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1 Introduction

Mandelbrot (1974) introduced fractal percolation as a model for turbulence. In dimension two, the
model can be described as follows. Choose an integer M ≥ 2 and a parameter 0 ≤ p ≤ 1 and define
random sets (Kn)n∈N in the unit square as follows. Let K0 be the unit square itself. In the obvious
way, divide K0 into M2 equal sub-squares and, for each of these sub-squares independently, color it
black with probability p and white with probability 1 − p. The set K1 will be the set of points that
have been colored black. Similarly, define the set Kn+1 by dividing all black squares from Kn into
M2 sub-squares, each of which is colored black with probability p and white with probability 1 − p,
independently of all other colorings. The sequence (Kn)n∈N is decreasing and we denote the limit set⋂

n∈NKn by K. See figure 1 for a realization of the sets Kn for M = 3, p = 0.7 and n = 1, 2, 3, 4.
We say that K ⊆ [0, 1]2 percolates if there is a connected component of K that intersects the left and
the right side of the unit square and we denote the percolation function Pp(K percolates) by θM (p).
It is not difficult to show that θM (p) is an increasing, right-continuous function in p. Chayes, Chayes
and Durrett (1988) showed that the percolation function exhibits a phase transition in p, i.e., there is
a non-trivial critical value pc(M) such that θM (p) = 0 for p < pc(M) and θM (p) > 0 for p > pc(M).
Moreover, Dekking and Meester (1990) proved that the percolation function is discontinuous at the
critical value.

For all M ≥ 2, the value of pc(M) is unknown, but through the years various bounds have been
given. A rather trivial lower bound for pc(M) is obtained by observing that the sequence (Zn)n∈N,
where Zn denotes the number of black squares in Kn, is an ordinary branching process. Since this
branching process dies out whenever pM2 ≤ 1, we obtain pc(M) ≥ 1

M2 . A more ingenious branching
process argument enabled Chayes, Chayes and Durrett (1988) to prove that pc(M) ≥ 1√

M
and recently

White (2001) gave a computer aided proof that pc(2) ≥ 0.810.
Chayes, Chayes and Durrett (1988) were the first to give a rigorous upper bound for pc(M).

They showed that pc(M) ≤ p∗(M) for M ≥ 3, where p∗(M) is the infimum over p for which x =
(px)M2

+ (M2− 1)(px)M2−1(1− px) has a root in the half open interval (0, 1]. The proof of this result
was made more transparent by Dekking and Meester (1990) by translating it in terms of set-valued
substitutions (Dekking and Meester use the term multi-valued substitutions). Set valued substitutions
are substitutions on sets of words, rather than on single words. We postpone a formal definition to
Section 2 of this paper. For M = 3, Dekking and Meester (1990) sharpened the upper bound to
pc(3) ≤ 0.991.

In this paper, we generalize the set-valued substitution approach. For each M , we construct se-
quences (Φk,M )k∈N and (Ψk,M )k∈N of set-valued substitutions and to each Φk,M and Ψk,M we associate
a critical value pc(Φk,M ), respectively, pc(Ψk,M ). We prove that the pc(Φk,M ) monotonically increase
to pc(M) and that the pc(Ψk,M ) monotonically decrease as k →∞. Unfortunately, we were not able to
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Figure 1: Sets K1, K2, K3 and K4 of fractal percolation with M = 3 and p = 0.7.

prove that the pc(Ψk,M ) decrease to pc(M). We give a computer aided proof that pc(Φk=0,M=2) ≥ 0.784,
pc(Φk=1,M=2) ≥ 0.858, pc(Φk=0,M=3) ≥ 0.715 and pc(Ψk=0,M=3) ≤ 0.958.

This paper is organized as follows. In Section 2, we define set-valued substitutions and Bernoulli
random substitutions, of which fractal percolation is a specific example. In Section 3, we state our
main results. The construction of the sequences (Φk,M )k∈N and (Ψk,M )k∈N is covered in Section 4.
The proofs of our main results are postponed to Sections 5, 6 and 7.

2 Definitions

To be able to state our main results, we need to introduce (Bernoulli) random substitutions and
(increasing) set-valued substitutions. For ease of exposition, we will give the definitions for dimension
1. At the end of this section we will give some indications on how to generalize these concepts to
dimension 2.

2.1 Bernoulli Random Substitutions and Fractal Percolation

Let A be a finite set called the alphabet and let A∗ denote the free semi-group generated by A, i.e.,
the set of all finite words in A. A substitutions is nothing but a homomorphism on A. The random
analogue of a substitution is given in the following definition.

Definition 2.1. Let (σk)k∈N be a sequence of independent identically distributed random maps from
A to A∗. Define a random map σ on A∗ by

σ(u) = σ0(u0) . . . σk(uk)

for u = u0 . . . uk ∈ A∗. The random map σ on A∗ is called a random substitution. We define the n-fold
iterate σn to be the composition of n independent copies of the substitution σ.

We say that σ has fixed base if there is a positive integer M such that σ(i) is a word of length M
for all i ∈ A, where M is called the base of the substitution.

Definition 2.2. Let P be a Markov matrix indexed by A × A. We say that a base M random
substitution σ is a Bernoulli random substitution with transition matrix P , if for all i ∈ A, the letters

(σ(i))0, . . . , (σ(i))M−1

are independent with P((σ(i))k = j) = Pij for j ∈ A, 0 ≤ k ≤ M − 1.

All random substitutions in this paper will be Bernoulli random substitutions with fixed base
M ≥ 2.

