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Abstract

In this paper we consider a standard Brownian motion in R?, starting at 0 and observed
until time ¢. The Brownian motion takes place in the presence of a Poisson random
field of traps, whose centers have intensity v; and whose shapes are drawn randomly and
independently according to a probability distribution II, on the set of closed subsets of R¢,
subject to appropriate conditions. The Brownian motion is killed as soon as it hits one of
the traps. With the help of a large deviation technique developed in an earlier paper, we
find the tail of the probability S; that the Brownian motion survives up to time ¢ when

o ct=2/d 4> 3,
Pl et tlog?t, d=2,

where ¢ € (0, 00) is a parameter. This choice of intensity corresponds to a critical scaling.
We give a detailed analysis of the rate constant in the tail of S; as a function of ¢, including
its limiting behaviour as ¢ — oo or ¢ | 0. For d > 3, we find that there are two regimes,
depending on the choice of II. In one of the regimes there is a collapse transition at a
critical value ¢* € (0, 00), where the optimal survival strategy changes from being diffusive
to being subdiffusive. At c¢*, the slope of the rate constant is discontinuous. For d = 2
there is again a collapse transition, but the rate constant is independent of IT and its slope
is continuous.
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1 Introduction and main results

1.1 Motivation
The model studied in this paper has two random ingredients:

1. Let B = {B(s): s > 0} be the standard Brownian motion in R? — the Markov process
with generator A/2 — starting at 0. We write P, E' to denote probability and expectation
with respect to f.

2. For t > 0, let
K= ] +4], (1.1.1)

TEwWt

where w; is a Poisson point process with intensity

ct=2/d d>3
= ’ - 1.1.2
& { ct tlog?t, d=2, ( )
€ (0,00) is a parameter and, given wy,
Az, =€ w, (1.1.3)

are i.i.d. random sets drawn from C = {A C R?: A closed} according to a probability
distribution II. We write P, E; to denote probability and expectation with respect to
K.

Formally, C is endowed with the topology generated by the Hausdorff metric pg: C xC —
[0, 00] given by
,OH(AI,AQ) = inf{e >0: A; C A A2 C Af } (1.1.4)

where A° = UzcaBe(x) is the e-environment of A (with B¢(z) the closed ball of radius e
centred at z). The probability distribution II lives on the Borel sigma-algebra generated by

PH-
Throughout the paper, we assume that II satisfies the following two conditions:

(C1) IL(Q) = 1 with
0= {A C R?: A compact, A = cl(int(A))} , (1.1.5)

where cl(A) denotes the closure of A and int(A) the interior of A.

(02) limps o0 0ps = 0 with

(A+ Ba) N BE
Sar = /' = B) OByl 49, (1.1.6)
|Bu|

where By = [-M /2, M/2]?, BS, = R\ By and A+ By = Ugep,, [z + AJ.

Condition (C1) is a regularity property for A, condition (C2) allows us to control large A.

Let
Tk, = inf{s > 0: f(s) € K;} (1.1.7)

and
Sy = (Ey x P)(1x, > t). (1.1.8)



In other words, we view K; as a collection of randomly located and randomly shaped traps,
Tk, as the trapping time for the Brownian motion, and S; as the probability of survival up to
time ¢. The goal of the present paper is to identify the asymptotic behaviour of S; for large ¢.
As will become clear later on, the choice of intensity in (1.1.2) corresponds to a critical scaling.
Our main results show that the tail of S; has an interesting dependence on the parameter c,
with two regimes for d > 3, depending on the choice of I1, and one regime for d = 2. The proof
of these results relies on a large deviation technique developed in van den Berg, Bolthausen
and den Hollander [2]. For each of the regimes we provide a detailed analysis of the rate
constant controlling the tail behaviour of S, including its scaling as ¢ — oo or ¢ | 0. We show
that for d > 3, in one of the regimes, the rate constant exhibits a collapse transition in the
optimal survival strategy at a critical value ¢* € (0, 00). We analyse the behaviour of the rate
constant near ¢* and show that a slope discontinuity occurs. For d = 2 there is a collapse
transition too, but no slope discontinuity.

1.2 Representation in terms of Wiener sausages

The starting point of our analysis is a representation formula expressing S; as an exponential
functional of a family of Wiener sausages with varying shape. This formula is the analogue of
the well-known formula for the fixed shape case.

The Wiener sausage with shape A € Q is the random process defined by

wat) = |J [B(s)+4], t>0. (1.2.1)
0<s<t

Proposition 1.2.1 For any d > 1, 1 € M{(Q) and t > 0,
S, =F <exp [—yt/ II(dA) |WA(t)|]> : (1.2.2)
Q

Proof. The trap field is a marked Poisson point process: the points z € wy carry random labels
A,. Consider those points whose label is in dA. These points form a Poisson point process
with intensity 1411(dA). The probability, under the law P;, that up to time ¢ these traps avoid
a given Brownian path f equals exp[—u4II(dA) [W*(¢)|]. The probability that up to time ¢
all traps avoid the given j therefore equals exp[—v; [, o TI(dA) [WA(t)|]. Average over f3 to get
the claim. [ |

Condition (C2) is stronger than the requirement that [, TT(dA) |A| < oo since the latter
is implied by 037 < oo for all M, while the former requires that limps o, 037 = O.

The integral in the right-hand side of (1.2.2) is finite P-a.s. for all ¢ > 0. Indeed, let
M(t) = inf{M > 0: B(s) € By for all 0 < s <t}. Then

(WA#)] < Byl + [(A+ Bary) 0 By, (1.2.3)

and hence
/Q T(dA) [WA®)] < [Baso (1 + br0), (1.2.4)

with M (t) < oo P-a.s.



1.3 Survival theorems

This section contains our main results for the tail behaviour of S; as t — oo.

For d > 3, let k(A) be the Newtonian capacity of A associated with the Green function of
(—A/2) L.

Theorem 1.3.1 Let d > 3 and let I satisfy (C1l) and (C2). For every ¢ > 0,

tl_l)r& ﬁ log Sy = —J (), (1.3.1)
with
Ji' (¢) = inf {3 V|3 + cFj'(¢%): ¢ € H'(R), [l4]5 =1}, (1.3.2)
where
FI(¢2) :/ do / 11(d4) (1 - ¢ ") (1.3.3)
Rd 0

Theorem 1.3.1 identifies the tail of S; for d > 3 in terms of a variational problem involving II.
Since the dependence on II enters only via the capacity of the random set A, we may rewrite
(1.3.3) as

F[{I(qs?):/Rd dz Am@(dﬁ) (1—6*“’2(1)) (1.3.4)

with ©® = II o k™! the probability distribution on (0,00) induced from II by x. Therefore
actually FII = Fd@ and Jg = Jd@ . Nevertheless, we prefer to keep II in the notation. Note
that k(A) € (0,00) for all A € Q.

A similar result holds for d = 2, but without a role for II.

Theorem 1.3.2 Let d =2 and let I satisfy (C1) and (C2). For every ¢ > 0,

tliglo @ log Sy = —Js(c), (1.3.5)
with
Jo(c) = inf {3 V|3 + cFa(¢?): ¢ € H(R?), ||gll3 =1}, (1.3.6)
where
Fy(¢?) :/ dz (1 —6*2”’2(1)). (1.3.7)
RQ

The scale of the large deviation in Theorem 1.3.2 is different from that in Theorem 1.3.1. This
is due to the different choice of intensity in (1.1.2). However, the variational formula has the
same structure. The difference is that x(A) is replaced by 2w, so that the dependence on II
drops out. This fact turns out to be related to the recurrence of planar Brownian motion.

1.4 Analysis of the variational problems

In this section we give a detailed analysis of ¢ — JJ'(c) in (1.3.2) and ¢ — Jo(c) in (1.3.6).
We first note the following.



Proposition 1.4.1 Let d > 3 and let 11 satisfy (C1) and (C2). Then
(k) :/ II(dA)k(A) < o0 (1.4.1)
Q

The variational problem in (1.3.2) certainly makes sense also when (k) = oo, but apparently
this regime is not caught by our conditions (C1) and (C2).

Let (-) denote expectation over ©. For d > 3 there are two regimes:

(I) There exists ¢* € (0,00) such that

Ti ()

< elk)y ,e>c* (1.4.2)
(IT) (1.4.2) with ¢* =0.
We consider two subclasses for ©:
Sy = {G): there exist 0 < kg < oo and 0 < K < oo such that
O(dr) < Kr '~ dr for all k> ko),
(1.4.3)

Sir = {O: there exists 0 < k1 < 00 and L: (k1,00) — (0, 00)
non-decreasing with lim,_, L(k) = oo such that
O(dk) > L(ﬁ)kfl*%dka for all Kk > k1 }.

Note that the separation between the classes Sy and Syr is thin, and is very close to where
(k(@+2)/dy diverges.

Theorem 1.4.2 Let d > 3.

(i) For every I, ¢ — Jil(c) is continuous, strictly increasing and concave on (0,00), with
JI(0) = 0.

(ii) If © € Sy, then Jit falls in regime (I). Moreover, if (k") < co for some n > d%"l'Q, then

[T (c*4) < (k). (1.4.4)
(iii) If © € Sy, then JI falls in regime (I1), and
[T (04) = (k). (1.4.5)
(iv) The variational problem in (1.3.2) has a minimiser with full support for
c>c* when O € Sy,

c>0 when © € Spy, (1.4.6)

Lk d+2
c=c" when (k") < oo for some n > “4=.

