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Abstract

In commonly used approaches for the discrete-time bulk service queue, the station-
ary queue length distribution follows from the roots inside or outside the unit circle of a
characteristic equation. We present analytic representations of these roots in the form of
sample values of periodic functions with analytically given Fourier series coefficients, mak-
ing these approaches more transparent and explicit. The resulting computational scheme
is easy to implement and numerically stable. We also discuss a method to determine the
roots by applying successive substitutions to a fixed point equation. We outline under
which conditions this method works, and compare these conditions with those needed
for the Fourier series representation. Finally, we present a solution for the stationary
queue length distribution that does not depend on roots. This solution is explicit and
well-suited for determining tail probabilities up to a high accuracy, as demonstrated by
some numerical examples.

keywords: discrete-time bulk service, multi-server, roots, stationary distribution, Szegö
curve, Spitzer’s identity.

1 Introduction and motivation

During the last two decades, discrete-time queueing models have been applied to model digital
communication systems such as multiplexers and packet switches. In this field, the multi-
server or bulk service queue fulfills a key role due to its wide range of applications, among
which ATM switching elements [7], data transmission over satellites [31], high performance
serial busses [24], and cable access networks [16].

The discrete-time bulk service queue, to be referred to as the DA/Ds/1 queue, is defined
by the recursion

Xn+1 = max{Xn − s, 0} + An. (1)
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Here, time is assumed to be slotted, Xn denotes the queue length at the beginning of slot
n, An denotes the number of new arriving customers during slot n, and s denotes the fixed
number of customers that can be served during one slot. The sequence of An is assumed
to be i.i.d. according to a discrete random variable A with probability generating function
(pgf) A(z). Without loss of generality we assume throughout that P(A = 0) > 0. The pgf
of the stationary queue length in the DA/Ds/1 queue was first derived by Bruneel & Wuyts
[8], although the same pgf occurs in earlier work on the D/G/1 queue by Servi [27] and on
bulk queues by Powell [26]. The solution requires finding the roots of zs = A(z) within the
unit circle. Zhao & Campbell [32] presented a full solution for the stationary queue length
distribution in terms of the roots of zs = A(z) outside the unit circle, assuming that A(z) is a
polynomial. Chaudhry & Kim [10] used the same technique along with some numerical work.

The technique of finding roots to complete a transform has become a classic one in queueing
theory. It started from the analysis of the M/D/s queue by Crommelin [13], whose solution
required finding the roots within the unit circle of zs = eλ(z−1) for some value λ < s. Through
the years, root-finding turned out to be particularly important in the theory of bulk queues,
originating from the work of Bailey [5] and Downton [17], who consider a bulk service queue
with Poisson arrivals. For an overview on bulk queues we refer to Powell [26] and Chaudhry
& Templeton [11].

Initially, the potential difficulties of root-finding were considered to be a slur on the un-
blemished transforms, since the determination of the roots can be numerically hazardous and
the roots themselves have no probabilistic interpretation. However, Chaudhry and others
[9] have made every effort to dispel the scepticism towards root-finding in queueing theory.
They emphasize that root-finding in queueing is well-structured, in the sense that the roots
are distinct for most models and that their location is well-predictable, so that numerical
problems are not likely to occur.

While in general this is true for the moments of the stationary queue length, for determining
the distribution itself, dependence on the roots might cause some problems, in particular for
tail probabilities. In Chaudhry & Kim [10] a comparison is made between using the roots
of zs = A(z) either inside or outside the unit circle. The performance of both approaches,
though, heavily depends on the model parameters. Since it is therefore difficult to give a fair
comparison, we choose to stress their common weakness: their performance inherently de-
pends on how precise the roots of zs = A(z) are determined. Any deviation of the numerically
determined roots from their true values results in errors in the computed probabilities.

The main purpose of this paper is to present an analytical rather than a numerical frame-
work for dealing with the DA/Ds/1 queue. In particular, we will present explicit expressions
for the roots of zs = A(z) and the stationary queue length distribution.

Under some mild conditions, we show that the roots of zs = A(z), both inside and outside
the unit circle, can be represented as sample values of a periodic function with analytically
given Fourier coefficients. In this way, the roots are no longer implicitly defined, and one can
determine the roots as accurately as one wishes in a totally transparent way. We also show
the Fourier series representation of the roots can also be applied in case of the discrete-time
G/G/1 queue.

Another way to determine the roots while maintaining transparency, results from applying
successive substitution to a fixed-point equation. This idea originates from the work of Harris
et al. [20] on root-finding for the continuous-time G/Ek/1 queue, and was presented more
formally by Adan & Zhao [4] who distinguished a class of continuous distributions for which
the method works. In this paper we further investigate the method for finding the roots of
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zs = A(z) for discrete distributions A. We present necessary conditions for the method to
work and compare these to the conditions needed for the Fourier series representation of the
roots.

In deriving explicit formulas for the stationary queue length distribution, we first note that
the DA/Ds/1 queue falls within the class of the G/G/1 queue. For the G/G/1 queue, the
Laplace-Stieltjes transform of the stationary waiting time follows from Spitzer’s identity (see
e.g. [12]). We derive, using a Wiener-Hopf approach as in [12] to derive Spitzer’s identity, a
root-free expression for the pgf of the stationary queue length in the DA/Ds/1 queue. The pgf
explicitly involves an infinite series of convolutions of A, and can be easily inverted, yielding
root-free expressions for the stationary queue length distribution. For the convolutions we
present asymptotic expressions.

In conclusion, our goals in this paper are:

(i) To give a broad description of the discrete-time bulk service queue.

(ii) To present analytic formulas for the roots of zs = A(z).

(iii) To present a root-free representation of the stationary queue length distribution.

(iv) To demonstrate the numerical stability of the proposed method, in particular for tail
probabilities.

2 The standard approach

In the above described DA/Ds/1 queue, the stationary queue length X, defined as

xj = P(X = j) = lim
n→∞

P(Xn = j), j = 0, 1, 2, . . . , (2)

exists under the assumption that E(A) = µA < s. From the balance equations it then follows
that the pgf of X is given by (see e.g. [7])

X(z) =
A(z)

∑s−1
j=0 xj(z

s − zj)

zs − A(z)
, (3)

which is assumed to be an analytic function in a disk |z| ≤ 1 + ε with ε > 0. The s unknowns
x0, . . . , xs−1 in the numerator of (3) can be determined by consideration of the zeros of the
denominator of (3) that lie in the closed unit disk (see e.g. [5, 32]). With Rouché’s theorem
(see [12]), it can be shown that there are exactly s of these zeros. Thus by analyticity, the
numerator of X(z) should vanish at each of the zeros, yielding s equations. One of the zeros
equals 1, and leads to a trivial equation. The normalization condition X(1) = 1 provides an
additional equation.