Fractal percolation can be viewed as a Bernoulli random substitution. Let A be a finite alphabet
and let ≺ be a partial ordering of A, such that A has a unique maximum ā and a unique minimum a.
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Then fractal percolation on A∗ with parameters M and p is the Bernoulli random substitution with
base M and transition matrix P , given by

Pij =


1 if i 6= ā, j = a
p if i = ā, j = ā
1− p if i = ā, j = a
0 otherwise.

If we identify the letters ā in σn(ā) with black squares and the letters a with white squares, then the
analogy with the set representation of fractal percolation is obvious.

2.2 Set-valued Substitutions

Turning to the definition of set-valued substitutions, let A∗ denote the set of all finite subsets of A∗

and consider two binary operations on A∗:

V ∪W = {u : u ∈ V or u ∈ W} (union)
V W = {vw : v ∈ V and w ∈ W} (concatenation).

Definition 2.3. A set-valued substitution Φ is a homomorphism on A∗ respecting unions and con-
catenations, i.e.,

Φ(V ∪W ) = Φ(V ) ∪ Φ(W ) and Φ(V W ) = Φ(V )Φ(W ),

for all V,W ∈ A∗.

Remark 1. 1. SinceA∗ is generated by the singletons, i.e., the sets containing one letter, a set-valued
substitution Φ is completely determined by the images Φ(i) = Φ({i}), i ∈ A, of the singletons.

2. If the sets Φ(i) are disjoint for all i ∈ A, then the sets Φ(V ) and Φ(W ) are disjoint for all disjoint
sets V,W ∈ A∗.

We say that Φ has fixed base if there is a positive integer M such that Φ(i) ⊂ AM for all i ∈ A,
where M is called the base of the set-valued substitution. In this paper, we only consider set-valued
substitutions Φ with fixed base M ≥ 2, for which {Φ(i)}i∈A is a partition of AM . This special class
of set-valued substitutions appeared under various names in literature, for example as multi-valued
substitutions in Dekking and Meester (1990) and as 0L-systems in Rozenberg and Salomaa (1976). It
easily follows from the second remark above that {Φn(i)}i∈A partitions AMn

for all n, where Φn is the
n-fold iterate of Φ.

Example 1. Let A = {0, 1}, M = 2, Φ(0) = {00, 01, 10} and Φ(1) = {11}. Then

Φ({10, 101}) = Φ({10} ∪ {101})
= Φ(10) ∪ Φ(101)
= Φ(1)Φ(0) ∪ Φ(1)Φ(0)Φ(1)
= {1100, 1101, 1110, 110011, 110111, 111011}.

2.3 Increasing Set-valued substitutions

Consider a partial ordering ≺ of A. For words v, w ∈ Am we write v � w if vi � wi for all 0 ≤ i ≤ m−1.
A set V ∈ A∗ is said to be increasing (w.r.t. ≺), if v ∈ V and v � w imply w ∈ V .

Definition 2.4. We say that a set-valued substitution Φ is increasing if Φ(V ) is increasing for all
increasing sets V ∈ A∗.
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Remark 2. In fact, Φ is increasing, whenever Φ(J) is increasing for all increasing J ⊆ A. To see this,
write

V =
⋃
v∈V

{w : v � w}

and observe that for v ∈ Am

Φ({w : v � w}) = Φ({a : v0 � a}) · · ·Φ({a : vm−1 � a}).

Since {a : vk � a} is increasing, the claim follows.

2.4 Two Dimensions

In dimension 2, words are blocks of letters. Some sets of such blocks can be glued together to form a
larger block, but for other sets this may be impossible. The set of all finite 2-dimensional blocks A∗

does not possess the nice semi-group structure as it did in dimension 1, so in order to define a two-
dimensional substitution, we have to say what we mean by a homomorphism. By a homomorphism
on A∗, we mean a map that respects all valid concatenations, i.e., concatenations of blocks in such a
way that the result is a block again. With this in mind, the generalization of ordinary, random and
set-valued substitutions is straightforward.

3 Main Results

3.1 Bounds on the Critical Value of Fractal Percolation

In Section 4, we construct for each integer k ≥ 0 and M ≥ 2:

1. a partially ordered finite alphabet Ak,M with unique maximum āk,M and unique minimum ak,M ,

2. two-dimensional increasing set-valued substitutions Φk,M and Ψk,M on A∗k,M with base M ,

3. an increasing set Jk,M ⊂ Ak,M .

Define critical values pc(Φk,M ), k ≥ 0, M ≥ 2, by

pc(Φk,M ) = inf{0 ≤ p ≤ 1 : Pp

(
σn(āk,M ) ∈ Φn

k,M (Jk,M ) for all n
)

> 0},

where σ denotes 2-dimensional fractal percolation on A∗k,M with parameters M and p. We define
pc(Ψk,M ) analogously. These critical values provide upper and lower bounds on the critical value of
fractal percolation.

Theorem 3.1. Let pc(M) be the critical value of 2-dimensional fractal percolation with base M . Then

1. pc(Φk,M ) ≤ pc(M) ≤ pc(Ψk,M ) for all k ∈ N,

2. (pc(Φk,M ))k∈N increases monotonically and (pc(Ψk,M ))k∈N decreases monotonically,

3. limk→∞ pc(Φk,M ) = pc(M).