Theorem 1.4.3 Let d > 3.
(i) For every I,

d/(d+2)
Jie) < 02/(d+2)¥ <%> , ¢ € (0,00), (1.4.7)



and

d

where \g is the principal Dirichlet eigenvalue of —A on the ball of unit volume.
(i) For © € Si1, let ©(dk) = 0(k)dk with O(k) = Kk™'"7[1 +0(1)] as k — 00 and 1 < v <

‘%2,0<K<oo. Then

. —2/(d+2) 711
dim e g (e) = =5

lim {2KT(—y)e} /=07 [ef) = J ()] = 3 Ma(), (1.4.9)
where

Ma(y) = —inf{uwn% — [ e 1R, i = 1} €(000).  (14.10)

The qualitative behaviour of ¢ — Ji(c) found in Theorems 1.4.2 and 1.4.3 is summarised
as follows:

d>3 (I) d >3 (IT) d=2

0 c* 0 0 c*

Figure: Qualitative picture of ¢ — Ji(c) for d > 3, regimes (I) and (IT), and d = 2, respectively.

Theorem 1.4.4 Let d = 2.
(1) ¢ — Ja(c) is continuous, strictly increasing and concave on (0,00), with Jo(0) = 0.
(11) There ezists a number ¢* € (0,00), given by

1. fIVel3 12 2
¢ = — inf cpe H (R, ||gls=1¢, (1.4.11)
4r? { 161l ?
such that
Jo(c) = 2mc ,0<c<c", (1.4.12)
< 2me ,e>c¥, o
and
[Jo]) (c¢*+) = 2m. (1.4.13)

(11i) Formulae (1.4.7-1.4.8) hold with d = 2.
(iv) The variational problem in (1.3.6) has a minimiser if and only if ¢ > ¢*. This minimiser
has full support.



1.5 Discussion

The idea behind Theorem 1.3.1 is that for d > 3 the optimal strategy for the Brownian motion
to survive the traps is to behave like a Brownian motion in a drift field zt'/¢ — (V$/¢)(z)
for some smooth ¢: R = [0,00). The cost, under the law P, of adopting this drift during a
time ¢ is

exp [—t x 2/ % /Rd dz |V¢($)|2] : (1.5.1)

The effect of the drift is to push the Brownian motion towards the origin, so that it lives on
space scale t'/¢, which is well below the diffusive scale. Conditioned on adopting the drift, the
Brownian motion spends time ¢?(x) per unit volume in the neighbourhood of zt/¢. Tt turns
out that, for each A, the Wiener sausage with shape A associated with the Brownian motion
covers a fraction 1 — exp[—r(A)¢?(z)] of that unit volume. The cost, under the law Py, of the
traps avoiding the Brownian motion is

exp [—ct_Q/d X t/ dm/ II(dA) (1 - e_”(A)¢2(x)>] (1.5.2)
R o}

(recall the the proof of Proposition 1.2.1). Combining (1.5.1) and (1.5.2), we see that the best
choice of the drift field is therefore given by a minimiser of the variational problem in (1.3.2),
or by a minimising sequence.

Theorem 1.3.2 shows that for d = 2 the survival probability decays polynomially rather
than exponentially fast. The optimal survival strategy is of the same type as for d > 3,
but now the Brownian motion lives on space scale /t/logt, which is only slightly below the
diffusive scale. The limiting behaviour does not depend on II. Apparently, the Brownian

motion manages to stay far away from the traps.
1

Theorems 1.4.2 and 1.4.3 show that for d > 3 there are two regimes:
(I) There is a critical threshold (¢* > 0). For ¢ < ¢*, the Brownian motion prefers to ignore
the survival strategies parametrised by ¢ and to move on space scale v/¢. In doing so,
it behaves like a typical Brownian motion and sees the average trap capacity, i.e., also
the trap field is typical. For ¢ > ¢*, on the other hand, the Brownian motion prefers
to follow the survival strategy parametrised by a minimiser ¢ and to move on space
scale t1/¢. In doing so, it does a large deviation and sees less than the average trap
capacity. Also the trap field does a large deviation, because it keeps traps out of the
“spongy structure” that is formed by the Brownian motion. Since ¢ has full support, the
Brownian motion “sneaks around the traps and moves about” rather than “finds a large
trap free hole and stays there”. At ¢ = ¢* there is a collapse transition from diffusive
behavior to subdiffusive behavior. This collapse transition is discontinuous because a,
minimiser persists at the critical threshold, which leads to a slope discontinuity of Jg
at ¢ = c*.

(IT) There is no critical threshold (¢* = 0). There is a minimiser ¢ for all ¢ > 0, meaning that
the optimal survival strategy is always subdiffusive. As ¢ | 0, this minimiser flattens
out, the Brownian motion gradually covers more space and gradually sees the average
trap capacity. The thinner the tail of II (i.e., the closer IT to the boundary with regime
(I)), the faster Ji' approaches the line with slope (x).

!Even though we interpret our results in terms of an optimal survival strategy, we have no pathwise state-
ments to offer. More work would be needed to prove that, conditional on survival, the Brownian motion and
the trap field indeed behave as suggested.



Theorem 1.4.4 shows that for d = 2 the behaviour is similar to that for d > 3 in regime
(I). There is again a collapse transition, associated with a crossover in the optimal strategy.
This collapse transition is continuous because no minimiser persists as ¢ | c*.

The high intensity limit ¢ — oo corresponds to the minimiser contracting to a high and
narrow peak. This corresponds to the optimal survival strategy looking more and more like
“find a large trap free hole and stay there”. This is the optimal survival strategy for all
intensities that are larger than the one in (1.1.2), which is why the choice in (1.1.2) is critical.

Finally, the results in the present paper belong to a regime of critical scaling. A related
reference is Merkl and Wiithrich [7], [8], [9]. Here, the principal eigenvalue of the Schrodinger
operator —A + V; on a box of size ¢ with Dirichlet boundary conditions is considered, with V;
a potential consisting of a Poisson field of obstacles with a fixed shape but with a height that
shrinks to zero in a critical manner with ¢. A critical threshold similar to the one in our regime
(I) is found. Another related reference is van den Berg, Bolthausen and den Hollander [3],
where the large deviation behaviour of the volume of the intersection of two Wiener sausages
is identified. A critical threshold appears in the time horizon up to which the intersection
volume is observed.

1.6 Examples

Let d > 3, and choose o, 8,7, a>1and 0 < 8 <~y A % and, for n € N, define
A, =B,s +C, with C,={kn": k€ Z% |k|ls <n}. (1.6.1)

Then A, consists of (2n 4+ 1)% cubes of volume n?? that are disjoint for all n > 2 because

v > f3. Let II be given by
1

II(A,) = —n ¢, n €N, 1.6.2

(4) = 7 (162)
where ( is the Riemann function. For this II, condition (C1) trivially holds, while it is easily
checked that condition (C2) holds if and only if @ > d + d + 1. Moreover, for « sufficiently

large, k(A,) is asymptotically subadditive, i.e.,
K(Ap) = kg (2n + 1) B2+ 11 4 5(1)], n — oo, (1.6.3)
where kg is the capacity of the unit cube in R¢. Combining (1.6.2-1.6.3), we see that

regime (I) holds for: « € (ﬁ% +d + 3,00),

1.6.4
regime (II) holds for: « € (d + Bd + 1, BdaT_‘l +d+3]. ( )

The latter interval is non-empty since 0 < 8 < %.

1.7 Outline

Theorems 1.3.1 and 1.3.2 are proved in Section 2. The proof closely follows Sections 2, 3 and
4 in van den Berg, Bolthausen and den Hollander [2] (henceforth referred to as vdBBdH).
We sketch the main line of the argument, so that the present paper can be read almost
independently. Proposition 1.4.1, and Theorems 1.4.2, 1.4.3 and 1.4.4 are proved in Section 3
and rely on variational calculus and Sobolev inequalities.



2 Proof of Theorems 1.3.1 and 1.3.2

2.1 Scaling, compactifying and coarse-graining

Recalling (1.1.2), we have from Proposition 1.2.1 that

exp [—t(d_2)/d X CVH(t)] , d>3,
S = (2.1.1)
exp [—logt x cVI(1)], d=2,
where we define .
2/ M(dA) WA®),  d>3,
Q
V() = (2.1.2)
logt
280 (da) (WA @), d=2.
Q
It follows from Spitzer [10] that, for every A € Q,
A _ ’{(A)ta d Z 37
EW2(t)| =14 o(1)] x { ont)logt, d =2, t — oo. (2.1.3)
Hence (")
. I . K), d > 3,
Hm BVE(t) = { or, d=2. (2.1.4)

(Condition (C2) allows us to interchange limit and expectation.) Thus, by (2.1.1), the large
deviations of V' (#) driving Theorems 1.3.1 and 1.3.2 take place on the scale of its mean,
which is order 1 for d > 3 when (k) < co and order 1 for d = 2.

2.1.1 Scaling

By Brownian scaling,

WA = WA @) g,

g (2.1.5)
2R wAW) = wAVIE log )], d =2,
where = denotes equality in distribution. Hence, abbreviating
(d-2)/d 2/(d—2)
)t , 423, =17 , 423, (2.1.6)
log t, d=2, e’ /T, d=2,
we find from (2.1.1) and (2.1.2) that
Sy = E (exp [—erV(1)]) (2.1.7)
with
VI (r) = / T(dA) [WANYT (7). (2.1.8)
Q

The right-hand side involves Wiener sausages at time 7 with a shape that shrinks with 1/y/T7.
We are aiming for the large deviations of V'I(7).