We can, however, eliminate x0, . . . , xs−1 from (3). Denoting the s roots of zs = A(z) in
|z| ≤ 1 by z0 = 1, z1, . . . , zs−1, (3) can be written as (see e.g. [7, 27])

X(z) =
A(z)(z − 1)(s − µA)

zs − A(z)

s−1
∏

k=1

z − zk

1 − zk
. (4)
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When A(z) is a polynomial of degree n > s, (3) can be written as

X(z) = A(z)

n−1
∏

k=s

1 − zk

z − zk
, |z| ≤ 1, (5)

where zs, zs+1, . . . , zn−1 are the n − s roots of zs = A(z) outside the unit circle. Expressing
the pgf of the stationary queue length for the DA/Ds/1 queue in terms of the roots outside
the unit circle has been suggested by Zhao & Campbell [32], as already said, although the
idea stems from much earlier work on bulk service queues by Bailey [5] and Downton [17].

2.1 Using roots inside the unit circle to compute xj

We will now show how the stationary queue length distribution follows from (4). Let aj

denote the probability that A equals j, and recall that a0 > 0.
From (4) we see that

X(z)(zs − A(z)) =: cA(z)P (z), (6)

where

c =
s − µA

∏s−1
k=1(1 − zk)

, P (z) =
s−1
∏

k=0

(z − zk) =
s

∑

j=0

pjz
j . (7)

Matching coefficients then gives for j = 0, 1, . . .

xj =
1

a0

j
∑

n=1

(δn,s − an)xj−n − c

a0

min{j,s}
∑

n=0

aj−npn, (8)

where δn,s = 1 if n = s and 0 otherwise.

2.2 Using roots outside the unit circle to compute xj

Starting from (5), the following partial fraction expansion can be applied:

W (z) :=

n−1
∏

k=s

1 − zk

z − zk
=

n−1
∑

i=s

ri

z − zi
, (9)

where

ri = lim
z→zi

(z − zi)W (z)

=

∏n−1
k=s (1 − zk)

∏n−1
k=s,k 6=i(zi − zk)

, i = s, . . . , n − 1. (10)

When we rewrite (9) as

W (z) = −
∞

∑

k=0

n−1
∑

i=s

(ri

zi

)( 1

zi

)k
zk, (11)

it can be easily seen that the stationary queue length distribution is given by

xj = −
j

∑

k=0

ak

n−1
∑

i=s

(ri

zi

)( 1

zi

)j−k
, j = 0, 1, 2, . . . . (12)
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3 Analytic methods for finding the roots

We now pay further attention to the roots of zs = A(z). We first present an explicit expression
for each of the roots as a Fourier series. Next, we elaborate on finding the roots using a
fixed point iteration. We also point out how the conditions needed for the Fourier series
representation and the fixed point iteration are related.

3.1 Fourier series representation

The roots of zs = A(z) lie on, what is called in [22], the generalized Szegö curve, defined by

SA,s := {z ∈ C | |z| ≤ 1, |A(z)| = |z|s}. (13)

For the notions used below from complex function theory we refer to [18, 28]. We impose the
following condition:

Condition 3.1. SA,s is a Jordan curve with 0 in its interior, and A(z) is zero-free on and
inside SA,s.

Recall that a0 > 0 so that we have |A(z)| > |z|s for z in the interior of SA,s. Condition 3.1
is geometric in nature, and can be visually checked using some standard software package. A
useful geometric formulation equivalent with Condition 3.1 is as follows:

Lemma 3.2. Condition 3.1 is satisfied if and only if there is a Jordan curve J with SA,s in
its interior such that A(z) is zero-free on and inside J while |A(z)| < |z|s on J .

The proof that Condition 3.1 implies the existence of a J as in Lemma 3.2 uses continuity
of A on SA,s and some basic considerations of Jordan curve theory. The proof of the reverse
implication can be based on the considerations in the proof of Lemma 3.3. For brevity we
omit the details.

To present an equivalent form of Condition 3.1 of more analytic nature, we introduce the
short-hand notation Czj [f(z)] for the coefficient of zj in f(z). We have the following result:

Lemma 3.3. Condition 3.1 is satisfied if and only if the coefficients Czl−1 [Al/s(z)] decay
exponentially in l.

Proof. Assume that Condition 3.1 holds. Letting J as in Lemma 3.2 we see that we can
define an analytic root A1/s(z) for z on and inside J that is positive at z = 0. We thus have
by Cauchy’s theorem

Czl−1 [Al/s(z)] =
1

2πi

∫

z∈J

Al/s(z)

zl
dz, l = 1, 2, ... . (14)

Since |A(z)| < |z|s for z ∈ J , it follows that

|Czl−1 [Al/s(z)]| ≤ 1

2π
length(J)

(

max
z∈J

∣

∣

∣

A(z)

zs

∣

∣

∣

1/s)l
, (15)

and this decays exponentially, as required.
Now assume that Czl−1 [Al/s(z)] decays exponentially. We shall sketch the proof that Con-

dition 3.1 is valid; full details can be found in [22], proof of Lemma 4.1. We consider for w in
a neighbourhood of 0 the equation

zA−1/s(z) = w, (16)
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where we have taken in a neighbourhood of z = 0 the root A−1/s of A that is positive at
z = 0 (recall a0 > 0). By the Lagrange inversion theorem (see e.g [30], p. 133), the solution
z0(w) of (16) has the power series representation

z0(w) =
∞

∑

l=1

clw
l, (17)

for w in a neighbourhood of 0 in which

cl =
1

l!

( d

dz

)l−1( z

zA−1/s(z)

)l∣
∣

∣

z=0
=

1

l
Czl−1 [Al/s(z)]. (18)

By assumption, we have that cl → 0 exponentially, whence the power series in (17) for z0(w)
has a radius of convergence R > 1. It follows then from basic considerations in analytic
function theory that A−1/s extends analytically to the open set {∑∞

l=1 clw
l
k | |w| < R} and

that z0(w) extends according to (17) on the set |w| < R. The Szegö set SA,s in (13) occurs as

SA,s = {z0(e
iα) | α ∈ [0, 2π]}, (19)

and it can be shown that the parametrization

α ∈ [0, 2π] → z0(e
iα) =

∞
∑

l=1

cle
ilα ∈ SA,s (20)

has no double points while a homotopy between {0} and SA,s is obtained according to

r ∈ [0, 1] → {z0(re
iα) | α ∈ [0, 2π]}. (21)

From the latter facts it follows that SA,s is a Jordan curve with 0 in its interior, and this
completes the sketch of the proof of the converse statement. �

Note. The z0(w) of (17) is a univalent function, of a special type on an open set containing
the closed unit disk |w| ≤ 1. Hence, the results of the theory of univalent functions, as
presented for instance in [18], Chs. 2-3, and [28], Ch. 12 become available. We shall not
elaborate this point here, except for a casual note in Subsec. 3.2.