We conjecture (but are not able to prove) that also limk→∞ pc(Ψk,M ) = pc(M), whenever M ≥ 3.
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3.2 Bernoulli Random Substitutions and Set-valued Substitutions

Let A be a finite partially ordered alphabet and M ≥ 2 an integer. Consider a base M Bernoulli
random substitution σ with transition matrix P . Motivated by Theorem 3.1, in this section we study
probabilities PP

(
σn(i) ∈ Φn(J) for all n

)
for i ∈ A, increasing J ⊆ A and increasing set-valued

substitutions Φ. Actually, it turns out that in the context of Theorem 3.1 it suffices to look at
PP

(
σn(i) ∈ Φn(J)

)
.

Lemma 3.1. Let ≺ be a partial ordering of A and Φ an increasing (w.r.t. ≺) set-valued substitution.
If

PP

(
σ(i) ∈ Φ(J)

)
= 0 for all increasing J ⊆ A and i /∈ J,

then (PP (σn(i) ∈ Φn(J)))n∈N decreases monotonically to PP (σn(i) ∈ Φn(J) for all n) for all i ∈ A
and increasing J ⊆ A.

Remark 3. If we take P to be the transition matrix associated with fractal percolation, then the
condition in the lemma above is met by any increasing set-valued substitution Φ.

Write

Πn
ij(P ) = PP (σn(i) ∈ Φn(j)) i, j ∈ A, n ∈ N,

so that PP

(
σn(i) ∈ Φn(J)

)
=

∑
j∈J Πn

ij(P ). Theorem 3.1 would not be very useful, if the probabilities
Πn

ij(P ) were just as intractable as the percolation probability. Fortunately, the matrices Πn(P ) =
(Πn

ij(P )ij)i,j∈A satisfy a nice recursion formula.

Lemma 3.2. For all n ∈ N,

Πn+1(P ) = Π1(PΠn(P )).

Remark 4. This recursion was obtained by Dekking and Meester (1990, Proposition 3.3) for the case
that A = {0, 1} and P = P (p) is the transition matrix associated with fractal percolation.

If we denote the recursion function Π1(PX) by FP (X) = FP,Φ(X), then Fn
P (I) = Πn(P ), where

Fn
P denotes the n-fold iterate of FP and I the identity matrix indexed by A× A. Whenever we write

Fp(X) for 0 ≤ p ≤ 1, we mean FP (p)(X), where P (p) denotes the transition matrix associated with
fractal percolation.

Consider a partial ordering ≺ of A. For Markov matrices X = (Xij)i,j∈A and Y = (Yij)i,j∈A we
write X � Y if ∑

j∈J

Xij �
∑
j∈J

Yij ,

for all i ∈ A and for all increasing sets J ⊆ A.

Lemma 3.3. Let X and Y be Markov matrices indexed by A × A. If Φ is increasing w.r.t. a partial
ordering ≺ and X � Y , then FP (X) � FP (Y ).

3.3 Upper Bounds

An almost direct consequence of Lemmas 3.1 and 3.3 is the following theorem.

Theorem 3.2. Assume that Φ is increasing w.r.t. a partial ordering Φ and that Π1(P ) � I. Let i ∈ A
and J ⊆ A be an increasing set. If we can find a Markov matrix Y = (Yij)i,j∈A such that
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1. Y � I,

2. Y � FP (Y ),

3.
∑

j∈J Yij > 0,

then PP (σn(i) ∈ Φn(J) for all n) > 0.

Remark 5. The assumption in the above theorem that Π1(P ) � I is equivalent to

PP

(
σ(i) ∈ Φ(J)

)
= 0 for all increasing J ⊆ A and i /∈ J,

a condition that appeared in Lemma 3.1.

The theorem above gives us a recipe to find an upper bound for the value of pc(Ψk,M ), and hence
an upper bound for pc(M). We fix 0 ≤ p ≤ 1 and search among matrices Y with Y � I and∑

j∈Jk,M
Yā,j > 0 for one that satisfies Y � Fp,Ψk,M

(Y ). As soon as we have found such a matrix, we
may conclude that pc(Ψk,M ) < p.

3.4 Lower Bounds

The following theorem is, at least in spirit, similar to Proposition 2 of White (2001).

Theorem 3.3. Let k ≥ 0, M ≥ 2 be integers, let 0 < p < 1, write ā = āk,M , J = Jk,M , Φ = Φk,M and
let Fp = Fp,Φ denote the recursion function associated with fractal percolation. If

∑
j∈J

(
Fn

p (I)
)
ā,j

<

(
2Mk

p

(
4M − 3 +

8M − 12
1− p

))−2M

for some n ≥ 0,

then Pp(σn(ā) ∈ Φn(J) for all n) = 0.

From this theorem we obtain lower bounds for pc(Φk,M ) and hence for pc(M) as follows. We
fix 0 ≤ p ≤ 1 and compute Fn

p (I) for, say, n = 100. If this value happens to be smaller than(
2Mk

p

(
4M − 3 + 8M−12

1−p

))−2M
, then we may conclude that pc(Φk,M ) > p.

3.5 Numerical Results

The following numerical bounds were obtained by calculating the recursion functions Fp,Φk,M
and

Fp,Ψk,M
and applying Theorems 3.2 and 3.3. Since even for small k and M , the entries of Fp,Φk,M

(X)
and Fp,Ψk,M

(X) are huge polynomials in the entries of X, the work was done by a computer.