2.1.2 Compactifying

We will obtain upper and lower bounds on S; by wrapping the scaled Brownian motion around
a finite torus, respectively, by killing it at the boundary of this torus. This compactification
will be exploited in Sections 2.2 and 2.3, where we prove a large deviation principle (LDP)
for (VX(7)),;>0 restricted to the torus and use it to compute the asymptotics of exponential
moments. This LDP will lead to a lower, respectively, upper bound on the variational char-
acterisation of the rate functions Jg and Jy in Theorems 1.3.1 and 1.3.2. By letting the torus
tend to R% afterwards, we will obtain the variational characterisation as claimed. We will do

the compactification for II with finite support and remove this restriction afterwards.

2.1.3 Coarse-graining

The proof of the LDP for the Brownian motion on the torus consists of three steps, taken
from vdBBdH:

Step 1: For ¢ > 0, we chop the Brownian motion into excursions of length e, and
define
XT& = {IBN(iE)}ISiST/G? (219)

which is the collection of the endpoints of the excursions. The lower index N refers to the
restriction to the torus of size N, and for notational convenience we assume that 7 /€ is integer.
Let VTI’IN(T) be the analogue of (2.1.8) for the Brownian motion on the torus of size N. We

approximate VTrfN(T) by IET,E(VTI}N(T)), where E; . denotes the conditional expectation given

X;e. We prove that the difference between VTIZIN(T) and ET,G(VT{[N(T)) is negligible in the limit
as 7 — oo followed by € | 0. This is done by an application of a concentration inequality of
Talagrand.

Step 2: We represent ET,G(VT{[N(T)) as a functional of the bivariate empirical measure

T/€

Lre=7 Zl 5(6N<(z>1>e),ﬁw(z'e>)' (2.1.10)

According to Donsker and Varadhan, (L. ¢);>o satisfies an LDP. We need some further ap-
proximations to get the dependence of ET7€(VTI’IN(T)) on L. in a suitable form, but based on

just this LDP we get an LDP for (IET,E(VTI?N(T)))T>0 via a contraction principle.

Step 3: We take the limit € | 0. By Step 2, we already know that VTIZIN(T) is well
approximated by E; (VT{[N(T)). It therefore suffices to have an appropriate approximation for
the variational formula in the LDP for (IET,E(VTI}N(T)))T”.

These three steps were used in vdBBdH to derive an LDP for the quantity in (2.1.8) when
IT = dp,(0), the point measure on the ball of radius a € (0,00) centred at 0. In the present
context, the integral over II represents an additional ingredient, and we have to see how this
can be incorporated and carried along. The argument in vd BBdH is rather delicate, involving
various estimates on Brownian motion and hitting times of shrinking balls. We need to check
that these estimates can be handled when the balls are replaced by sets with a random shape.
Therefore we provide a sketch of the main ingredients of the argument.

10



2.1.4 Outline
In Sections 2.2 and 2.3 we give the proof for d > 3 when II has finite support, i.e.,

n n
T=> amda,, P m=1am>0 A4y €Q neN (2.1.11)
m=1

m=1

In Section 2.4 we explain why the proof for arbitrary II follows from that for finite II via a
sandwiching argument in combination with a truncation argument. Here conditions (C1) and
(C2) in Section 1.1 will play a crucial role.

In Section 2.5 we briefly indicate how to amend the proof for d = 2, taking (2.1.6), (2.1.7)
and (2.1.8) into account.

2.2 Upper bound for d > 3

Let Ay denote the torus of size N, i.e., [~N/2, N/2]¢ with periodic boundary conditions. Let
Bn(s), s > 0, be the Brownian motion wrapped around Ay. Let

walVT(s),  s>0, (2.2.1)

denote its Wiener sausage with shape A scaled down by /T;, and let

VI (7) = / TI(dA) [Wa/VT (7). (2.2.2)
Q

T

The wrapping lowers the volume of the Wiener sausages, and so we have, recalling (2.1.7) and
(2.1.8),
S < E (exp [—erV/ v (7)]) - (2.2.3)

The desired upper bound on S; will therefore come out of the following LDP:

Theorem 2.2.1 (VTIZ[N(T))T>0 satisfies the LDP on (0,00) with rate T and with rate function
IEN given by

Tin(b) = inf {3[IVg[3: ¢ € H'(Ax), lIll3 =1, Fj(¢*) = b} (2:24)
with FI' given by (1.3.3).

Proof. We assume that IT has the form (2.1.11) and follow the three steps indicated in Section
2.1.3.

Step 1:
Proposition 2.2.2 For any § > 0,

lim lim sup ! log P (|[Vy(7) = Ere (Vi (7))] > 6) = —oc. (2.2.5)

el 7500 T

11



Proof. For II of the form (2.1.11), we decompose (2.2.2) as

T,

Vi) =Y an WiV (1)), (2.2.6)

m=1

The proof of Proposition 4 in vdBBdH can be copied to show that, for any § > 0 and
1<m < n,

1

lim lim sup ~ log P (‘ (WinVT (7)] — K, <|W]€m/‘/i(7')|> ‘ > 5) = oo, (2.2.7)
el 7500 T

which yields the claim. The only property we need to check for (2.2.7) is the analogue of

Equation (2.23) in vdBBdH, which plays a pivotal role in the proof and which here reads

sup 2 <exp [%mﬂ‘m (T)|]> < 0. (2.2.8)

Now, the left-hand side is bounded above by the same expression with A, replaced by Br(0),
where R = maxi<p;<n R(Ay,) with R(A,,) the radius of the smallest ball containing A,
centred at 0. But for a ball with an arbitrary finite radius the bound in (2.2.8) is known to
be true (see van den Berg and Bolthausen [1]). |

Step 2: Let 1. M7 (AN x Ax) = [0,00] be the entropy function

@), — h(plp ® me) ,muy = po,
I () { 00 ,otherwise, (2.2.9)

where h(-|-) denotes relative entropy between measures, 1 and po are the two marginals of
p, and m(z,dy) = pe(y — x)dy is the Brownian transition kernel on Ay associated with an
e-excursion. Furthermore, let @111/6: M (Ax x Ax) = [0,00) be the function

O (1) = /QH(dA) /AN da (1 — exp [—”(;4) /ANXAN vy — 7,2 — z)p(dy, dz)]) (2.2.10)

with
ng dsps(—y)pe—s(2)
pe(z - y) .

0e(y,z) = (2.2.11)

Proposition 2.2.3 (Er,e(VTIZIN(T)))T>0 satisfies the LDP on (0,00) with rate T and with rate
function
1
b inf{—1§2> (): € MT(An x Ay), @) (1) = b} : (2.2.12)

€

Proof. The claim is the analogue of Proposition 5 in vdBBdH. We indicate how the proof is
adapted.

First, we fix K > 0 and cut out holes of radius K/y/T, around the endpoints of the
e-excursions. To that end, we define

W = Wik \ |Biyr (B ((i = 1)) U By (Bw (ie)) (2.2.13)
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with

wih= U |8+ AVT], (2.2.14)
(i—1)e<s<ie
and we put
T/e
VI () Z/H(dA) Uwi. (2.2.15)
i=1

This is VT{[N(T) in (2.2.2) but with the holes cut out. Note that

0 < VI(r) = VIR (1) < (r/e + D wa(K/V/T;)?* < 2K%wg/eT, (2.2.16)

(recall (2.1.6); wy is the volume of the ball with unit radius). The right-hand side tends to

zero as T — oo for any K < oo, so the cutting is harmless when we let K — oo afterwards.

HK

Next, we express E; (Vi (7)) in terms of the empirical measure L. defined in (2.1.10):

ETE( THNK(T))
T/€
= dA d ~P.. AK
/QH( )/ANz 1-P, mgéUWZ,N

=1

T/e

:/QH(dA)»/ANdx ZHI{ 7'5(1‘EWZANK>}
:/QH(dA)/ANdx

(1 — exp E /ANxAN log (1 —dpely — 2,2 — ) 1{yfx,zfm¢3,{/m(0)}) Lr,e(dy, dZ)} )

(2.2.17)
Here,
ar, e(ya ) P €,Y,2 (UA/\/]T < 6) (2218)
with 04, 7 the first time the Brownian motion enters A/\T,, and
Pey:(-) = P(An([0,€¢]) € - | Bn(0) =y, Bn(e) = 2) (2.2.19)

the probability law of the Brownian bridge of length € from y to z.

The key property of the quantity in (2.2.18) needed in the proof is the following analogue
of Lemma 2 in vdBBdH:

(a) hm lim sup sup que(y, z)=0forall A€ Q, e >0,

K=00 7200 y,2¢By, - (0)
(b) lim  sup |7¢2.(y,2) — k(A)pe(y,z)| =0 forall 0 < p< N/4and A€ Q, € > 0.
T*}OOy’Z¢Bp(0) ’

(2.2.20)
Property (2.2.20)(a) is immediate, since q;“,e(y, z) is non-decreasing in A and for A = Bg(0) the
proof is in vdBBdH. For property (2.2.20)(b) the key ingredient is the analogue of Equation
(2.64) in vdBBdH, which reads

1 t
lim <t)= - forally e RY, ¢ >0, A 2.2.21
b{LO Iﬁ)(bA) (UbA S t) /0 ps( y)ds orall y € , t> 0’ c Q ( )
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with Py(-) = P,(8([0,00)) € - | B(0) = y) (see Le Gall [5]). It is through this relation that
k(A) appears on the stage.

