log T̃ + 2 log T̃ + 2 log(τ ∗(uT )/q2)− 2(1 + o(1)) log T

1 + CT̃ βλ

}

≤ C exp
{

(log T̃ ) [βλ + o(1)]
}

→ 0

since λ < 0. If H = 1/2, the sum ST,2 = 0 obviously. 2

With Berman’s comparison lemma we get finally

Lemma 8. Under the above definitions and properties of Z(s, τ) we have

P{ sup
(s,τ)∈∪kIk∩R

Z(s, τ) ≤ w} −
KT∏

k=1

P{ sup
(s,τ)∈Ik∩R

Z(s, τ) ≤ w} → 0

as T →∞ with d → 0.

Proof: To apply Berman’s comparison lemma (cf. Hüsler 1983, or Lead-
better et al. 1983, for this general form) we have to standardize the Gaussian
field yielding nonconstant boundaries v(τ)w.

P{ sup
(s,τ)∈∪kIk∩R

Z(s, τ) ≤ w} −
KT∏

k=1

P{ sup
(s,τ)∈Ik∩R

Z(s, τ) ≤ w}

= P{ sup
(s,τ)∈∪kIk∩R

Z(s, τ)v(τ) ≤ v(τ)w} −
KT∏

k=1

P{ sup
(s,τ)∈Ik∩R

Z(s, τ)v(τ) ≤ v(τ)w}

≤
∑

k 6=k′

∑

(sk,l,τj)∈Ik∩R
(sk′,l′ ,τ

′
j)∈I′k∩R

|r(sk,l, τj, sk′,l′ , τ
′
j)| exp

{
− (v2(τj) + v2(τ ′j))w

2

2(1 + r(sk,l, τj, sk′,l′ , τ ′j))

}

≤
∑

k 6=k′

∑

(sk,l,τj)∈Ik∩R
(sk′,l′ ,τ

′
j)∈I′k∩R

|r(sk,l, τj, sk′,l′ , τ
′
j)| exp

{
− v2(τ0)w

2

(1 + r(sk,l, τj, sk′,l′ , τ ′j))

}

which tends to 0 by Lemma 7. 2
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So we have proved every asymptotic equality (10) - (14) and thus the
statement of the theorem, showing the limit distribution for MT with the
appropriate normalization uT = uT (x).

The proof reveals a further result. We considered the maximum on the
discrete process M̃

(δ)
T = sup(s,τ)∈∪kIk∩R Z(s, τ) besides the maximum of the

continuous process sup(s,τ)∈∪kIk
Z(s, τ). The proof shows that they are asymp-

totically completely dependent. Obviously, this holds also for the maxima
M

(δ)
T on the whole time domain not only on the ∪kIk since the grid points

are dense by the chosen q(T ) and d(T ). This statement holds for any d → 0,
not only for the chosen d(T ) = 1/ log log T . Note also that the assumption

q = du
−(1−H)/H
T ∼ d(2A−2 log T )−1/(2H) does not depend really on the value x

in the normalization uT = uT (x). Therefore let q = d(2A−2 log T )−1/(2H) for
some d → 0 for the following result.

Theorem 2 Let MT = sup0≤t≤T Y (t) be the supremum of the storage pro-
cess Y (t) with FBM as input, with Hurst parameter H < 1. Then with the
normalizations a(T ) and b(T ) we have

P{M (δ)
T ≤ b(T ) + xa(T ), MT ≤ b(T ) + ya(T )} → exp(− exp(−min(x, y))).

Proof: Since uT (y) ≤ uT (x) for all T and y ≤ x, we have for y ≤ x

P{M (δ)
T ≤ uT (x), MT ≤ uT (y)} = P{M (δ)

T ≤ uT (y),MT ≤ uT (y)}
= P{MT ≤ uT (y)} − P{M (δ)

T ≤ uT (y),MT > uT (y)}

and for x ≤ y

P{M (δ)
T ≤ uT (x),MT ≤ uT (y)} = P{M (δ)

T ≤ uT (x)}−

−P{M (δ)
T ≤ uT (x),MT > uT (y)}.

The statement follows by using

P{M (δ)
T ≤ uT (x)} ∼ P{MT ≤ uT (x)}

and
P{M (δ)

T ≤ uT (x),MT > uT (x)} = o(1)
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by Lemma 6 for any dense grid with d → 0. 2

Note that the grid is dense for the transformed storage process, for the
Gaussian field. However, considering the grid for the storage process Y (t) we

have the grid points uq = du
1−(1−H)/H
T = du

(2H−1)/H
T which tends to ∞, for

H > 1/2. It means that we have to observe quite rarely the storage process
to get the complete information on the maximum of the continuous storage
process, assuming that d does not tend fast to 0.
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[5] Hüsler, J., and Piterbarg, V. (1999) Extremes of a certain class of Gaussian
processes. Stoch. Proc. Appl. 83, 257-271.

[6] Leadbetter, M.R., Lindgren, G. and Rootzén, H. (1983) Extremes and
related properties of random sequences and processes. Springer Series in
Statistics, Springer, New York.

[7] Narayan O. (1998) Exact asymptotic queue length distribution for frac-
tional Brownian traffic. Advances in Performance Analysis, 1, 39-63.

[8] Norros I. (1994) A storage model with self-similar input. Queuing Systems,
16, 387-396.

19



[9] Norros I. (1997) Four approaches to the fractional Brownian storage. In
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