We now turn to the representation of the s roots of zs = A(z) in |z| ≤ 1. These roots all
lie inside the Jordan curve J in Lemma 3.2 and are given by

zk = wkA
1/s(zk), k = 0, 1, ... , s − 1, (22)

where wk = e2πki/s. Hence, from (20) we have

zk =

∞
∑

l=1

clw
l
k, k = 0, 1, ... , s − 1, (23)

where cl are explicitly given in (18).
When A(z) is a polynomial of degree n > s, an expression similar to (23) can be derived

for the n − s roots of zs = A(z) outside the unit circle. Substituting 1/v into zs = A(z) and
multiplying by vn, we get

vn−s = B(v), (24)
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where B(v) = vnA(1/v) is a polynomial of degree n. Note that from |A(z)| < |z|s for
1 < |z| < 1 + δ for some δ > 0, we have that |B(v)| < |v|n−s for (1 + δ)−1 < |v| < 1.
Therefore, by Rouché’s theorem, there occur exactly n− s roots vk, k = {s, s + 1, . . . , n− 1}
of (24) in |v| ≤ (1 + δ)−1, obviously satisfying vk = 1/zk. When there exists a Jordan curve
(within |v| < 1) such that B(v) is zero-free on and inside this curve, while 0 lies inside this
curve and |B(v)| < |v|n−s on this curve, we find as above that

vk =
∞

∑

l=1

1

l
Cvl−1 [Bl/(n−s)(v)] e2π(k−s)il/(n−s), k = s, s + 1, ... , n − 1. (25)

The Condition 3.1 and its equivalent forms as given per Lemmas 3.2 and 3.3 are equally
useful in deciding whether a given A satisfies it. We present now some instances where
Condition 3.1 is satisfied.

i. A(z) is zero-free in |z| ≤ 1. An appropriate Jordan curve J is found as |z| = 1 + δ with
sufficiently small δ > 0. Indeed, the assumptions on A imply that there is a δ > 0 such
that 0 < |A(z)| < |z|s for 1 < |z| ≤ 1 + δ.

ii. A(z) is zero-free in |z| < 1. There may occur now a finite number of zeros of A on
|z| = 1, necessitating a modification of the Jordan curve J in (i). We indent this J
around the zeros such that the zeros are outside the new J while |A(z)| < |z|s for all z
on the new J . As one sees, this technique may also work in cases where there are zeros
of A strictly inside |z| = 1. A class of examples as in (i), (ii), follows from Kakeya’s
theorem [23] as follows:

- when a0 > a1 > . . . , we have that A(z) is zero-free in |z| ≤ 1,

- when a0 ≥ a1 ≥ . . . , we have that A(z) is zero-free in |z| < 1.

iii. The cl in (18) are all non-negative. It follows from Pringsheim’s theorem [29] and the
fact that z0(w) is well-defined for w ∈ [0, 1 + δ] with some δ > 0, that the radius of
convergence of the power series in (17) exceeds 1. Thus Lemma 3.3 applies and it follows
that Condition 3.1 is satisfied.

Below we give two examples where one can compute the cl = Czl−1 [Al/s(z)] explicitly, so
that the criterion in Lemma 3.3 can be verified.

Example 3.4. Consider the Poisson case, aj = e−λλj/j!, j = 0, 1, ..., and A(z) = exp(λ(z −
1)) with 0 ≤ θ := λ/s < 1. In this case, Condition 3.1 is always satisfied. Furthermore, there
holds that

cl = e−lθ (lθ)l−1

l!
. (26)

In Fig. 1 we have pictured SA,s for θ = 0.1, 0.5, 1.0. The dots on the curves indicate the roots
zk for the case s = 20, obtained by calculating the sum in (23) up to l = 50.

Example 3.5. Consider the binomial case, aj =
(

n
j

)

qj(1 − q)n−j , j = 0, ..., n, and A(z) =

(p + qz)n where p, q ≥ 0, p + q = 1 and A′(1) = nq < s. We compute in this case

cl =
1

l
plβ−l+1 ql−1

(

lβ

l − 1

)

, l = 1, 2, ... (27)
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Figure 1: SA,s for Poisson case, θ = .1, .5, 1.
The dots indicate z0, . . . , z19 for s = 20, ob-
tained by calculating the sum in (23) up to
l = 50.
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Figure 2: SA,s for binomial case, β = 0.5,
q = .82. The dots indicate z0, . . . , z19 for s =
20, obtained by calculating the sum in (23) up
to l = 50.

where β := n/s. In [22] the cl are shown to have exponential decay for β ≥ 1 (which covers
in fact all practically relevant instances). It is further shown that for 0 ≤ β < 1 the cl have
exponential decay if and only if

pβ−1q(1 − β)1−βββ < 1. (28)

For β = 1/2, s = 20, constraint (28) requires q to be less than 2(
√

2−1). In Fig. 2 we plotted
the SA,s for q = 0.82 < 2(

√
2− 1), and the dots indicate the roots zk obtained by calculating

the sum in (23) up to l = 50. When q is increased, such that q > 2(
√

2 − 1), SA,s turns from
a smooth Jordan curve containing zero into two separate closed curves (see [22]), and (23) no
longer holds.

For the Poisson and binomial distribution we have (26) and (27), respectively, to determine
the cl. In general, the values of the cl can be determined using the following property:

Property 3.6. For A(z) =
∑∞

j=0 ajz
j and α ∈ R, and Aα(z) =

∑∞
j=0 bjz

j, the coefficients
bj follow from the coefficients aj according to b0 = aα

0 and

bj+1 = αaα−1
0 aj+1 +

1

(j + 1)a0

j−1
∑

n=0

[α(n + 1) − (j − n)]an+1bj−n, j = 0, 1, . . . . (29)

The proof of Property 3.6 consists of computing the bj ’s successively by equating coefficients
in A(z)(Aα)′(z) = αA′(z)Aα(z).

In [9] it is shown that the condition that A is infinitely-divisible, or the somewhat weaker
condition that A(z) has no zeros inside the unit circle, are sufficient for the roots of zs = A(z)
on and within the unit circle to be distinct. However, examples exist of A(z) having zeros
inside the unit circle and at the same time having distinct roots (see e.g. Example 3.5). It is
therefore that in both [9] and [20] the urge of finding a necessary condition for distinctness is
expressed. In this respect, we have the following result:
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Lemma 3.7. When Condition 3.1 is satisfied, the roots of zs = A(z) on and within the unit
circle are distinct.

Proof. The roots lie inside J , and satisfy (22). Since |A(z)|1/s < |z| for all z ∈ J , it follows
from Rouché’s theorem that for each wk, the function z−wkA

1/s(z) has as many zeros inside
J as z. �

Although Condition 3.1 is not necessary for the roots to be distinct (as appears to be the
case in Example 3.5 with β = 1/2 and q = 0.83), it covers a far larger class of distributions
A than those for which A(z) has no zeros within the unit circle.

3.2 Fixed point iteration

We now discuss a way to determine the roots by applying successive substitution to a fixed-
point equation. This idea originates from the work of Harris et al. [20] on root-finding
for the continuous-time G/Ek/1 queue, and was presented more formally by Adan & Zhao
[4] who distinguished a class of continuous distributions for which the method works. We
further investigate the method for discrete distributions A. We present necessary conditions
for the method to work and compare these to the conditions needed for the Fourier series
representation of the roots introduced in the previous section.