Next, (2.2.20) allows us to linearise the logarithm in the last line of (2.2.17) and to replace
it by —k(A)pc(y — =,z — x) /7, which brings us to the expression in (2.2.10) with g = L. To
do this properly we need some continuity properties, which are the analogues of Lemmas 3
and 4 in vdBBdH and which rely on (2.2.20)(b). Since IT has finite support, this part of the
extension is again straightforward.

The combination of (2.2.16), (2.2.17) and (2.2.20) leads us to the conclusion that for € > 0

=0 (2.2.22)

Tim ||Bc (VI (7)) = @ (L) |

Finally, we note the following:

(1) p— @1/6( ) is continuous in the total variation norm.

(2) (Lr.e)r>o satisfies the LDP on M (Ay x Ay) with rate 7 and with rate function %Ig).

Therefore the claim in Proposition 2.2.3 now follows by using the contraction principle in
combination with (2.2.22). |

Step 3: This step consists of two approximation lemmas.

il
Let\If/

i (v) = /QH(dA) /AN d (1 — exp [—@/Oeds /ANps(:I:—y)y(dy)]>. (2.2.23)

Lemma 2.2.4 For any K > 0,

M (Ay) + [0,00) be the function

lim sup ‘@{I/E(,u) - ‘Illf/e(ul)‘ = 0. (2.2.24)
€l0 1702
w: EIE (m)<K

Proof. For TI of the form (2.1.11), we decompose (2.2.10) and (2.2.23) as

5 5
1/6 Z Clm Am 1/6 Z am I?Em (2225)

The proof of Lemma 6 in vd BBdH can be copied to show that, for any K > 0 and 1 < m < n,

lim sup ‘be?em ) — f?e’” ,ul)‘ =0, (2.2.26)
€l0 L 17(2)
pr I (WK

which yields the claim. The only property needed for the proof of (2.2.26) is k(A;,) < co. R

Let I: M{(Ax) — [0,00] be the standard large deviation rate function for the empirical
distribution of the Brownian motion, given by

I(v) = 5[y, |VeP(x)dz if ¥ = ¢* with ¢ € H'(Ax),

= 00 otherwise.

(2.2.27)

14



Let I.: M7 (An) = [0,00] be the projection of 1 onto M (Ay), given by

L) = inf{1§2> (1) gy = 1/}. (2.2.28)

Then !
lim-I.(v) = I(v) for all v € M (Ay) (2.2.29)

(see vdBBdH Lemma 5).

Lemma 2.2.5 For any K > 0,
=0 (2.2.30)

lim su ol () — I (dv
€l . glf(E)gK 1/6( ) ! (dx)

with FI! given by (1.3.3). (Note that if I.(v) < oo, then dv < dz because v ® T < dz ® dy
by (2.2.9) and (2.2.28)).

Proof. For II of the form (2.1.11), we decompose (2.2.23) and (1.3.3) as
a 0 (5
vl =>a W), Fi) = Z amF 4™ (42). (2.2.31)
m=1
The proof of Lemma 7 in vd BBdH can be copied to show that, for any K > 0 and 1 < m < n,

. 6Am 0Apm (dv
1gfg:1§up ol @) - B (%)

=0, (2.2.32)

which yields the claim. The only property needed for the proof of (2.2.32) is k(A;,) < co. R

Having completed Steps 1-3, the proof of Theorem 2.2.1 now follows easily. Indeed, for
any f: (0,00) — R bounded and continuous we have

lim 1 logE(eXp [Tf(VH (T))D

T—00 T

— lim lim > log B (exp [/ (v (V! NN

el0 TH0 T
1

—timsup { (81, (0)) ~ 110 |

€

~ Jim lm sup {f(@lf/e(u))—éfe@’(m}
<K

K—o0 €l0 11(2)(

1
— lim lim su yl i 6 }
K—00 €0 llf(z)P() {f( I/E(MI)) € " ) (2.2.33)

1
= lim lim su Uil (1)) — —I.(v
K—o0 €l . llf(lz)gK f( 1/5( )) € ( )}

dv 1
= ]_ l. FH — __I€
dm i s s (8 () - o))

)1}

= s {rE#) - 5IV0B

$eH (An): [|¢l3=1
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Here, the first equality uses Proposition 2.2.2, the second equality Proposition 2.2.3, the fourth
equality Lemma 2.2.4, the fifth equality (2.2.29), the sixth equality Lemma 2.2.5, while the
last equality comes from (2.2.27). The claim in Theorem 2.2.1 follows by applying to (2.2.33)
the inverse of Varadhan’s lemma due to Bryc [4]. |

It follows from (2.2.3) and Theorem 2.2.1 that

1
lim sup — log Sy < —JEN(C) (2.2.34)

T—oo T

with
JEN(C) = inf{cb—i—IgN(b): be (0,00)}

= inf {1|Ve|} + cFJ(¢%): b€ H' (An), |43 =1}.

This is the same as (1.3.2), but with R? replaced by Ay. Thus, to complete the proof of the
upper bound for II with finite support it suffices to show that

(2.2.35)

lim Jly(e) = JiH(e). (2.2.36)
N—oo

The latter is a standard exercise, for which the reader is referred to vdBBdH Section 2.6.
There a proof was given for Il = dp, (g), which easily extends to IT with finite (or countable)
support.

2.3 Lower bound for d > 3
We again assume that II has the form (2.1.11). Let
R=inf{M >0: A, C By form=1,...,n}. (2.3.1)

Fix N. Consider the event Ciy,r(7) that the Brownian motion does not hit 9Ay_g, - until
time 7. Then, recalling (2.1.7) and (2.1.8), we have

S, > E (exp [—er V(7)) 1CN,R(T)) . (2.3.2)

On the event Cy g(7), recalling (2.2.2), we have

VI(r) = Vi(r). (2.3.3)
Hence
...l .1 -
liminf —log S; > —Ay + lim —log E (exp [—crV, n(7)] | Cn,r(7))
T—00 T T—00 T (2.3.4)
= =V = Jan (o),
where !
_>\N = IIHIII - log P(CN’R(T)) (235)
T oo T

is minus the principal Dirichlet eigenvalue of —A/2 on Ay, and J}'\ (c) is given by (2.2.4),
except that ¢ has the additional restriction supp(¢)NdAy = (). Here, note that the dependence
on R drops out with the limit 7 — oo, because Cn r keeps the Brownian motion a distance
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R/\/T; away from OAy, while lim;_, o T = oco. Let N — oo and use that imy_,oo Ay = 0,
to see that it suffices to show that

lim Ji' . (c) = Ji(e). (2.3.6)
N—>oo 777

The latter is again a standard exercise, for which the reader is referred to vdBBdH Section
2.6.

2.4 Continuum limit of II

In Sections 2.2 and 2.3 we proved Theorem 1.3.1 for II with finite support. It remains to
show that the result can be extended to arbitrary II subject to the conditions (C1) and (C2)
in Section 1.1. For this we need the notion of stochastic ordering by inclusion, namely, II; is
stochastically smaller than Iy, written

I < 112, (2.4.1)

if there exists a coupling I1"2? of II' and II? such that I1'2(4; C Ay) = 1.
We begin by noting the following continuity property of the variational problem in (1.3.2):

Lemma 2.4.1 Suppose that (I1,,) and 11 satisfy (C1) and (C2). If

(i) TII, <TI for all m,

(i) [ Tn(dA) 5(A) = [o TI(dA) 5(A) as n— oo, (2.4.2)
then JdH”(c) — Ji(c) as n — oo for all ¢ € (0,00).
Proof. Note that
(An, A€ Q, pr(An, A) =0} = {r(An) = K(A)}. (2.4.3)
Consequently, under condition (C1),
(I, =1) = (©,=0) (2.4.4)

with © = IT o k~!. Hence it suffices to prove continuity of the variational problem in ©® =
Mok,

Since A — k(A) is non-decreasing in the partial order induced by inclusion, (2.4.2)(i)
implies that ©, < © for all n. It therefore follows from (1.3.4) that FdH” < FI! for all n. For
a reverse estimate, write

0 < Fj'(¢%) — Fi" (¢7)
_ /R Ldo /0 [@(d:) — 0, (dr)] (1 —e—“¢2<’”>)
< [ dr @ [ 10n) - Ouldn)x

Rd 0
o o

= O(dk) Kk —/ On(dk) k.
0 0

(2.4.5)
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The right-hand side tends to zero as n — oo by (2.4.2)(ii), where we recall from Proposition
1.4.1 that both integrals are finite. |

We will now prove the extension of Theorem 1.3.1 via a sandwiching argument in combi-
nation with a truncation argument. Note that IT' < I12 implies

Sy (Y > Sy(11?%), t>0. (2.4.6)

Upper bound: Any IT satisfying conditions (C1) and (C2) can be approximated from below,
as in (2.4.2), by a sequence (II,) with finite support. By (2.4.6), we have S;(IT) < S;(I1,),
t > 0, for each n. Since Theorem 1.3.1 holds for II,,, we therefore have

1 1
lim sup — log Sy(IT) < limsup — log S¢(I1,) = —Jg" (c). (2.4.7)

700 T T—oo T

Lemma 2.4.1 now gives us the desired upper bound.