Theorem 3.4.

pc(Φk=0,M=2) ≥ 0.784 pc(Φk=1,M=2) ≥ 0.858
pc(Φk=0,M=3) ≥ 0.715 pc(Ψk=0,M=3) ≤ 0.958

Remark 6. From the definition of Ψk,M it will be clear that pc(Ψk,M=2) = 1 for all k ≥ 0.

4 Constructions

In this section, we will construct a partially ordered alphabet Ak,M , a set Jk,M ⊂ Ak,M and two-
dimensional substitutions Φk,M and Ψk,M , for all integers k ≥ 0 and M ≥ 2. We will fix integers k ≥ 0
and M ≥ 2, and we will suppress dependence on these parameters in our notation. So A will denote
Ak,M for example.
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4.1 The Partially Ordered Alphabet A

Let

L0 = {(1, 1
2), (1

2 , 1), (0, 1
2), (1

2 , 0)}

be the set of midpoints of the top, bottom, left and right side of the unit square. Fix M ≥ 2 and k ≥ 0
and let

L = ∂[0, 1]2 ∩M−k(Z2 + L0),

be the set of 4Mk points equally distributed over the boundary of the unit square ∂[0, 1]2. We define
the alphabet A to be the set of all equivalence relations on L. Let ≺ be the natural partial ordering
on A, i.e., a ≺ b if and only if a ⊂ b (a, b ∈ A). The maximum element ā w.r.t. ≺ is the relation A×A
and the minimum a is {(a, a) : a ∈ A}.

4.2 The set of letters J

Let f, g ≥ 1 be integers, let Bn(f, g) = {0, . . . , fMn − 1} × {0, . . . , gMn − 1} be the fMn × gMn box
in Z2 and let Wn(f, g) = ABn(f,g) denote the set of fMn × gMn blocks of letters in A. To each word
v ∈ Wn(f, g) we associate a graph G(v) as follows. The set of vertices of the graph will be

Ln(f, g) = L + Bn(f, g).

Two points x, y ∈ Ln(f, g) are connected by an edge if there is z ∈ Bn(f, g) and s, t ∈ L such that
x = z + s, y = z + t and (s, t) ∈ vz. We say that the graph G(v) percolates if there is a point x on the
left side of Ln(f, g) and a point y on the right side, such that x and y are connected in G(v). Define

Jn(f, g) = {w ∈ Wn(f, g) : G(w) percolates},

and define the set J to be J0(1, 1). In general, if we suppress n and (f, g) in our notation, we assume
that n = 0 and (f, g) = (1, 1).
Remark 7. There is a slight discrepancy between our definitions of percolation for sets and for words,
caused by diagonal connections. For example, the set

percolates, but the graph of the corresponding word

ā a
a ā

does not. Consequently, Pp(σn(ā) ∈ Jn) < Pp(Kn percolates) for all n ≥ 1 and 0 < p < 1. However,
it is not difficult to see that Pp(σn(ā) ∈ Jn for all n) = Pp(Kn percolates for all n).
Example 2. For k = 0 and M = 2, label the points of L by x0 = (1, 1

2), x1 = (1
2 , 1), x2 = (0, 1

2) and
x3 = (1

2 , 0). Let v ∈ W 1 be defined by

v00 = min{a ∈ A : (x0, x1) ∈ a}
v01 = min{a ∈ A : (x2, x3) ∈ a}
v10 = min{a ∈ A : (x0, x2) ∈ a}
v11 = min{a ∈ A},

where the minima are taken with respect to ≺. Then the graph G(v) of v is given in Figure 2. Note
that G(v) percolates, so v ∈ J1.
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Figure 2: The graph G(v) associated with the word v given in Example 2. The dashed lines represent
(part of) the Z2 lattice.

4.3 The Set-valued Substitutions Φ and Ψ

Consider a graph G = (V,E) with vertex set V and edge set E and let R be a set of non-empty
disjoint subsets of V . We say that R1, R2 ∈ R are connected, if x1 and x2 are connected in G for some
x1 ∈ R1 and x2 ∈ R2. We say that R1, R2 ∈ R are weakly connected, if there are R1, . . . , Rm ∈ R
such that R1 = R1, Rm = R2 and Ri is connected with Ri+1 for all 1 ≤ i ≤ m − 1. Finally, we say
that R1, R2 ∈ R are strongly connected, if R1 = R2 or there is a connected component C of G such
that |C ∩R1| ≥ d |R1|+1

2 e and |C ∩R2| ≥ d |R2|+1
2 e. Observe that unlike connectedness, weak and strong

connectedness are equivalence relations on R.
For x ∈ Z2 + L, let `(x) be the line segment between two neighboring points in the M−k

Z
2 lattice

that contains x. Define R(x) = Rk(x) to be the set of M points in Z2 + L that are contained in the
line segment M`(x). By default, if G is a graph on Ln+1, then weak and strong connectedness will be
relations on the set R = {R(x) : x ∈ Ln}.

Let the set-valued substitutions Φ and Ψ be defined by

Φ(a) = {v ∈ W 1 : R(x) and R(y) are weakly connected in G(v),
if and only if (x, y) ∈ a, for all x, y ∈ L},

Ψ(a) = {v ∈ W 1 : R(x) and R(y) are strongly connected in G(v),
if and only if (x, y) ∈ a, for all x, y ∈ L},

for all a ∈ A.