When A(z) is assumed to have no zeros for |z| ≤ 1, we know that the s roots of zs = A(z)
in |z| ≤ 1 satisfy

z = wG(z), (30)

with G(z) = A1/s(z) and ws = 1. For each feasible w, Equation (30) can be shown as in
Lemma 3.7 to have one unique root in |z| ≤ 1. One could try to solve the equations by
successive substitutions (see [4, 20]) as

z
(n+1)
k = wkG(z

(n)
k ), k = 0, 1, ..., s − 1, (31)

with starting values z
(0)
k = 0.

Lemma 3.8. When for |z| ≤ 1, A(z) is zero-free and |G′(z)| < 1, the fixed point equations
(31) converge to the desired roots.

Proof. For |z| ≤ 1, |w| ≤ 1,

|wG(z)| ≤ G(|z|) ≤ G(1) = 1, (32)

so wG(z) maps |z| ≤ 1 into itself. For |z̃|, |ẑ| ≤ 1 we have that

|wG(z̃) − wG(ẑ)| ≤ |z̃ − ẑ| max
0≤t≤1

|G′(ẑ + t(z̃ − ẑ))|. (33)

Hence, from (33) and |G′(z)| < 1 for all |z| ≤ 1, we conclude that wG(z) is a contraction on
|z| ≤ 1. �

For the Poisson distribution with λ < s, it is readily seen that A(z) 6= 0 and |G′(z)| < 1 for
|z| ≤ 1, so that the iteration (31) works. We want to consider, however, also distributions for
which A(z) has zeros within the unit circle (see e.g. Example 3.5). We restrict here naturally
to A(z) that allow a root G(z) = A1/s(z) that is analytic around SA,s and positive at 0. Hence
we introduce the following condition:
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Condition 3.9. Condition 3.1 should be satisfied and for all points z ∈ SA,s there should
hold that |G′(z)| < 1.

According to the maximum principle we have that Condition 3.9 implies that |G′(z)| < 1
holds for all points inside SA,s as well. Condition 3.9 thus ensures that for α ∈ [0, 2π] the
point zk is an attractor for the iteration (31).

Note that Condition 3.9 is what is minimally needed to ensure (31) to converge locally.
However, under Condition 3.9 the iterates are by no means guaranteed to stay in SA,s and
its interior. This is already seen for the binomial case with β < 1, s even, and the iteration
(31) for k = s/2, i.e

z
(n+1)
s/2 = −1(p + qz

(n)
s/2)

β . (34)

For this iteration, the z
(n)
s/2, n = 0, 1, . . . , are alternatingly inside and outside SA,s. The

iteration, though, converges to the correct point when q is not too large. It is difficult, in
general, to give guarantees for convergence; nevertheless, convergence seems to occur in most
cases where Condition 3.9 holds.

We shall now present a consequence of assuming Condition 3.9. While Condition 3.1 implies
SA,s being a closed curve without double points, Condition 3.9 apparently does not hold for
all such curves. To get more to the point, we recall the notion of starshapedness (see [25],
p.125, Exercise 109).

Definition 3.10. A closed curve without double points is called starshaped with respect to a
point in its interior if any ray from this point intersects the curve at exactly one point (all
the points from this curve can be seen from this point).

We have the following result:

Lemma 3.11. When Condition 3.9 is satisfied, the curve SA,s is starshaped with respect to
0.

Proof. See Appendix A.1. �

Note that the notion of starshapedness is much weaker than convexity. We have observed,
both by visual inspection of SA,s and analytically, that convexity of SA,s implies that Condi-
tion 3.9 is satisfied in the case of the binomial distribution. It might well be that this holds
for a broader class of distributions as well. Hence, Condition 3.9 seems to be in between
requiring starshapedness and convexity.

Example 3.5 gives a nice demonstration of Lemma 3.11. From an inspection of SA,s in
Fig. 2 one sees that SA,s is not starshaped with respect to 0, and one can thus immediately
conclude that Condition 3.9 is not satisfied and hence the iteration (31) cannot be applied to
determine the roots.

Example 3.12. Consider the binomial case, A(z) = (p + qz)n where p, q ≥ 0, p + q = 1 and
β = n/s. When β ≥ 1, we have that

max
z∈SA,s

|G′(z)| = max
z∈SA,s

|βq(p + qz)β−1|, (35)

occurs at z = 1 and equals βq < 1. For β ∈ (0, 1), it can be shown that Condition 3.9 holds
if and only if

pβ−1q(1 + β)1−βββ < 1. (36)

10



Now denote by q1(β) and q2(β) the values of q for which < can be replaced by = in (28)
and (36), respectively. These values, that can be shown to be unique, are plotted in Fig. 3.
Observe that the set of values q for which the Fourier series representation holds (q < q1(β))
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0.5

0.6

0.7

0.8
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1
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β

q1(β)

q2(β)

Figure 3: q1(β) and q2(β) for β ∈ (0, 1).

is much larger than the set for which Condition 3.9 holds (q < q2(β)). We have numerical
evidence that whenever q < q2(β) the iteration (31) works. Finally note that the roots in Fig.
2 (β = 1/2, q = 0.82), which are computed using the Fourier series representation, cannot be
obtained using the fixed point iteration.

Although the fixed point iteration is a very efficient method, the class of distributions A
for which it can be applied is clearly smaller than the class of distributions A for which the
Fourier series representation holds. That is, Condition 3.1 is much weaker than Condition
3.9.

3.3 Numerical results

We will now present two examples for which the roots can be determined through (31). For
each root we stop the iteration when

|z(n+1)
k − z

(n)
k | < 10−14, (37)

and we denote the resulting values by ẑk.
Denote by zk(L) the estimated root value that results when we truncate l at L in (23).

We would like to have some more insight in how fast zk(L) converges to zk, where the ẑk

determined above are considered to be sufficiently accurate approximations of the zk to serve
as references.

For the Poisson distribution with λ = 8, s = 10, Table 1 displays the roots ẑk, along with
the distance between ẑk and zk(L) for L = 10, 20, 50. As it appears, the Fourier series (23)
converge quite rapidly. We further note that the most slowly convergent series is z0(L). This
can be explained from the following result:

Lemma 3.13. The truncation error |zk(L)−zk| is largest for k = 0 among all k = 0, 1, . . . , s−
1, when the coefficients cl ≥ 0, l = 1, 2, . . ..

11



Proof. Follows directly from (23). �

For the Poisson case the cl are greater or equal to 0, indeed. This is also the case for e.g.
the geometric distribution aj = (1 − p)pj with 0 ≤ p < 1, and for the binomial distribution
in Example 3.5 with β ≥ 1, but it fails to hold for the latter distribution with 0 < β < 1.

In general, if one applies (23) to a distribution A for which cl ≥ 0, then |z0(L) − z0| =
|z0(L)− 1| being small is a good test for convergence, since it reflects the maximum distance
between the estimated and true values of the roots.

Table 2 displays ẑk and |zk(L) − ẑk|, L = 10, 20, 50, for the binomial distribution with
n = 16, q = 0.5 and s = 10, so that all cl ≥ 0.