Lower bound: If IT has unbounded support, then it cannot be approximated from above, as in
(2.4.2), by a sequence (II,,) with finite support. However, we can use the following truncation
argument based on (C2). Fix N and R. Let

QR:{AE Q: ACBR}. (248)

On the event C'y p(7) defined in Section 2.3, we have

WY ()] + |(A/VT5 + By) N BS|, A€ Qn,

(WA ()] < (2.4.9)
|By| + |(A4/VTr + By) N B%| AecQ\ Q.
Therefore, on the event Cy r(7), we get the bound
Vi) = [ @A) AT ()
C (2.4.10)
< VI r(7) + |Bv|pr + / TI(dA) ‘(A/\/TT +By) N B]CV‘
Q
with
Via(r) = [ @a) Wi o),
on (2.4.11)

pr = / TI(dA).
O\Qr

The third term in the right-hand side of (2.4.10) equals |Bn |6y 7 (recall (1.1.6)) and tends to
zero as T — oo for fixed N by (C2). The key observation now is that II can be approximated

from above, as in (2.4.2), by a sequence (II,) with countable support such that II,1¢, has
finite support for each R. By (2.4.10-2.4.11), we have

Sy(Il) > E (exp [—erVii(7)] 1cN,R<T>)

- (2.4.12)
> efc‘BNHpR‘HsN\/ﬁ] E (exp [—CTVT;\;I?R (7')] 1C’N,R(T)>
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We can now apply the argument in Section 2.3 to the expectation in the right-hand side of
(2.4.12), for fixed N and R, and take the limit 7 — oo, to obtain

1 "
lim inf = log Sy(TT) > —c|By|pr — AN — Jf,Nl,fR(C)

T—00 T

(2.4.13)

v

—C|BN|pR — >\N — ng,’*(c)

Note that Jg}{, .(c) depends on II,, only via ©,, = IT,, o s~ !. Therefore no harm was done in
the last inequality of (2.4.13), which removes the truncation in (2.4.8) on the finite torus. We
can now let R — oo and use that limp_,, pr = 0, to get

1
lim inf = log S,(IT) > Ay — Ji'% (). (2.4.14)

T—00 T

Let N — oo, use that limy_, oo Ay = 0 and recall (2.3.6), to get

1
lim inf = log S (IT) > —JM"(c). (2.4.15)

T—00 T

Finally, use Lemma 2.4.1 to arrive at the desired lower bound.

2.5 Extension to d =2

The extension to d = 2 is minor and follows vdBBdH Section 4. The ingredients (2.2.8),
(2.2.20) and (2.2.21) need to be properly modified, for which we refer to Equation (4.8),
Lemma 8 and Equation (4.14) in vdBBdH, respectively. The rest of the argument is the
same, with the notation introduced in (2.1.6).

3 Proof of Proposition 1.4.1 and of Theorems 1.4.2, 1.4.3 and
1.4.4

3.1 Proof of Proposition 1.4.1

Proof. By Lieb and Loss [6], p. 255, for A € Q we have
1
K(4) = 5 inf {|V¢[3: ¢ € D'(RY)NC*(R?), ¢ > 1 on A}. (3.1.1)
For A € Q, define p4: RY — [0,00) by pa(z) = inf{|y — z|: y € A} and, for M > 0, put

dam(z) = <1 - 2pA($)> V0. (3.1.2)

M

Then ¢ € DYR?) NCO(R?), parr > 1 on A, and

Z ,0<pa(x) <&
— M P
Vau (@) { 0 ,otherwise. (3.1.3)
Hence 5
m(A)gmHmeRd;0<pA(x)<%H L)
2 2 . . .
< g4+ Bul < 55 ([Bul + (A + Bu) N By ).
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By (1.1.6),
m>zl;ﬂ¢®mm)gi%umM1+%n:2M*%1+ﬁn, (3.1.5)

which is finite for M large enough by (C2). n

3.2 Proof of Theorem 1.4.2(i) and Theorem 1.4.4(i)

According to (1.3.2) and (1.3.6), ¢ — JJ'(c) and ¢ — Jx(c) are infima over functions that are
linear. Consequently, both are concave, and therefore also continuous except possibly at the
boundary point ¢ = 0. It is obvious that J}'(0) = J2(0) = 0. From the general upper bound
in Theorems 1.4.3(i) and 1.4.4(iii), it follows that lim. o JI'(c) = lim.jo J2(c) = 0. Therefore
continuity extends to the boundary. It is further obvious from (1.3.2) and (1.3.6) that J}'(c)
and Jo(c) are non-decreasing in ¢. By concavity, both are strictly increasing in ¢ unless they
are constant from some finite ¢ onwards. But this is ruled out by the asymptotics for ¢ — oo
in Theorems 1.4.3(i) and 1.4.4(iii).

3.3 Proof of Theorem 1.4.2(ii)

Lemma 3.3.1 Let d > 3. Then J)'(c) < ¢(k) for all ¢ > 0.

Proof. Since 1 — e ® < z, z > 0, we have from (1.3.3) that Fi(¢?) < (k)||¢||3- Hence the
claim follows from (1.3.2), since inf{||V¢||3: ||¢||3 = 1} = 0. n

The critical value c* is the unique threshold such that J}'(c) < ¢(x) if and only if ¢ > c*.
It folllows from Theorem 1.4.3(i) that ¢* < co. In Lemma 3.3.2 below we derive a lower bound
on ¢* in regime (I). To do so, we first rewrite (1.3.2) as

c(k) = Ji'(¢) = —inf {3[IV¢I3 - cGY(¢%): Ig]I3 = 1, ¢ RSNI}, (3.3.1)

where RSNI means radially symmetric and non-increasing (see vdBBdH Lemma 10), and

o
GU(4?) = / dz / O(dk) (e—W(’f) - 1+H¢2(m)). (3.3.2)
Rd 0
From (3.3.1) we see that
3IVol3
¢ =inf{ 2 2. |42 =1,¢ RSNIL ;. (3.3.3)
{ Gl(g2) "
Lemma 3.3.2 Letd > 3. If © € Sy, then
_ 2\ !

with Sq the Sobolev constant in (3.3.15) below.

20



Proof. We estimate the contribution to the double integral in (3.3.2) as follows.

First, let A < oo. The contribution of the rectangle (0,x0) x {z € R?: ¢?(z) < A} is
bounded from above by

Ko
/ O(dk) / dz k2 ¢* (z) < k2 AHI=2)/d / dz p?HD/4 (), (3.3.5)
0 {p2<A} R4

where we use that e™® — 1 + 2 < z?, 2 > 0. On the other hand, the contribution of the
rectangle (0,x0) x {z € RY: ¢?(z) > A} is bounded from above by

Ko - 2/d
/0 O(dk) /{¢22A} dx k¢*(z) < Ko /WZA} dx ¢°(z) <@> 3.3

< KOA—Z/d/ d P22/ ().
Rd

We choose A = madﬂ(d*l) to get from (3.3.5) and (3.3.6) that the contribution of (0, ko) is

bounded from above by

G /R i ), (3.3.7)

Next, the contribution of the rectangle [rg, 00) x {z € R?: $?(z) < 1/kg} is bounded from
above by

1/¢?(x) o0
/ dx / O(dr) K> $*(z) +/ dz / O(dr) kp*(z)
{¢?<1/ko} K0 {¢2<1/ko} 1/¢?(x)

<K dx / di k2 2) + K dx / drs @2/ g2 (1)
{¢2<1/ko} Ko {¢2<1/ko} 1/¢*(x)
1/¢°(x) 00
<K dz ¢* () / dek™ 24+ K dz ¢*(x) / dr ks~ (@+2)/d
{¢2<1/ko} 0 {¢2<1/ko} 1/¢%(x)

d’K / .
__ =" dI¢ (d+2)/d z),
Q(d— 2) {$2<1/ko} ( ) ( )
3.3.8

where we use the upper bound on O(dk) that defines S;. On the other hand, the contribution
of the rectangle [rg,00) x {z € R?: ¢?(x) > 1/ko} is bounded from above by

/ dx/ O(dr) kp*(z) < K dx ¢2($)/ dr = (4+2)/d
{¢>>1/K0} K0 {¢2>1/ko} K0

dK _

—_ 7/ dx ¢*(z) 1y (3.3.9)
{#2>1/x0}

dK

S -

5 dz ¢2(d+2)/d($).
{¢?>1/k0o}

Combining (3.3.7), (3.3.8) and (3.3.9), we arrive at

i) < (/4 + gty ) [ e 670, (3:3.10)
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Next, for any 0 < @ < 1 and conjugate exponents p,q > 1, we estimate

1/ %
/¢%wwmf;(/¢P@HVﬂW> p(/¢P@WVWLﬂ”> " (3.3.11)

Choosing a, p, ¢ such that
2(d + 2)/dlap = 2d/(d — 2), [2(d+2)/d](1 —a)q =2, (3.3.12)

ie.,

p=d/(d—2), g=d/2, a=d/(d+2), (3.3.13)

and using that ||¢||2 = 1, we obtain

(d—2)/d
/¢2(d+2)/d < (/ ¢2d/(d—2)> = ||¢||§d/(d72), (3.3.14)

Together with the Sobolev inequality (see Lieb and Loss [6] page 190)

1913 > 54 161Ba/ 2, (3:3.15)
this gives
1
[ i < gl (3.3.16)
Sa
We obtain the claim in (3.3.3) by combining (3.3.10) and (3.3.16). n

Lgmma 3.3.3 Let d > 3. For © € Sy, if (k") < 0o for some n > ‘%2, then lim, .« [J3I(c) —
Jg ()]/(c =) <(r).