Example 3. Let k = 0, M = 3 and write L = {x0, x1, x2, x3} as in Example 2. At the bottom left of
Figure 3, we see the graph G(v) of a word v in which R(x0), R(x1) and R(x2) are weakly connected.
Hence v ∈ Φ(a), where a = inf{b ∈ A : (x0, x1), (x1, x2) ∈ b} and the infimum is taken with respect to
≺. At the bottom right of Figure 3, the graph G(w) of a word w is depicted, in which R(x0), R(x1)
and R(x2) are strongly connected. Hence w ∈ Ψ(a).

5 Proof of Theorem 3.1

5.1 Part 1

Fix integers k ≥ 0 and M ≥ 2. Part 1 of Theorem 3.1 follows immediately from the following lemma.

Lemma 5.1. For all n ≥ 0,

Ψn(J) ⊆ Jn ⊆ Φn(J).

An important step in the proof of the above lemma is provided by the following.

8



x1R( )

x3R( )

x0x0x2

x3

x1

R( )x2R( )

Figure 3: Let k = 0 and M = 3. Top left: the set L = {x0, x1, x2, x3}. Top right: the sets R(xi),
i = 0, 1, 2, 3. Bottom left: a graph in which R(x0), R(x1) and R(x2) are weakly connected. Bottom
right: a graph in which R(x0), R(x1) and R(x2) are strongly connected.

Lemma 5.2. Let n ≥ 0, x, y ∈ Ln, and v ∈ Wn.

1. If w ∈ Ψ(v) and x and y are connected in G(v), then R(x) and R(y) are connected in G(w).

2. If w ∈ Φ(v) and R(x) and R(y) are connected in G(w), then x and y are connected in G(v).

Proof. 1. Let w ∈ Ψ(v) and suppose x and y are connected in G(v). Then there are z1, . . . , zm ∈ Ln

such that z1 = x, zm = y and (zi, zi+1) is an edge of the graph G(v), for 1 ≤ i ≤ m − 1. Since
Ln = {0, . . . ,Mn − 1}2 + L, we can find

r1, . . . , rm−1 ∈ Z2, s1, . . . , sm−1 ∈ L, t1, . . . , tm−1 ∈ L,

such that

zi = ri + si, zi+1 = ri + ti, (si, ti) ∈ vri , 1 ≤ i ≤ m− 1.

Fix 0 ≤ i ≤ m−1. Since w ∈ Ψ(v), we have that wMri+B1 ∈ Ψ(vri), where B1 = {0, . . . ,M −1}2

and wMri+B1 denotes the M × M sub-word of w, obtained by restricting w to the indices of
Mri+B1. So in the graph associated to wMri+B1 , the sets R(si) and R(ti) are strongly connected.
Consequently, in the graph associated to w, the sets Mri +R(si) = R(ri + si) and Mri +R(ti) =
R(ri + ti) are strongly connected. Hence R(zi) and R(zi+1) are strongly connected in G(w).
Since strongly connectedness is a transitive relation, it follows that R(x) and R(y) are strongly
connected in G(w).

2. Let w ∈ Φ(v) and suppose R(x) and R(y) are connected in G(w). Then we can find

r1, . . . , rm−1 ∈ Z2, s1, . . . , sm−1 ∈ L, t1, . . . , tm−1 ∈ L,

such that

x = r1 + s1, y = rm + tm, ri + ti = ri+1 + si,
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and such that R(si) and R(ti) are connected in G(wMri+B1) for 0 ≤ i ≤ m− 1. Since wMri+B1 ∈
Φ(vri), we have that (si, ti) ∈ vri and hence, that ri +si and ri + ti are connected in G(v). Hence,
x and y are connected in G(v).

Proof of Lemma 5.1. Both inclusions are proved by induction. Concerning the first inclusion, let w ∈
Ψn+1(J). Then there is a unique word v ∈ Ψn(J) such that w ∈ Ψ(v) and by the induction hypothesis,
v ∈ Jn. Let x, y ∈ Ln be connected in G(v), where x is a point on the left side of Ln and y a point on
the right side. By Lemma 5.2, R(x) and R(y) are connected in G(w). Since R(x) is contained in the
left side of [0,Mn+1]2 and R(y) in the right side, the word w is contained in Jn+1.

Concerning the second inclusion, let w ∈ Jn+1. Then we can find x on the left side of Ln and y on
the right side, such that R(x) and R(y) are connected in G(w). Let v ∈ Wn be the unique word for
which w ∈ Φ(v). By Lemma 5.2, x and y are connected in G(v) and hence v ∈ Jn. By the induction
hypothesis, v ∈ Φn(J) and so w ∈ Φn+1(J).

5.2 Part 2

In this section, we will only suppress dependence on M in our notation. So, e.g., Φk denotes Φk,M .
The key ingredient in the proof that the sequences (pc(Φk))k∈N and (pc(Ψk))k∈N are monotone, is

the following lemma.
Let a homomorphism ρ from A∗k+1 to A∗k, respecting unions and concatenations, be defined by

ρ(a) = {w ∈ W 1
k : Mx and My are connected in G(w), if and only if

(x, y) ∈ a, for all x, y ∈ Lk+1},

for all a ∈ Ak+1.

Lemma 5.3. For increasing V ⊆ Wn
k+1,

ρ(Φk+1(V )) ⊆ Φk(ρ(V )) and Ψk(ρ(V )) ⊆ ρ(Ψk+1(V )).