Table 1: Poisson distribution, λ = 8, s = 10. The roots of zs = A(z) for |z| ≤ 1 determined with
(31) (denoted as ẑk), along with the distance between ẑk and zk(L) for L = 10, 20, 50.

k Re ẑk Im ẑk |zk(10) − ẑk| |zk(20) − ẑk| |zk(50) − ẑk|
0 1.000 0.000 0.110194 0.048179 0.009637
1 0.300 0.486 0.017461 0.005283 0.000694
2 −0.017 0.442 0.009539 0.002817 0.000366
3 −0.206 0.321 0.006988 0.002052 0.000266
4 −0.308 0.166 0.005961 0.001747 0.000226
5 −0.342 0.000 0.005673 0.001662 0.000215

Table 2: Binomial distribution, n = 16, q = 0.5, s = 10. The roots of zs = A(z) for |z| ≤ 1 determined
with (31) (denoted as ẑk), along with the distance between ẑk and zk(L) for L = 10, 20, 50.

k Re ẑk Im ẑk |zk(10) − ẑk| |zk(20) − ẑk| |zk(50) − ẑk|
0 1.000 0.000 0.118685 0.037943 0.003067
1 0.169 0.439 0.024368 0.006010 0.000364
2 −0.066 0.315 0.013329 0.003216 0.000192
3 −0.164 0.199 0.009766 0.002344 0.000140
4 −0.208 0.096 0.008330 0.001996 0.000119
5 −0.221 0.000 0.007928 0.001899 0.000113

We stress that there are many distributions A for which the iteration (31) fails to work,
while (23) still holds, i.e. Condition 3.1 is satisfied (see e.g Example 3.5 and 5.7). We simply
chose the above examples so that we could obtain precise estimates of the real roots without
invoking some other, less transparent, numerical method than (31).

4 The general approach

To find explicit expressions for the stationary queue length distribution, we start from the
observation that the queue length at the beginning of slot n in (1) can be viewed as being
the sojourn time of the n-th customer in a queue for which s equals the deterministic and
integer-valued interarrival time between customer n and n + 1, and An is the service time
of customer n + 1. This model is also referred to as the D/G/1 queue (see e.g. Servi [27]),
and falls within the class of the G/G/1 queue. For the G/G/1 queue, the Laplace transform
of the stationary waiting time follows from Spitzer’s identity (see e.g. [12]). Using similar
arguments as used for the derivation of Spitzer’s identity, we can prove the following result:

12



Theorem 4.1. The pgf of the stationary queue length distribution is given by

X(z) = A(z) exp
{

−
∞

∑

l=1

1

l
P (Sl > 0)

}

exp
{

∞
∑

l=1

1

l
E(zSl1{Sl > 0})

}

, (38)

where Sl =
∑l

i=1 (Ai − s), and 1{B} = 1 if B holds and 0 otherwise.

Proof. This proof is based on Wiener-Hopf decomposition, analogously to [12] p. 338 for the
continuous-time case. From recursion (1) we have

E(zXt+1) = E(zAt1{Xt ≤ s}) + E(zXt+At−s1{Xt > s})
= P(Xt ≤ s)E(zAt) + E(zXt+At−s) − E(zXt+At−s1{Xt ≤ s}). (39)

Letting t → ∞ and observing that Xt and At are independent then yields

X(z)

A(z)
(1 − z−sA(z)) = P(X ≤ s) − E(zX−s1{X ≤ s}). (40)

We denote the right-hand side of (40) as X∗(z). Using

1

1 − z
= exp{− ln(1 − z)} = exp

{

∞
∑

l=1

zl

l

}

, |z| < 1, (41)

we have that

(1 − z−sA(z))−1 = exp
{

∞
∑

l=1

1

l
(z−sA(z))l

}

= exp
{

∞
∑

l=1

1

l
E(zSl1{Sl > 0})

}

· exp
{

∞
∑

l=1

1

l
E(zSl1{Sl ≤ 0})

}

. (42)

Substituting (42) into (40) yields

X(z)

A(z)
exp

{

−
∞

∑

l=1

1

l
E(zSl1{Sl > 0})

}

= X∗(z) exp
{

∞
∑

l=1

1

l
E(zSl1{Sl ≤ 0})

}

. (43)

The left-hand side and right-hand side of (43) are analytic in |z| < 1 and |z| > 1, respectively,
and continuous up to |z| = 1. Also, the left-hand side and right-hand side of (43) are
bounded (see [12] p. 338) and analytic in |z| < 1 and |z| > 1, respectively. Therefore, their
analytic continuation contains no singularities in the entire complex plane, whence upon using
Liouville’s theorem (see e.g. [30]) the left-hand side of (43) is constant, i.e.

X(z)

A(z)
= K exp

{

∞
∑

l=1

1

l
E(zSl1{Sl > 0})

}

. (44)

The constant K follows from X(1)/A(1) = 1 yielding

K = exp
{

−
∞

∑

l=1

1

l
P(Sl > 0)

}

, (45)
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which completes the proof. �

In principle, the mean and variance of the stationary queue length can be determined
from the xj . However, this can be done more directly from (38), due to µX = X ′(1) and
σ2

X = X ′′(1) + X ′(1) − X ′(1)2. Denoting by A∗l the l-fold convolution of A, and by ci,l the
probability that A∗l = i, i.e. ci,l = Czi [Al(z)] = P(A∗l = i), this gives

µX = µA +
∞

∑

l=1

1

l

∞
∑

i=ls

(i − ls) ci,l, (46)

σ2
X = σ2

A +
∞

∑

l=1

1

l

∞
∑

i=ls

(i − ls)2 ci,l, (47)

which are root-free expressions for µX and σ2
X . For comparison, we mention that taking

derivatives of (4) instead of (38) yields, upon a lengthy calculation,

µX =
σ2

A

2(s − µA)
+

1

2
µA − 1

2
(s − 1) +

s−1
∑

k=1

1

1 − zk
, (48)

σ2
X = σ2

A +
A′′′(1) − s(s − 1)(s − 2)

3(s − µA)
+

A′′(1) − s(s − 1)

2(s − µA)

+
(A′′(1) − s(s − 1)

2(s − µA)

)2
−

s−1
∑

k=1

zk

(1 − zk)2
. (49)

4.1 Stationary queue length distribution

From (38) the following is readily seen:

Lemma 4.2. The stationary queue length distribution is given by

xj = d

j
∑

k=0

ak Czj−k

[

exp
{

∞
∑

l=1

∞
∑

i=1

1

l
cls+i,lz

i
}]

, j = 0, 1, . . . , (50)

and

d = exp
{

−
∞

∑

l=1

∞
∑

i=ls+1

1

l
ci,l

}

. (51)

We showed in [22] that (50) can be alternatively derived using Fourier sampling. We note
here that He and Sohraby [21] also derived a root-free expression of a similar type for the
stationary queue length distribution, using combinatorial arguments and Ballot theorems.

Expression (50) provides for each xj a representation that does not depend on the roots
of zs = A(z). However, the series contain two infinite sums. So, in working with (50) we
should have some feeling for the speed of convergence of these series in relation with choosing
appropriate truncation levels for the sums.