Proof. Let 1.~ be any minimiser for (1.3.2) at ¢ = ¢*, the existence of which we prove in
Lemma 3.5.2 below under the condition stated. Then

Ti (¢*) = $|Viper |13 + ¢ FIH($2). (3.3.17)
But, for any 6 > 0, we have
T +8) < SIVepes |3 + (¢ + O)FIL(92). (3.3.18)
Combining this with (3.3.17), we get
LB ) - T < W) < S5 = (o). (3:3.19)
[ |
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3.4 Proof of Theorem 1.4.2(iii)

Lemma 3.4.1 Letd > 3. If © € Sy, then ¢* = 0.

Proof. By (3.3.2) and the lower bound on ©(dk) that defines S;;, we have
o0 2
GU(4?) > / dz / drs L)k~ 1= (@+2)/d (e—w @ _14 ﬁ¢2(3:)> . (3.4.1)
R4 K1
Hence we get, for all ¢ € H' (Rd) that are RSNI with [|¢[|3 = 1 and x14%(0) < 1,

Gd ¢2 / dr —1—(d+2)/d (e—m]ﬁQ(m) — 14 I{¢2(I))
Rd 1/¢2($

< 1(0 ) /R do /1 :; —~(d+2)/d (e—ﬁ¢2<x>—1+ﬁ¢2(g¢))
e L (2
oo () Lo e o)

where we have used that e™ — 1+ > z/e, > 1. Inserting (3.4.2) into (3.3.3), we find

(3.4.2)

8y

< Zinf ! 1Voll Ipll5 =1, ¢ RSNIL, k19%(0) <1 (3.4.3)
—d L(1/¢2(0 f¢2 (d+2)/d - 275 » K1 < . 4.

The choice -
p(z) = Y2~ l2 e 50, (3.4.4)

yields that, for all 0 < e < r, /9,

"< Tld+2)/d" =5 (3.4.5)

( —4)
We obtain the claim by letting € | 0 and using that lim,_,, L(k) = co. [ |
Lemma 3.4.2 Let d > 3. If © € Syp, then limyo 2J}(c) = (k).

Proof. As shown in Lemma 3.5.1 below, for all ¢ > 0 we have the existence of a minimiser for
(1.3.2), say .. Hence

SR

1 © 2
Je) = E”VW”%*/W dx/o Oldr) (1—e E@). (3.4.6)

Let € >0 and R < 0co. Then, sincee ™ — 1+ 2 < %xZ, z > 0, we have

! ) 2/ dm/ O(dk) (1 —e_wg(’”)>
¢ {v2<et  J{x<R}

> [ ewn) (mRe) - 3Rl (3.47)
/{WSE} /{ngR} ( 2 )



where we use that ||¢.]|3 = 1. We will show that, for any € > 0,

lim dxp?(z) = 0. (3.4.8)
0 J{yz>e}

Combining this with (3.4.7) and again using that ||1.]|3 = 1, we obtain

lim inf — Jd (c) > / O(dk) k — 1R2e. (3.4.9)
cl0 ¢ {k<R} 2

By letting € | 0 and then letting R — oo, we arrive at

1 f-J > (k). 3.4.10
iminf 77'(¢) > (o) (3.4.10)

This proves the claim, since we already know from Lemma 3.3.1 that 1 J1(c) < (k).

It remains to prove (3.4.8). We have

/{wzx}dw (z) < A%e}d 22 (x) <¢c( ))2/d 2)

<e_2/(d_2)/ dxwzd/(d—Q)(x) (3.4.11)
Rd

where we use the Sobolev inequality (3.3.15). But lim.|g JdH(c) = 0 by Lemma 3.3.1, and
therefore lim.|o || V4|3 = 0. Consequently, (3.4.11) implies (3.4.8). |

3.5 Proof of Theorem 1.4.2(iv)

Lemma 3.5.1 Letd > 3. In regimes (1) and (II), (1.3.2) has a minimiser for all ¢ > ¢* (with
¢ =0 in regime (II)).

Proof. By the definition of ¢*, we have J!!(¢) < ¢(k) for ¢ > ¢*. For ¢ > 0, define

Kj(c)
(1 00 e
:1nf{§||V1/J||§—c/0 O(dr) /Rd dr () 14 (o) - ||¢||§:1,¢RSNI},
K (c)
1 o0 2
- inf{§]|v¢||% —c/o O(dk) /Rd dz (e—w (@ _1 +m/ﬂ($)) IR <1, 9 RSNI}
(3.5.1)
Then, for ¢ > ¢*, R
K(e) < Kl'(e) < 0. (3.5.2)

Let (1) be a minimising sequence of the variational problem for I?g(c) Then we may
extract a subsequence, also denoted by (¢;), such that 1; — 9. as j — oo for some 1), almost
everywhere and in D*(R?). It follows that 1. is RSNI and a minimiser for I/(\'}i](c) Moreover,
|9c]|2 > 0 (because ||p.]|3 = 0 would imply 1. = 0 almost everywhere, which in turn would
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imply I/(\'g(c) =0, in contradiction with (3.5.2)). Suppose that [|[¢||3 =1 —p with 0 < p < 1.
Define

1
$(z) = gwc(qx), (3.5.3)
where we choose g > 0 such that ||¢[|3 = 1, i.e.,
q=(1-p)"2. (3.5.4)
Then
IV6li3 = (1= p)~ 2| VaI3 (3.5.5)
and

c /0 ” o(ds) /R (@ <14 mp(0)

e _p)—d/(d+2)/ @(dn)/ (6_5(1_p)7z/(¢z+2)¢g(m) 14— p)—Q/(d+2)¢z(x))
0 Rd
> (1= ) [To) [ (O 1 i (a).
(3.5.6)

Inserting (3.5.5) and (3.5.6) into the definition of K!'(c), and using the definition of K}'(c),
we get

K (c) < (1 - p) K] c). (3.5.7)
By (3.5.2) and (3.5.7), we conclude that p = 0. Hence ||¢c]|3 = 1, and . is a minimiser for
K!l(c). |

Lemma 3.5.2 Let d > 3. For © € Sy, if (k") < oo for some n > d+2 then (1.3.2) has a
minimiser for ¢ = c*.

Proof. Define

Vel
¢ = 1nf{ 26:51(¢2)2 : 0 <||¢|I>2 <1, s RSNI} . (3.5.8)

We begin by showing that ¢ = ¢*. Trivially, by comparing (3.3.3) and (3.5.8), we get ¢ < ¢*
To prove the converse, let (¢;) be a minimising sequence for (3.5.8). Put 0 < a; = ||¢]||§ <1

and
bi(w) = a; 155 (0 1H2). (3.5.9)

Then |43 = 1, and

1 Vb 2 1 VA 2 1 VA 2
¢ < 2Hn ¢]2H2 = 2@2/?341'22)’\ - 2”1'[ @2“2' (3:5.10)
Gy (¢]) Gg[(aj ¢j2) G4 (¢] )

But the right-hand side of (3.5.10) converges to ¢ as j — oco. Hence, ¢* <¢.

By extractlng a subsequence, also denoted by (¢]) we may assume that ngSj — ngS as j — oo
for some ¢ almost everywhere and weakly in D'(R?). It follows that ¢ is RSNI. Below we
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will show that ngASH% > 0. If ngASH% — 1, then ¢ is a minimiser of (3.3.3). If, on the other hand,
0 < ||¢]|3 =1 — p < 1, then define, as in (3.5.3),

* 1~
¢ (z) = 5¢(qw), (3.5.11)
where ¢ is given by (3.5.4). Then ||¢*||3 = 1 and, as in (3.5.10),
o< 3IVEIE _ 51Vl
TG T aleY
It follows that ¢* is a minimiser of (3.3.3). It then obviously also is a minimiser of (1.3.2) for
¢ =c* (recall (3.3.1), (3.3.2) and (3.3.3)).

It remains to prove that ||$||% > 0. For this it suffices to show that there exist d,e > 0
such that, for any minimising sequence (¢;) of (3.5.8),

—¢=c" (3.5.12)

o eRY: ¢2(z) > e} >0 forallj. (3.5.13)
Indeed, (3.5.13) implies that ||$]||% > €6 for all j, and hence that
18113 > 6. (3.5.14)

To prove (3.5.13), we argue by contradiction. Suppose that there exists a minimising
sequence (¢;) of (3.5.8) with the property that, for all € > 0,

lim [{z € R?: ¢2(z) > e}| = 0. (3.5.15)
j—o0
Then, for all € > 0, there exists an Li(e) € N such that, for all j > L;(e),
[{z € RY: ¢ (x) > €}] < eln=(@+2/d)/2, (3.5.16)
We already know that there exists an Lo € N such that, for all j > L,
L7 4,112
ES V .
% <2e (3.5.17)
Gd (¢])

To arrive at a contradiction, we will show that the left-hand side of (3.5.17) is at least 5¢/2
for j > Ly(eg) V Ly for some ¢y > 0.

By the Sobolev inequality (3.3.15), we have

IV$;113 > Sallbi 13402 (3.5.18)
Since (k") < oo implies that (k") < oo for < 7, we may assume that B2 < p <2
To estimate the contribution of the strip {quZ < €} to the integral in Gg(qﬁf), we use that
e+ 1—x<z" x>0, to obtain, via (3.3.14),

” K z (kp2 (2))" = (K" w2 (x
[, e [ drtB@ = [ dsd

< (in)en-(d+2)/d / sl (3.5.19)
{¢j2<f}
< (“n>fn_(d+2)/d||¢j||%d/(d—2)-
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Furthermore, by Holder’s inequality and (3.5.16) we have, for j > L;(e),

@dﬁ/ dwﬁazxzﬁ/d$$2$1A2

N T 2/d
< (k) </Rd dz ¢; (:v)) (/Rd dx 1{@?(%)26})

< ()1 134y qazye™ /.