Proof. For w ∈ W 2
k , consider the graph G(w). Let r1(w) and r2(w) denote the weak connectedness

relations on, respectively, {Rk(Mx) : x ∈ Lk+1} and {Rk(x) : x ∈ L1
k}. Then for a ∈ Ak+1,

ρ(Φk+1(J)) = {w ∈ W 2
k : (x, y) ∈ a ⇔ (Rk(Mx), Rk(My)) ∈ r1(w) for all x, y ∈ Lk+1},

and hence

ρ(Φk+1(J)) = {w ∈ W 2
k : there is a ∈ J such that

(x, y) ∈ a ⇒ (Rk(Mx), Rk(My)) ∈ r1(w) for all x, y ∈ Lk+1},

for all increasing J ⊆ Ak+1. Similarly,

Φk(ρ(J)) = {w ∈ W 2
k : there is a ∈ J such that

(x, y) ∈ a ⇒ (Rk(Mx), Rk(My)) ∈ r2(w) for all x, y ∈ Lk+1}.

Since {Rk(Mx) : x ∈ Lk+1} ⊆ {Rk(x) : x ∈ L1
k}, it follows that r1(w) ⊆ r2(w). Thus, ρ(Φk+1(J)) ⊆

Φk(ρ(J)) for all increasing J ⊆ Ak+1. The first inclusion of the lemma now follows from an argument
similar to Remark 2. The second inclusion of the lemma is obtained analogously.
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Proof of part 2. If τ is the Bernoulli random substitution on A∗k with base M and transition matrix
equal to the identity matrix, then

Pp(σn(āk+1) ∈ Φn
k+1(Jk+1)) = Pp(τ(σn(āk)) ∈ ρ(Φn

k+1(Jk+1))).

Applying Lemma 5.3 n times, we obtain

Pp(σn(āk+1) ∈ Φn
k+1(Jk+1)) ≤ Pp(τ(σn(āk)) ∈ Φn

k(ρ(Jk+1))).

By Lemma 5.1, ρ(Jk+1) = J1
k ⊆ Φk(Jk) and hence

Pp(σn(āk+1) ∈ Φn
k+1(Jk+1)) ≤ Pp(τ(σn(āk)) ∈ Φn+1

k (Jk))
= Pp(σn(āk) ∈ Φn

k(Jk)).

It follows from Lemma 3.1 that pc(Φk) ≤ pc(Φk+1). Monotonicity of (pc(Ψk))k∈N is proved similarly.

5.3 Part 3

Lemma 5.4. For n ≥ 0 and k ≥ n,

Pp(σn(āk) ∈ Φn
k(Jk)) = Pp(σn(ā0) ∈ Jn

0 ).

Proof. Since Jn
k ⊆ Φn

k(Jk) by Lemma 5.1, we have that

Pp(σn(ā0) ∈ Jn
0 ) = Pp(σn(āk) ∈ Jn

k )
≤ Pp(σn(āk) ∈ Φn

k(Jk)).

For the reversed inequality, we use that for n ≥ 1,

Pp(σn(āk) ∈ Φn
k(Jk)) ≤ Pp(τ(σn(āk−1)) ∈ Φn

k−1(ρ(Jk))),

an intermediate result obtained in the proof of part 2 of Theorem 3.1. Since ρ(Jk) = J1
k−1, we have

Pp(σn(āk) ∈ Φn
k(Jk)) ≤ Pp(σn(āk−1) ∈ Φn−1

k−1(J1
k−1)).

Repeating the previous two steps n times, we obtain

Pp(σn(āk) ∈ Φn
k(Jk)) ≤ Pp(σn(āk−n) ∈ Jn

k−n)
= Pp(σn(ā0) ∈ Jn

0 ).

Fix integers k ≥ 0 and M ≥ 2. For integers f, g ≥ 1 and a ∈ A, let a(f, g) denote the f × g block
consisting of solely a’s. Define

pc(Φ, 1, 2) = inf{0 ≤ p ≤ 1 : Pp(σn(ā(1, 2)) ∈ Φn(J(1, 2)) for all n) > 0}.

The following lemma is similar in spirit to Theorem 5.4 of Dekking and Meester (1990).

Lemma 5.5. For p ≥ pc(Φ, 1, 2),

Pp(σn(ā(1, 2)) ∈ Φn(J(1, 2)) for all n) ≥
(

4M − 3 +
8M − 12

1− p

)−2

.

11



Proof. Define sets , , , , , ⊂ A as follows. Let Ll, Lr, Lt and Lb denote, respectively, the points
on the left, right, top and bottom side of L. Define

= {a ∈ A : there are x ∈ Ll and y ∈ Lr such that (x, y) ∈ a}
= {a ∈ A : there are x ∈ Lt and y ∈ Lb such that (x, y) ∈ a}.

Let

= {a ∈ A : there are x ∈ Ll and y ∈ Lb such that (x, y) ∈ a, but a /∈ or }

and define , and likewise. Finally, define ⊂ W (1, 2) by

= {w ∈ W (1, 2) : there are x ∈ Ll(1, 2) and y ∈ Lr(1, 2) such that x and y are connected in G(w)},

where Ll(1, 2) and Lr(1, 2) denote, respectively, the points on the left and right side of L(1, 2).
Consider a word v ∈ Φ( ). It follows from the definition of Φ that at least one of the following

should hold for the letters v0j , 0 ≤ j ≤ 2M − 1 in the first column of v:

1.
v0,j+1

v0j
∈ for some 0 ≤ j ≤ 2M − 2,

2. v0j ∈ for some 1 ≤ j ≤ 2M − 2,

3. v0j ∈ for j = 0 or j = M ,

4. v0j ∈ for j = M − 1 or j = 2M − 1.