For determining the coefficients ci,l in (50) and (51) we can use the following property:
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Property 4.3. For A(z) =
∑∞

j=0 ajz
j and B(z) =

∑∞
j=0 bjz

j for which it holds that A(z) =
exp{B(z)}, the coefficients aj follow recursively from the coefficients bj (and vice versa) ac-
cording to

a0 = exp(b0); aj =
1

j

j
∑

n=1

nbnaj−n, j = 1, 2, . . . . (52)

The proof of Property 4.3 consists of computing the aj ’s successively by equating coefficients
in A′(z) = B′(z)A(z).

4.2 Extension to the discrete-time G/G/1 queue

The DA/Ds/1 queue can be generalized to a DA/DB/1 queue, where the service capacity s
is no longer fixed, i.e.,

Xn+1 = max{Xn − Bn, 0} + An, (53)

where Xn denotes the queue length at the beginning of slot n, X0 = 0, An denotes the number
of newly arriving customers during slot n, and Bn denotes the number of customers that can
be served during one slot. The Bn, n = 1, 2, . . . are assumed to be i.i.d. according to a
discrete random variable B with bj = P(B = j) that can take values in {0, 1, . . . , m}. Its pgf
is given by

B(z) =
m

∑

j=0

bjz
j , (54)

which is certainly analytic in an open set containing the closed unit disk |z| ≤ 1. We will show
that (53) fits into the framework of the DA/Ds/1 queue, which implies that the methods as
developed in this section can be applied for the DA/DB/1 queue.

Let X denote the random variable following the stationary distribution of the Markov chain
defined by (53), with xj = P(X = j), which exists under the stability condition

µA = A′(1) < µB = B′(1). (55)

It that case, the pgf of X is given by (see Bruneel [6])

X(z) =
A(z)(µB − µA)(z − 1)

zm − zmA(z)B(1/z)

m−1
∏

k=1

z − zk

1 − zk
, (56)

where z0 = 1, z1, . . . , zm−1 denote the m roots of zm = zmA(z)B(1/z) on and inside the unit
circle. Introducing a random variable U = m + A − B with U(z) = zmA(z)B(1/z), we have

X(z) =
A(z)(m − (m + µA − µB))(z − 1)

zm − zmA(z)B(1/z)

m−1
∏

k=1

z − zk

1 − zk

=
A(z)(m − µU )(z − 1)

zm − U(z)

m−1
∏

k=1

z − zk

1 − zk
, (57)

which fits completely into the framework of the discrete-time bulk service queue.
Another interesting aspect of (53) is that it represents Lindley’s recursion for the sojourn

time of the n + 1-th customer in a discrete-time G/G/1 queue. The discrete-time G/G/1
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queue thus also fits into the framework of the DA/Ds/1 queue, which enlarges the range of
application of the method presented in Sec. 3, where the roots are represented as Fourier
series. The expressions (46), (47) and (50) also hold for the DA/DB/1 queue with A and s
replaced by U and m, respectively.

5 Guidelines for numerical work

In this section we present some guidelines for calculating the stationary queue length char-
acteristics as given by (46), (47) and (50). We discuss on how to choose and appropriate
truncation level and how to calculate the convolutions involved. In particular, we present
asymptotic expression for the convolutions.

5.1 Choosing the truncation level

First note that when A(z) is a polynomial of degree n, the series in (46), (47) and (50) over
i is finite, running from i = 1 to i = ln. For non-polynomial A(z), we should truncate A at
n such that P(A > n) is negligible.

The performance characteristics can be obtained by calculating the sum over l up to a
certain level, say until convergence is obtained to within an appropriate criterion. A good
overall check is provided by the fact that determining d is the bottleneck, which can be seen
in the following way. Denote by xj(L) and d(L) the estimated value of xj and d that result
from truncating the series over l at l = L in (50) and (51), respectively. The relative error
made then equals

d(L) − d

d
= exp

{

∞
∑

l=L+1

∞
∑

i=ls+1

1

l
ci,l

}

− 1

≈
∞

∑

l=L+1

∞
∑

i=ls+1

1

l
ci,l =

∞
∑

l=L+1

∞
∑

i=1

1

l
cls+i,l, (58)

where the far right-hand side of (58) sums all truncation errors
∑∞

l=L+1
1
l cls+i,l that appear

in (50) when computing xj .

A good check for overall accuracy is provided by the relation (see [22])

d =

s
∑

j=0

xj , (59)

from which it follows that

s
∑

j=0

j
∑

k=0

ak Czj−k

[

exp
{

L
∑

l=1

∞
∑

i=1

1

l
cls+i,lz

i
}]

↑ 1, L → ∞. (60)

Hence, when the quantity at the left-hand side of (60) is close enough to 1, the accuracy of
the estimated values seems guaranteed.
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5.2 Asymptotic behaviour of P(A∗l = n)

We now examine the asymptotic behaviour of

Czn [Al(z)] = P(A∗l = n), (61)

for l large, for reasons described below. We obtain asymptotic expansions using the saddle
point method (or method of steepest descent), see e.g. De Bruijn [14].

The applicability of the expressions (46), (47) and (50) indisputably depends on the ability
of computing the discrete convolutions involved. A straightforward way would be to iteratively
determine the distribution of the l-fold convolution A from the (l − 1)-fold convolution of A.
A problem could be the computational expense involved. The discrete convolution at each
iteration is a computationally expensive operation with sequences that might contain many
points. Particularly in case of a high occupation rate (i.e. µA/s), many iterations could be
required.

As suggested by Ackroyd [2, 3], one can apply a fast Fourier transform algorithm for com-
puting discrete convolutions. In that way, given the pgf A(z), the probability distribution of
the l-fold convolution can be obtained directly from its pgf Al(z). Ackroyd [2] shows that the
computational speed gained is considerable. For a description of the fast Fourier transform
approach to invert a pgf we refer to Abate & Whitt [1].

Irrespective of the method used to compute the convolutions, the issue of truncating the
infinite sum remains a matter of choice, likely to depend on the precision criterion required.
We, however, aim at steering a middle course, in the sense that we will take into account the
asymptotic behaviour of the l-fold convolution (i.e. for l large). For a certain value of l the
difference between the real probability distribution and its asymptotic approximation will be
negligible. From that value on, one could replace the true convolutional distributions by its
asymptotic expression.

We have

cnl := Czn [Al(z)] =
1

2πi

∮

C

Al(z)

zn+1
dz, (62)

where C is any contour around 0 within the analyticity region of A(z). We observe that only
n ≥ ls are required. We have assumed that A′(1) < s and so there is a δ such that

|A(z)| ≤ A(|z|) < |z|s , 1 < |z| < 1 + δ. (63)

We apply the saddle point method to the integral in (62), so as to derive the asymptotic
behaviour of cnl for l large. To that end, we introduce the function

h(z) := l ln A(z) − n ln z , z ≥ 1, (64)

so that

cnl =
1

2πi

∮

C

1

z
eh(z)dz. (65)

Lemma 5.1. There is at most one z ≥ 1 such that h′(z) = 0.