(3.5.20)
Combining (3.5.18), (3.5.19) and (3.5.20) we have, for j > L;(e),
~ 1 ~
Gi(97) < (k) + (&) 5. (2919 65113, (3.5.21)
or L
1 112
2 _ti2 ”Zqig“? > Lg e t(at2)/d) (k) + (") 7L, (3.5.22)
Gi(#3) — 2
Now choose € = ¢y with ¢y the root of
1, —m 1 5.
R (R ) R (3.5.23)
to get that (3.5.22) contradicts (3.5.17) for all j > Li(eg) V Lo. n

3.6 Proof of Theorem 1.4.3(i) and Theorem 1.4.4(iii)

We give the proof for d > 3. The proof for d = 2 is the same but uses (1.3.7) instead of (1.3.4).
From (1.3.4) we have
Fj'(¢%) < [supp(4)], (3.6.1)

and so (1.3.2) gives
Ji'(¢) < inf {5 Vo3 + clsupp(¢)]: [I¢lI5 =1} . (3.6.2)

We get an upper bound on the infimum by restricting supp(¢) to a ball B with volume |B].
Therefore

1 Vell3
2 l¢ll3

with A\y(B) the principal Dirichlet eigenvalue of —A on B. By scaling B, we have

Jie) < inf{ + ¢|B|: supp(¢) C B} = 1)4(B) +¢|B|, (3.6.3)
Ma(B) = |B| %), (3.6.4)

Substituting this into (3.6.3) and taking the infimum over |B|, we arrive at

d/(d+2)
T(e) < iréf{%kd|B|2/d + c|B|} _ % (%) G2(d+2), (3.6.5)

This proves the upper bound in (1.4.8).
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To prove the lower bound, we first scale ¢ to obtain
672/(d+2) Jé‘[ (C)

:inf{1||v¢y|§+/ dx/ O(dk) (1—6*“0”““)&@)) el =1, ¢RSNI}.
2 re Jo

(3.6.6)
We know that this variational problem has a minimiser when ¢ > ¢*. Call this minimiser 1.
Pick 0 < 0 <1/(2V Ag), and let

zﬁz{xemhwu)z@. (3.6.7)

Restricting the z-integration to By, we get
1 oo
rm@ﬁmz—/<mwmmﬁ+wﬂ—/(m/ O (dr) e~ 8 (3.6.8)
2 /B, Bs 0

By Lebesgue’s dominated convergence theorem, for every € > 0 there exists a C = C(0d, ¢, ©)
such that

/ d / O(dr) e " < ¢ vexC (3.6.9)
Bs 0
Hence
rhs (3.6.8) > § [ du [V (z)]> + |Bs| —e. (3.6.10)
Next, define ¢ by
_ w(x) - 6 T € B5a
d(x) = { 0 R\ By (3.6.11)

Then ¢ is RSNT and satisfies the Dirichlet boundary condition on dB;s. Since |43 = 1, we
have

[ o= [ il < 1Bl - o1l (3.6.12)
Bs Bs

Hence

_ 2 _ 2 _ 2 2
1_/Rd¢ _/195(¢+6) = 6%|Bs| + 26 B5¢+ B5¢
(3.6.13)

< Byl + 20152+ [ 4 < 201Bsl' 4 oI,
Bs
By (3.6.11) and the Rayleigh-Ritz variational characterisation of \4(Bs), we have
[ 1wl = [ 199P 2 ra(Bs) 191B. (3.6.19)
Bs Bs

Combining (3.6.6), (3.6.8), (3.6.10), (3.6.13) and (3.6.14), we obtain for ¢ > C,

_ 1
¢ 22 5e) 2 52a(By) (1~ 201B5[V?) + |B| — e
_1 ~2/d (1 _ 1/2 _
= Sl Bl (1= 20]B5|'/2) + Bys| ¢
1 —2/d
> 5AalBs| 7% (1 —20) +[Bs| (1 = 6Ag) —e (3.6.15)
1
> (GMBl 4+ 1Bl ) = 52V )] -

d/(d+2)
>d+2<M>

<5 g [1—(5(2\/)\51)]_6,
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where the second line uses (3.6.4) and the fifth line uses (3.6.5). Now let ¢ — oo, and
subsequently let d,¢e | 0, to get the lower bound in (1.4.8).

3.7 Proof of Theorem 1.4.3(ii)
Fix € € (0, K/2). Then there exists an R, € (0,00) such that
(K —e)v 177 <0(k) < (K+e)w 177, k > R. (3.7.1)

y (3.3.1) and (3.3.2),

o
—~
=
~
|
<
—
2]
~

IVIE - cGL(g?): 42 = 1}
Vol | dx/ i 0(s) (o) 14 k(@) « 19113 = 1}
IVl3 - C/Rd da /RE di (K — €)' 7 (ewz(m) 14 /«752(95)) L)% = 1}

IVl =l =) [ del@P" [ dn (e = 1) r|¢||2—1}
3.7.
)

> —inf

DO = l\3|l—‘ l\3|l—‘ DN | =

I

|
E
E,

(V4
|
E
=
—_—— A —A— A T

Rc¢2(z)
2)

where the second inequality uses the lower bound in (3.7.1). Inserting the scaling qS
6U24(8z), & > 0, we obtain

c(w) = I1(e) 2 —int {5V — ek = 500 [ da i)

N (3.7.3)
x/) drn T (e~ 14 k) 1 I3 =1},
3¢ Rep?(z)

We choose § to be the root of 362 = ¢(K —€)d%r=1) | Since this root is at least (cK )/ (2—d(y=1))
we obtain

—2/(2—d(y—1))
(2ek) 240 [y — ) 2 3 ()

K —«¢

x inf{nwu% - / de () / di i T (e R =14 k) ¢ )3 = 1}
Rd (cK)d/(2=d(v=1) R 4p2(x)
(3.7.4)

Next, we note that

/ dik 177 (e =1+ k) =T (—y) € (0,00). (3.7.5)
0
Let 8 € (v,2]. Since e™ — 1+ k < k%, kK > 0, we may estimate
(CK)d/(%d(Ar*l))RE,ﬁ?(x) 1 B—
/ di k™7 (e7F =1+ k) < —— ((cK)d/(Q_d(V_l))Req/JQ(m)) ”
0 B—
(3.7.6)
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By (3.7.4), (3.7.5) and (3.7.6), we obtain that

—2/(2—d(y—1))
(ZCK)J/(Ld(%l)) [c<ﬁ> _ Jg(c)] > _1 ( K ) ’

2\K —e (3.7.7)
int {9918 = D(=2) [ sl + Baglecv?): [ =1]
with an error term
Bolescst?) = = REER) V00 [ a7
Y R4

Furthermore, for 0 < @ < 1 and conjugate exponents p,q > 1, we estimate

1/p 1/q
28 2af8p 2(1-a)Bq
L < ([ wpesr) ([ o) (3.7.9)

Choosing «, 8, p, q such that
2ap = 2d/(d — 2), p=d/(d—2), 2(1 —a)Bq =2, (3.7.10)

ie.,

a=d/(d+2), B =(d+2)/d, p=d/(d—2), q=4d/2, (3.7.11)
we obtain from (3.7.9), using ||¢||3 = 1 and the Sobolev inequality (3.3.15), that

~2/(2-d(y-1))
(2eK) 2401 (o) — JH(e)] > —= (K !
T 2\ K —e€

x inf{(l + By (e,0)) [V4[13 = T(=) /R Ao lp@)P )3 = 1}

(3.7.12)

with an error term y
E. (e, c) = RZ-4=1)/d K. 3.7.13
’Y(e ) € Sd(Z—d(’}’— 1)) ( )

Finally, we insert the scaling ¢(z) = n%?4(nz), n > 0, and choose 7 to be the root of
(14 E,(e,¢)) = T(=y)n®=1 to arrive at

My(y),

(3.7.14)
where we have used the definition of My(y) in (1.4.10). Now let ¢ | 0 and use that lim,
E,(e,c) =0 for all € > 0. Then let € | 0, to get

K 1 >2/(2d(71))

{2eKT (=)} 240D () — JH(0)] > 5 (K —e 14 B (e0)

i inf{2eKT(—)} /900 [ef) — T ()] > 3 Malo), (3.7.15)

which is the desired lower bound.