A similar requirement holds for the last column of v. Hence,

Pp(σn(ā(1, 2)) ∈ Φn( ) ∀n) ≤
(
(2M − 1)p2

Pp(σn(ā(1, 2)) ∈ Φn( ) ∀n)

+(2M − 2)pPp(σn(ā) ∈ Φn( ) ∀n) + 4pPp(σn(ā) ∈ Φn( ) ∀n)
)2

,

where we used that the probabilities Pp(σn(ā) ∈ Φn(H) ∀n) are equal for H = , , , . Hence

Pp(σn(ā(1, 2)) ∈ Φn( ) ∀n) ≤
(
(4M − 3)Pp(σn(ā(1, 2)) ∈ Φn( ) ∀n) + 4pPp(σn(ā) ∈ Φn( ) ∀n)

)2
, (1)

where we used that Pp(σn(ā) ∈ Φn( ) ∀n) ≤ Pp(σn(ā(1, 2)) ∈ Φn( ) ∀n).
Consider a word v ∈ Φ( ). Then at least one of the following conditions should hold for the letters

in the first column of v:

1.
v0,j+1

v0j
∈ for some 0 ≤ j ≤ M − 2,

2. v0j ∈ for some 1 ≤ j ≤ M − 2,

3. v00 ∈ .

One might wonder whether there is a v ∈ Φ( ) with v0,M−1 ∈ such that none of the conditions
above apply. To see that this is not the case, observe that for such v there are x ∈ Lr, y ∈ Lt and
z ∈ Lb such that R(x), R(y) and R(z) are weakly connected in G(v). But then v ∈ Φ( ) and thus
∩ 6= ∅, which contradicts the definition of .
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Hence, we have that

Pp(σn(ā ∈ Φn( ) ∀n) ≤ (M − 1)p2
Pp(σn(ā(1, 2)) ∈ Φn( ) ∀n) + (M − 2)pPp(σn(ā) ∈ Φn( ) ∀n)

+pPp(σn(ā) ∈ Φn( ) ∀n)
≤ (2M − 3)Pp(σn(ā(1, 2)) ∈ Φn( ) ∀n) + pPp(σn(ā) ∈ Φn( ) ∀n),

and so

Pp(σn(ā ∈ Φn( ) ∀n) ≤ 2M − 3
1− p

Pp(σn(ā(1, 2)) ∈ Φn( ) ∀n). (2)

Combining inequalities 1 and 2, we obtain

Pp(σn(ā(1, 2)) ∈ Φn( ) ∀n) ≤
(

4M − 3 +
8M − 12

1− p

)2

Pp(σn(ā(1, 2)) ∈ Φn( ) ∀n)2.

Hence,

Pp(σn(ā(1, 2)) ∈ Φn(J(1, 2)) ∀n) ≥
(

4M − 3 +
8M − 12

1− p

)−2

,

wheneverPp(σn(ā(1, 2)) ∈ Φn(J(1, 2)) ∀n) > 0. It follows from standard arguments (conform e.g. Chayes
et al. (1988)) that Pp(σn(ā(1, 2)) ∈ Φn(J(1, 2)) ∀n) is a non-decreasing right-continuous function of p,
and hence we have obtained the statement of the lemma.

Proof of part 3. By a trivial extension of Lemma 5.4, we have that for n ≥ 0 and k ≥ n,

Pp(σn(āk(1, 2)) ∈ Φn
k(Jk(1, 2))) = Pp(σn(ā0(1, 2)) ∈ Jn

0 (1, 2)).

Fix any 0 ≤ p < pc(M, 1, 2), where

pc(M, 1, 2) = inf{0 ≤ p ≤ 1 : Pp(σn(ā0(1, 2)) ∈ Jn
0 (1, 2) for all n) > 0}.

Since (Pp(σn(ā0(1, 2))) ∈ Jn
0 (1, 2)))n∈N converges to 0, we can choose n such that

Pp(σn(ā0(1, 2))) ∈ Jn
0 (1, 2)) <

(
4M − 3 +

8M − 12
1− p

)−2

.

Choosing k ≥ n, we obtain

Pp(σn(āk(1, 2)) ∈ Φn
k(Jk(1, 2))) <

(
4M − 3 +

8M − 12
1− p

)−2

,

and it follows from Lemma 5.5 that p < pc(Φk, 1, 2). Since obviously pc(Φk, 1, 2) ≤ pc(Φk) and since
pc(Φk) ≤ pc(M) by Theorem 3.1, part 1, we have p < pc(Φk) ≤ pc(M). Using a qualitative analogue
to the classical RSW theorem from ordinary percolation, Dekking and Meester (1990, Lemma 5.1)
proved that pc(M, 1, 2) = pc(M). Hence, for all 0 ≤ p < pc(M), we can find k such that p < pc(Φk) ≤
pc(M).
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6 Proofs of Lemmas 3.1, 3.2 and 3.3

For notational convenience, we will assume in the Lemmas 3.2, 3.1 and 3.3 that the substitutions are
1-dimensional. Generalizing the proofs to higher dimensions is trivial.