Proof. See Appendix A.2. �

In case there is no z ≥ 1 such that h′(z) = 0, we have Al(z) ≤ zn, z ≥ 1, so Al(z) is a
polynomial of degree smaller or equal than n, and such that Al(z)/zn decreases in z ≥ 1.
Then

cnl = lim
z→∞

Al(z)

zn
=

{

0, lj(A) < n,
(aj(A))

l, lj(A) = n,
(66)
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where j(A) is the degree of A.

We assume henceforth that there is exactly one z ≥ 1 such that h′(z) = 0, and call that
point z0. We next calculate

h′′(z) = l
A′′(z)

A(z)
− l

(A′(z)

A(z)

)2
+

n

z2
. (67)

At z = z0 we have A′(z)/A(z) = n/(lz), so that

h′′(z0) =
l2z2

0A
′′(z0) − n(n − l)A(z0)

lz2
0A(z0)

, (68)

for which we have the following result.

Lemma 5.2. There holds that h′′(z0) > 0.

Proof. See Appendix A.3. �

Combining the above results provides us with the following asymptotic expression for the
coefficients cnl.

Theorem 5.3. For the cnl the following approximation can be obtained from asymptotic
analysis:

cnl ≈
1

z0

√

2πh′′(z0)

Al(z0)

zn
0

. (69)

Proof. From Lemma 5.1 and 5.2 we conclude that z0 is a saddle point for the integral in
(65), and by the saddle point method (see [14], p. 87), we thus obtain the approximation

cnl ≈ 1

2πi

∫ ∞

−∞

1

z0 + it
eh(z0)− 1

2
t2h′′(z0)idt

=
1

2πz0
eh(z0)

√

π
1
2h′′(z0)

, (70)

which can be rewritten as (69). This completes the proof. �

Example 5.4. In the Poisson case, A(z) = exp(λ(z − 1)), we have

h(z) = lλ(z − 1) − n ln z, (71)

so that

h′(z) = lλ − n

z
, h′′(z) =

n

z2
. (72)

Therefore

z0 =
n

lλ
, h′′(z0) =

1

n
(lλ)2, (73)

and hence

cnl ≈
1

n/(lλ)
· 1
√

2π 1
n(lλ)2

· exp(lλ( n
lλ) − 1)

( n
lλ)n

=
1√
2πn

( lλ

n
· e1− lλ

n

)n
. (74)
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Figure 4: Relative error 100(cnl − ĉnl)/cnl,
with ĉnl the approximation (74) for the Pois-
son case with s = 5, λ = 4, and cls+k,l for
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Figure 5: Relative error 100(cnl − ĉnl)/cnl,
with ĉnl the approximation (81) for the geo-
metric case with s = 5, p = 4/5, and cls+k,l

for l = 1, 2, . . . , 20 and k = 1, 10, 20.

Observe that xe1−x ∈ [0, 1) when x (=lλ/n) ∈ [0, 1). In the present case we have, explicitly,

cnl =
e−lλ

n!
(lλ)n ≈ e−lλ(nne−n

√
2πn)−1(lλ)n =

1√
2πn

( lλ

n
· e1− lλ

n

)n
, (75)

where Stirling’s formula n! ≈ nn+1/2e−n
√

2π has been used. It is thus seen that the approx-
imation of cnl as obtained per Theorem 5.3 amounts to replacing n! in the exact expression
for cnl in (75) by its Stirling approximation. Accordingly, the approximation given by (74)
has relative error independent of λ.

In Fig. 4 we have plotted the relative error 100(cnl − ĉnl)/cnl, with ĉnl the approximation
(74), for the Poisson case with s = 5, λ = 4, and cls+k,l for l = 1, 2, . . . , 20 and k = 1, 10, 20.
The relative error decreases rapidly for larger values of l. Also, the relative error is smaller
for larger values of k.

Example 5.5. In the case of the geometric distribution, aj = (1− p)pj , j = 0, 1, . . ., so that

A(z) =
1 − p

1 − pz
; A′(1) =

p

1 − p
< s, (76)

we have
h(z) = l ln(1 − p) − n ln(1 − pz) − n ln z. (77)

Hence

h′(z) =
lp

1 − pz
− n

z
, h′′(z) =

1

l

( lp

1 − pz

)2
+

n

z2
, (78)

and

z0 =
n

p(n + l)
=

1

p

n/l

n/l + 1
∈ (1, 1/p), (79)

since we assume n/l > s. Furthermore

h′′(z0) =
p2(n + l)3

nl
. (80)
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We thus get

cnl ≈ p(n + l)

n
· 1
√

2π p2(n+l)3

nl

·
( 1 − p

1 − p n
p(n+l)

)l/( n

p(n + l)

)n

=
1√
2π

(1 − p)lpn(n + l)n+l−1/2n−n−1/2l−l+1/2. (81)

By using the explicit representation

cnl = (1 − p)l(−p)n

(−l

n

)

= (1 − p)l(−p)n−l(−l − 1) · . . . · (l − n + 1)

n!

= (1 − p)lpn (n + l − 1)!

n!(l − 1)!

= (1 − p)lpn (n + l)!

n! l!

l

n + l
, (82)

we get by Stirling’s formula exactly (81). Accordingly, as in Example 5.4, the approximation
given by (81) has relative error independent of p.

In Fig. 5 we have plotted the relative error 100(cnl − ĉnl)/cnl, with ĉnl the approximation
(81), for the geometric case with s = 5, p = 4/5, and cls+k,l for l = 1, 2, . . . , 20 and k =
1, 10, 20. Again, the relative error decreases rapidly for larger values of l. In contrast to
Example 5.4, though, the relative error hardly depends on the value of k.

5.3 Numerical results

Example 5.6. Consider the Poisson case, A(z) = exp(λ(z − 1)), λ < s. For s = 10 and
λ = 5, 8, 9, Table 3 displays the mean and variance of the stationary queue length. For the

Table 3: Mean and variance of X for the Poisson case with s = 10, λ = 5, 8, 9.

µX σ2
X

(48) (46) (49) (47)
λ=5 5.0237 5.0237 5.0519 5.0519
λ=8 8.8786 8.8786 11.6109 11.6104
λ=9 12.1012 11.9938 29.9067 28.4381

results obtained from (48) and (49) we have determined the roots using (31) with stopping

criterion |z(n+1)
k −z

(n)
k | < 10−14. For the results obtained from (46) and (47) we have truncated

the sum over l at l = 30 and the sum over i at i = 300. We observe that the higher the load,
the higher we should choose the level at which we truncate these sums. For λ = 5 and λ = 8
the truncation levels chosen are sufficient, while for λ = 9 they should be taken somewhat
higher.