The proof of the upper bound runs as follows. Let ¢ and R, be as before. We estimate,
similarly as in (3.7.2),

cf) — TR (o
it L L ven2 — - k() _ 2(,) — L) GI2 =
<—int {510 —c [ do [ " an o) (c L+ sg(@)) - Enle.cs )z 613 = 1)
E (3.7.16)
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with an error term
R. )
Ey(e,c; ¢%) = c/ dx/ dr 0(k) (ef'“i’ @ 1 4 K¢2(I)) . (3.7.17)
Rd 0
Since e=% — 1+ < (/42 > 0, we may use the Sobolev inequality (3.3.15) to estimate
R
Eyle,c; 62) < c/ dx/ dre 6(k) (562 (2)) 210 < emp(e) STV V2, (3.7.18)
Rd

where we abbreviate mg(e) = fORE drk 0(k) K42/4 Combining (3.7.16) and (3.7.18), we obtain
for ¢ small enough,

c(k) — Jg (c)

. —inf{ (; - cmg(osdl) 2
c(K +¢) /Rddz/f dr k' *’“b (") — 1+m¢2(ﬂs))= H¢II§=1} (3.7.19)
< —int (; ~ em(e)S7 ) 2

~ K+ () [ dolg@) - By e d)s 161 =1},

where in the second inequality we use the upper bound (3.7.1) and the identity (3.7.5), and
introduce an error term

R,
E.(e,¢;¢%) = ¢(K +¢€) /Rddaz/ dr k™' 7 e @) 1+,~;¢2(z)). (3.7.20)

The integral in (3.7.20) can be estimated from above along the lines of the argument connecting
(3.7.7), (3.7.8) with (3.7.12), (3.7.13). This leads to

c(k) — Jg'(c)

. 1 (3.7.21)
<t { (5= By(e0)) V4B — oK + OX(=) [ doloto)P™s 1915 =1}
Rd
with an error term
B (e, ¢) = cmo(e) + (K + ) RE-40=1)/d d (3.7.22)

Sa(2—d(y-1))

Via the scaling ¢(z) = 642¢(6z), § > 0, with § the root of 6%(3 — cE,(e,c)) = (K +
)L (—v)34=1) | we arrive at

1 /K +e 1 2/(2—d(y—1))
)12/ (2—d(r-1))
(2Kl ()} et =800 < 5 (5 557 M)
(3.7.23)
Now let ¢ | 0 and use that lim.jg (e, c) = 0 for all € > 0. Then let € | 0, to get
1
lim sup{2K cl'(—v)} =2 C=40=D) Te(x) — JH()] < 5 Ma(v). (3.7.24)

cl0
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which is the desired upper bound.

It remains to prove that My(y) € (0,00) for all v € (1, (d + 2)/d). By scaling we have, for
any € > 0,

M) = ~int {[Vpg - @400 [y g =1f. 1)
We get a strictly positive lower bound by choosing for 1) the function
P(z) = ndhelel2 (3.7.26)

and by subsequently choosing € sufficiently small.

To prove that My(y) is finite for y € (1, d+2) we apply the Sobolev inequality (3.3.15) to
(1.4.10). This gives

Mat) <~ int {SullBya-sy ~ [ WE7: TIE =1 (3.7.27)
Since [|%]|3 = 1 and v € (1,d/(d — 2)), Holder’s inequality gives

(d—2)(y—1)/2
[ < ( / |w|2d/<d—2>) . (3.7.28)

Inserting this into (3.7.27), we get

Ma(y) < sup {11557 by — SalldBuyia ) 115 =1}

3.7.29
< sup {pd(_)—Sdp}- (3:7:29)
p€(0,00)
The supremum in the right-hand side is finite because d(y — 1) < 2. n
3.8 Proof of Theorem 1.4.4(ii) and Theorem 1.4.4(iv)
In d = 2 the analogue of (3.3.3) reads (recall that x is replaced by 2m)
\%
¢* = inf 2” 2l ol|% = (3.8.1)
Ga(4%)
with
Ga(4?) = / dx <6_2”¢2(’”) -1+ 27r¢2(3:)> . (3.8.2)
R2

Lemma 3.8.1 (3.8.1) has no minimiser. If (¢y,) is a minimising sequence that is RSNI, then
lim,, 00 f{¢n>5} dz =0 for any § > 0.

Proof. Suppose that the variational problem in the right-hand side of (3.8.1) has a minimiser,
say ¥*. Then

3 IV3
* 2
¢ = Gal ) (3.8.3)
For € > 0, put
Pi(x) = e (ex). (3.8.4)



Since ||1*]|3 = 1, we have

oo 3IVeElE _ SlIvel

= . 3.8.5
= GER) T G (3:5:9)
Next, we claim that
1
y—— (e =1+ ky), y >0, (3.8.6)
Y
is strictly decreasing on (0, 00) for any x > 0. Indeed, its derivative at y equals
2 KY KYy\ _
S=-2) - (1+ ) e 3.8.7
y3 [( 2 + 2 ¢ ( )

Abbreviate z = ky/2 and note that z — (1+2)e 2* + 2z, z > 0, is strictly increasing on [0, c0),
and equal to 1 at z = 0, to get the claim. Finally, using that (3.8.6) is strictly decreasing, we
get from (3.8.2) that € — e *Gq(e29)*?) is strictly decreasing, which clearly contradicts (3.8.3)
and (3.8.5) when e < 1.

To prove the last claim, let (¢,,) be a minimising sequence for (3.8.1). Then, for any 6 > 0,

lim dz = 0, (3.8.8)

Indeed, if (3.8.8) fails, then there exists an > 0 and a subsequence (¢,,) such that

/ dzx > n. (3.8.9)
{¢n; >0}
But now the above argument shows that the sequence (¢;,) with ¢f, (z) = e¢n,(ez) yields a
strictly lower infimum when e < 1, which is a contradiction. [ |
Lemma 3.8.2 Let d =2. Then
L [IVel3 >
cf=— 1nf{ s olls =1 (3.8.10)
4 ol ’

* 7
and ¢ € [572, 3:]
Proof. Since e ® < 1 —z + $22, z > 0, we get from (3.8.2) that
Ga(¢?) < 27°(|¢ll5.- (3.8.11)

Substituting (3.8.11) into (3.8.1), we obtain the desired lower bound

1 [IVels 2
> — 1nf{ ol =1¢. (3.8.12)
4 (el ’

To prove the converse of (3.8.12), let (¢,) be a minimising sequence for (3.8.10) that is
RSNI. Then (¢5) with ¢S (z) = ¢y (ex) is a minimising sequence too. Replacing € by €/¢,(0),
we may assume that ¢,(0) = 1. Tt suffices to show that

\Vi 2 \Vis 2
lim sup lim sup (H il |l2 _ 5 ¢n“24> <0. (3.8.13)
€l n—00 G2(¢% ) 27 “‘ﬁ%“zl
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Since (¢,) is a minimising sequence, there exists an N such that for n > N,

$n(0) =€, [IVgLI3/llgnlli < oo, llgnll=1. (3.8.14)

Sincee ™ —1+x — %mZ > —%x?’, x > 0, it follows from (3.8.2) that

] /qsf;‘, (3.8.15)
where we have used that ¢, < ¢,(0) = e. Hence, for n > N,

, . ! 1™ ) Ve
iy o) <30 (%) ) R o
| 12 Go(de2)  2m2]|os | 272 3 195114 ( )

As n — oo, the quotient in the right-hand side converges to 2¢*. Now let € | 0, to get the
claim in (3.8.13).

Finally, the numerical bounds on ¢* are obtained as follows. First note that in d = 2 we
have the Sobolev inequality

G?( 167,2) > / [%(2ﬂ-¢;2)2 _ %(27“25722)3] > 27{'2 |:1 _ 27;62

IVelI3 > Sy 2Nl — 413 (3.8.17)

(see Lieb and Loss [6] page 190). With the substitution ¢,(z) = ¢(x/p), p > 0, this inequality
transforms into

IVll5 > S5z pliglli — p° lI4ll3- (3.8.18)
After optimisation over p this yields the Sobolev inequality
IVl > 585 allgll 1115 (3.8.19)

Substituting (3.8.19) into (3.8.12), we find the lower bound

¢t > Sy k. (3.8.20)

’

1672

This implies that ¢* > 27/647, because S{j = 277 /4. To obtain the upper bound on ¢*, we
pick 4 as in (3.7.26) with d = 2. Since [|[V¥||3 = 1, [[9|3 = 1 and |||} = 5=, subsitution into

3.8.10) yields that ¢* < 1/2x. [ |
( )y /

Lemma 3.8.3 Let d = 2. Then lim,|c+[J2(c) — J2(c*)]/(c — c*) = 2.

Proof. By the concavity of ¢ — Jy(c) stated in Theorem 1.4.4(i), it suffices to prove that

lim inf 22(0) = J2(<)

cle* c—c*

> 2. (3.8.21)

Since Jo does not depend on II, it is given by the expression we obtained in vdBBdH Theorem
2 and Corollary 2 for the case where Il = dp, () with a > 0 arbitrary, namely,

Tae) = it foe+ Ta(5) (3.8.22)
with .
R = {3IVolE: ¢ e @) 0 =1, (-2 =0} (3.8.23)
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(see also vdBBdH Equations (5.7) and (5.13)). Now, from vdBBdH Theorems 3(i) and 4(ii)
we know that

I (b)
b 3.8.24
~ 2t — b ( )
is strictly decreasing on (0,2), with
I5(b) L. 2 12 2 4 *
tim 20 = it (VI 6 € HUR), IgIB =1, 9l =1} = (3829
(compare with (3.8.10)). Put
I(b)
A(b) = —c*. 8.2
(b) 5 € (3.8.26)
Using (3.8.22), we may then write
Bl = B() _pp [y B =0AG) (3.8.27)
c—c* 0<b<27 c—c*

Since A(b) > 0 for all 0 < b < 2w, the minimiser in the right-hand side tends to 27 as ¢ | ¢*,
which yields (3.8.21). n

Lemma 3.8.4 Letd =2. Then (1.3.6) has a minimiser if and only if ¢ > ¢*. This minimiser
has full support.

Proof. The fact that there is no minimiser for ¢ = ¢* is a direct consequence of the first claim
in Lemma, 3.8.1. The proof that there is a minimiser with full support for ¢ > ¢* is the same
as that of Lemma 3.5.1. |
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