Proof of Lemma 3.1. Since PP

(
σ(i) ∈ Φ(J)

)
= 0 for all increasing J ⊆ A and i /∈ J , we have that

PP (σ(i) ∈ Φ({j : j � i})) = 1 for all i ∈ A, and hence PP (σ(w) ∈ Φ({v : v � w})) = 1 for all w ∈ Wn.
Fix i ∈ A, J ⊆ A increasing and suppose that w ∈ Wn is not contained in Φn(J). Since w ∈ Φn(Jc)

and Φn(Jc) is a decreasing set, it follows that {v : v � w} ⊆ Φn(Jc) and thus Φ({v : v � w}) ⊆
Φn+1(Jc). From this we have that

PP (σ(w) ∈ Φn+1(Jc)) ≥ PP (σ(w) ∈ Φ({v : v � w})) = 1,

and hence PP (σ(w) ∈ Φn+1(J)) = 0. Taking w = σn(i), it follows that {σn+1(i) ∈ Φn+1(J)} ⊆
{σn(i) ∈ Φn(J)} a.s., which implies the statement of the lemma.

Proof of Lemma 3.2. For i, j ∈ A and n ∈ N,

Πn+1
ij (P ) = PP

(
σn+1(i) ∈ Φn+1(j)

)
=

∑
v∈Φ(j)

M−1∏
m=0

(∑
k∈A

Pik Πn
k,vm

(P )
)

=
∑

v∈Φ(j)

M−1∏
m=0

(
PΠn(P )

)
i,vm

= PPΠn(P )

(
σ(i) ∈ Φ(j)

)
=

(
Π1(PΠn(P ))

)
ij

.

Proof of Lemma 3.3. Fix i ∈ A. Observe that if X � Y , we also have that PX � PY . Since Φ is
an increasing set-valued substitution, it suffices to prove that µX = PX(σ(i) ∈ ·) is stochastically
dominated by µY = PY (σ(i) ∈ ·), whenever X � Y . Fix X � Y , 0 ≤ k ≤ M − 1 and define
µk

X = PX((σ(i))k ∈ ·). Then by definition,∫
1J dµk

X ≤
∫
1J dµk

Y for all increasing J ⊆ A.

In fact, since every increasing function from A to R can be written as a positive linear combination of
indicator functions of increasing sets, we have that µk

X is stochastically dominated by µk
Y . From this,

it easily follows that µX is stochastically dominated by µY .

7 Proofs of Theorems 3.2 and 3.3

Proof of Theorem 3.2. We start by proving that Y � Fn
P (I) for all n ∈ N. Indeed, for n = 0 this

follows from assumption 1 of the theorem. Suppose that Y � Fn
P (I). Then FP (Y ) � Fn+1

P (I) by
Lemma 3.3 and hence Y � Fn+1

P (I) by assumption 2, establishing the claim. So we have for all n ∈ N,

P(σn(i) ∈ Φn(J)) =
∑
j∈J

(Fn
P (I))ij ≥

∑
j∈J

Yij .
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Since (PP (σn(i) ∈ Φn(J)))n∈N decreases monotonically to PP (σn(i) ∈ Φn(J) for all n) by Lemma 3.1,
it follows that

PP (σn(i) ∈ Φn(J) for all n) ≥
∑
j∈J

Yij > 0,

by assumption 3.

Proof of Theorem 3.3. Fix p ≥ pc(Φ, 1, 2). By Lemma 5.5 we have that

Pp(σn(ā(1, 2)) ∈ Φn(J(1, 2)) for all n) ≥
(

4M − 3 +
8M − 12

1− p

)−2

.

For x on the left side of L(1, 2) and y on the right side, define

J(1, 2;x, y) = {w ∈ J(1, 2) : x and y are connected in G(w)}.

Then of course(
4M − 3 +

8M − 12
1− p

)−2

≤ Pp(σn(ā(1, 2)) ∈ Φn(J(1, 2)) for all n)

≤
∑
x,y

Pp(σn(ā(1, 2)) ∈ Φn(J(1, 2;x, y)) for all n),

where the sum extends over all x on the left side of L(1, 2) and all y on the right side. Since both the
left and the right side of L(1, 2) contain 2Mk points, we may fix x and y such that

Pp(σn(ā(1, 2)) ∈ Φn(J(1, 2;x, y)) for all n) ≥
(

2Mk

(
4M − 3 +

8M − 12
1− p

))−2

.

For z = (z1, z2) ∈ Lk, let ẑ = (1− z1, z2) denote the reflection of z in the vertical line {1
2}×R. By

symmetry, we have that

Pp(σn(ā(1, 2)) ∈ Φn(J(1, 2;x, y)) for all n) = Pp(σn(ā(1, 2)) ∈ Φn(J(1, 2; x̂, ŷ)) for all n).

Define a set V ⊂ W 1 by

V = {v ∈ W 1 :
vi1

vi0
∈ J(1, 2;x, y) if i is even,

vi1

vi0
∈ J(1, 2; x̂, ŷ) if i is odd, 0 ≤ i ≤ M − 1}.

Observe that V ⊆ J1, i.e., every word in V percolates. Hence,

Pp(σn(ā) ∈ Φn(J) for all n) ≥ Pp(σn+1(ā) ∈ Φn(V ) for all n)
≥ p2M

Pp(σn(ā(1, 2)) ∈ Φn(J(1, 2;x, y)) for all n)M

≥
(

2Mk

p

(
4M − 3 +

8M − 12
1− p

))−2M

.

This result implies that pc(Φ) = pc(Φ, 1, 2). Hence for all p ≥ pc(Φ) and n ≥ 0 we have∑
j∈J

(
Fn

p (I)
)
ā,j

= Pp(σn(ā) ∈ Φn(J))

≥ Pp(σn(ā) ∈ Φn(J) for all n)

≥
(

2Mk

p

(
4M − 3 +

8M − 12
1− p

))−2M

.
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