Example 5.7. We take the example considered in [10], in which A(z) = Y (z)6 where

Y (z) = 0.1+0.15z +0.2z2 +0.2z3 +0.15z4 +0.1z5 +0.05z6 +0.01z7 +0.01z8 +0.03z10. (83)

In [10] the stationary queue length distribution is determined from (12), for which the zeros
outside the unit circle are determined numerically. The iteration (31) does not work for this
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example. We calculate the stationary queue length distribution from (8), (12) and (50). For
(8) and (12) we calculate the roots of zs = A(z) inside and outside the unit circle using (23)
and (25), respectively. For (23), (25) and (50) we truncate the sum over l at l = 60. The

Table 4: Stationary queue length distribution for A(z) = Y (z)6, with Y (z) given in (83), s = 30.

j xj from [10] xj from (8)-(23) xj from (12)-(25) xj from (50)
0 0.00000098 0.00000098 0.00000098 0.00000098
1 0.00000885 0.00000885 0.00000885 0.00000885
2 0.00004501 0.00004500 0.00004501 0.00004501
3 0.00016686 0.00016680 0.00016686 0.00016686
4 0.00049733 0.00049715 0.00049733 0.00049733
5 0.00125555 0.00125503 0.00125555 0.00125555
6 0.00277138 0.00277010 0.00277138 0.00277138
7 0.00546268 0.00545988 0.00546269 0.00546268
8 0.00976060 0.00975504 0.00976060 0.00976060
9 0.01598541 0.01597540 0.01598541 0.01598541
10 0.02420260 0.02418598 0.02420260 0.02420260
20 0.06498585 0.06487376 0.06498585 0.06498585
30 0.00728773 0.00661255 0.00728773 0.00728773
40 0.00015022 0.00049559 0.00015022 0.00015022
50 0.00000080 0.00072575 0.00000080 0.00000080

results are displayed in Table 4. We see that both (12) and (50) lead to similar results as
obtained in [10]. Determining the probabilities from (8) gives problems when moving into the
tail of the distribution. Although these problems might be resolved by truncating the sum
over l in (23) at a higher level, (12) and (50) seem more stable. The truncation level of l = 60
is sufficient, although it is no problem to increase it from a numerical point of view.

Example 5.8. Consider the binomial case, A(z) = (p + qz)n where p, q ≥ 0, p + q = 1,
for which we take n = 16, q = 0.5, s = 10. Table 5 displays some of the xj , calculated by
xj(L) for L = 10, 20, 30. Additionally, the xj have been determined from (12) where the
roots of zs = A(z) outside the unit circle follow from (25) (with the sum over l truncated at
l = 60). Note that for x50 and x100 we need some higher level of L to determine these small

Table 5: Stationary queue length distribution for the binomial case, n = 16, q = 0.5, s = 10.

j xj(10) xj(20) xj(30) (12)
0 0.13132067·10−4 0.13131227·10−4 0.13131225·10−4 0.13131228·10−4

10 0.12967227·10−0 0.12967413·10−0 0.12967413·10−0 0.12967413·10−0

20 0.10032061·10−4 0.10120244·10−4 0.10120578·10−4 0.10120543·10−4

30 0.25745593·10−9 0.29484912·10−9 0.29527164·10−9 0.29527217·10−9

50 0.07585901·10−18 0.22301750·10−18 0.25004662·10−18 0.25112237·10−18

70 0.01219941·10−27 0.11512297·10−27 0.19133604·10−27 0.21357399·10−27

100 0.00126202·10−41 0.09314437·10−41 0.28000048·10−41 0.52971556·10−41

probabilities up to a reasonable accuracy. Increasing L would give no numerical difficulties,
so that the accuracy is just a matter of choice. This makes this approach well-suited for
calculating tail probabilities.
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6 Conclusions

In the commonly used approaches to the discrete-time bulk service queue, the stationary queue
length follows from the roots inside or outside the unit disk of a characteristic equation. We
have presented representations of these roots as Fourier series, making the classic approach
transparent and explicit. The Fourier series are easy to implement and numerically stable.

We further presented analytic formulas and asymptotic approximations for the stationary
queue length distribution that do not depend on roots. The results are explicit and well-suited
for determining tail probabilities up to a high accuracy.

A Appendix

A.1 Proof of Lemma 3.11

We have z(α) = z0(e
iα) where z0(w) is the solution of

z0(w) = wG(z0(w)), G(z) = A1/s(z), (84)

see proof of Lemma 3.3.

For the proof of Lemma 3.11 we should check, see [25], p.125, Exercise 109, whether the
”angular velocity”

ϕ′(α) :=
d

dα
[arg z(α)] = Re

[

w
z′0(w)

z0(w)

]

, w = eiα, (85)

is positive for α ∈ [0, 2π]. We compute from (84)

z′0(w) =
G(z0(w))

1 − v
, v =

z0(w)G′(z0(w))

G(z0(w))
. (86)

Using (84) once more, we find with v as in (86)

ϕ′(α) = Re
[ 1

1 − v

]

. (87)

When w = eiα, α ∈ [0, 2π], there holds that z0(w) ∈ SA,s and by Condition 3.9 we have

∣

∣

∣

z0(w)

G(z0(w))

∣

∣

∣
= 1, |G′(z0(w))| < 1. (88)

Hence we have |v| < 1 for v in (86). Finally, for |v| < 1,

Re
[ 1

1 − v

]

≥ 1

1 + |v| >
1

2
. (89)

This implies that ϕ′(α) > 1/2 so that the proof is complete. �
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A.2 Proof of Lemma 5.1

Assume we have a z ≥ 1 such that h′(z) = 0, and let z0 be the smallest such z. We have

h′(z) =
lA′(z)

A(z)
− n

z
= 0 ⇔

∞
∑

j=0

aj(lj − n)zj = 0. (90)

Let z > z0, and let j0 be such that

lj − n ≤ 0, j = 0, 1, . . . , j0 ; lj − n > 0, j = j0 + 1, . . . . (91)

Then

∞
∑

j=0

aj(lj − n)zj =

j0
∑

j=0

aj(lj − n)zj
0

( z

z0

)j
+

∞
∑

j=j0+1

aj(lj − n)zj
0

( z

z0

)j

≥
j0

∑

j=0

aj(lj − n)zj
0

( z

z0

)j0
+

∞
∑

j=j0+1

aj(lj − n)zj
0

( z

z0

)j0

=
( z

z0

)j0
∞

∑

j=0

aj(lj − n)zj
0 = 0, (92)

and there is equality if and only if aj0 = 1, aj = 0, j 6= j0. The case of equality is excluded
by the observation that n ≥ ls implies j0 ≥ s which contradicts A′(1) = j0 < s.

A.3 Proof of Lemma 5.2

Using A(z0) = lz0A
′(z0)/n, we have

l2z2
0A

′′(z0) − n(n − l)A(z0) = l2z2
0A

′′(z0) − l(n − l)z0A
′(z0)

= l
∞

∑

j=0

(lj(j − 1) − (n − l)j)ajz
j
0

= l
∞

∑

j=0

j(lj − n)ajz
j
0. (93)

As in the proof of Lemma 5.1 we let j0 such that (91) holds. Then we see that

∞
∑

j=0

j(lj − n)ajz
j
0 =

j0
∑

j=0

j(lj − n)ajz
j
0 +

∞
∑

j=j0

j(lj − n)ajz
j
0

≥
j0

∑

j=0

j0(lj − n)ajz
j
0 +

∞
∑

j=j0

j0(lj − n)ajz
j
0

= j0

∞
∑

j=0

(lj − n)ajz
j
0 = 0, (94)

with equality if and only if aj0 = 1, aj = 0, j 6= j0 (to be excluded since j0 ≥ s). This
completes the proof.
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