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Abstract

In [13] it is shown that the two-stage tandem queue with coupled processors can be
solved using the theory of boundary value problems. In this paper we consider the issues
that arise when calculating performance measures like the mean queue length and the
fraction of time a station is empty.

It is assumed that jobs arrive at the first station according to a Poisson process and
require service at both stations before leaving the system. The amount of work that a
job requires at each of the stations is an independent, exponentially distributed random
variable. When both stations are nonempty, the total service capacity is shared among
the stations according to fixed proportions. When one of the stations becomes empty, the
total service capacity is given to the nonempty station.

We study the two-dimensional Markov process representing the numbers of jobs at the
two stations. The problem of finding the generating function of the stationary distribution
can be reduced to two different Riemann-Hilbert boundary value problems. Although both
problems yield a complete analytical solution, from the numerical viewpoint they have
different features. We discuss the similarities and differences between the two problems,
and relate them to the computational aspects of obtaining performance measures.

1 Introduction

Consider a two-stage tandem queue, where jobs arrive at the first station according to a
Poisson process. After receiving service at this station, they move to the second station, and
upon completion of service at the second station they leave the system. The amount of work
that a job requires at each of the stations is an exponentially distributed random variable,
and the total service capacity of the two stations together is constant. When both stations
are nonempty, a given proportion of the capacity is allocated to station 1, and the remaining

1



proportion is allocated to station 2. If one of the stations is empty, however, the total service
capacity of the stations is allocated to the nonempty station.

The model is motivated by a situation that arises in cable TV networks which have been
upgraded to enable bidirectional communications between users and a centrally located head
end (HE). In order to coordinate transmissions from users to HE a medium access protocol is
needed. This protocol can be a mechanism consisting of two stages. At the first stage, a user
which has data to transmit sends a request to the HE in a dedicated time slot to specify the
number of data slots it needs. If only one user sends a request in a certain time slot, the HE
receives the request successfully. If more users simultaneously send a request in a certain time
slot, a collision occurs, upon which a collision resolution algorithm is started for these users.
Upon receiving a request successfully, the HE starts the second stage of the mechanism, the
actual data transmission, by sending a grant to the corresponding user to transmit its data
in specified data slots. The capacity of the channel is divided between these two stages by
using each time slot to either transmitting data of users already having a grant or handling
requests of users not yet having a grant. Clearly, in our model, service at station 1 represents
the process of sending the requests, whereas service at station 2 represents the transmission
of the actual data corresponding to the successfully received requests.

Another application of the model would be an assembly line for which on each job two
operations must be performed using a limited service capacity. By coupling the service at
each of the operations, and thus using the service capacity of an operation for which no jobs
are waiting for the other operations, imbalance in the assembly line can be reduced and the
throughput can be increased (see e.g. Andradottir et al. [1]).

Resing and Örmeci [13] have shown for the two-dimensional Markov process representing
the numbers of jobs at the two stations, that the problem of finding the bivariate generating
function of the stationary distribution can be reduced to a Riemann-Hilbert boundary value
problem. The theory of boundary value problems was introduced to the field of queueing
theory by Fayolle and Iasnogorodski [6], who analyzed two coupled processors in parallel with
exponential service times. Some years later, the book of Cohen and Boxma [5] made the
technique of solving queueing systems with boundary value problems into an established one.

In [13] the issue how to obtain performance measures has not been discussed. In general,
obtaining performance measures from the formal solution of a Riemann-Hilbert boundary
value problem is not straightforward. In this paper we discuss the numerical issues that
arise when obtaining performance measures. In particular, we consider the fraction of time
a station is empty and the mean stationary queue length at a station. The reduction of the
problem of finding the generating function to a boundary value problem usually follows from
considering a specific zero-set of the kernel of the functional equation. This can be done in
more than one way. We discuss, next to the zero-set in [13], one other zero-set that leads to a
second Riemann-Hilbert boundary value problem. From the analytical viewpoint, the second
model has little added value, since solving either one of the two problems gives a full solution
to the model. However, in determining performance measures numerically the two problems
have different features.

We describe the model and the key functional equation for the model in Section 2 and 3.
The reduction of the problem of finding the stationary queue length distribution of the model
to a Riemann-Hilbert boundary value problem, as introduced in [13], is described in Section
4.1 and 5. In Section 4.2 and 6 we introduce the second Riemann-Hilbert boundary value
problem. In particular, in Section 6.1 attention is paid to determining the conformal map
that is required for the solution of the second Riemann-Hilbert boundary value problem. In
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Section 7 we derive some performance measures for the model. In Section 8 we discuss issues
that arise when numerically determining the performance measures from the formal solutions
of the Riemann-Hilbert boundary value problems. Among other things, we show in Section
8.2 that we can determine the performance measures for the whole set of allowed parameter
values. Finally, we give some numerical results in Section 9.

2 Model description

Consider a two-stage tandem queue, where jobs arrive at queue 1 according to a Poisson
process with rate λ, each job demanding service at both queues before leaving the system.
Each job requires an exponential amount of work with parameter νj at station j, j = 1, 2. The
total service capacity of the two service stations together is fixed. Without loss of generality
we assume that this total service capacity equals one unit of work per time unit. Whenever
both stations are nonempty, a proportion p of the capacity is allocated to station 1, and the
remaining part 1 − p is allocated to station 2. Thus, when there is at least one job at each
station, the departure rate of jobs at station 1 is ν1p and the departure rate of jobs at station
2 is ν2(1− p). Here we assume that 0 < p < 1, so that there is a real capacity sharing among
the two processors. For the cases p = 0 and p = 1, the system can be seen as a tandem queue
with a single server moving between the two queues and giving priority to one of the queues.
The solutions for these cases are given in [13].

When one of the stations becomes empty, the total service capacity is allocated to the
nonempty station. Hence, the departure rate at that station, station j say, is temporarily
increased to νj . With Xj(t) the number of jobs at station j at time t, the two-dimensional
process {(X1(t), X2(t)), t ≥ 0} is a Markov process. The ergodicity condition under which
this Markov process has a unique stationary distribution is given by

λ

ν1
+

λ

ν2
< 1. (2.1)

This can be explained by the fact that, independent of p, the two stations together always
work at capacity 1 (if there is work in the system), and that λ/ν1 + λ/ν2 equals the amount
of work brought into the system per time unit. We henceforth assume that the ergodicity
condition is satisfied.

3 Functional equation

Let us denote by π(n, k) the stationary probability of having n customers at station 1 and k
customers at station 2, i.e. π(n, k) = limt→∞ P(X1(t) = n, X2(t) = k). The following set of
balance equations can then be derived:

λπ(0, 0) = ν2π(0, 1),

(λ + ν1)π(n, 0) = λπ(n − 1, 0) + (1 − p) ν2π(n, 1), n ≥ 1,

(λ + ν2)π(0, 1) = ν1π(1, 0) + ν2π(0, 2),

(λ + p ν1 + (1 − p) ν2)π(n, 1) = λπ(n − 1, 1) + ν1π(n + 1, 0) + (1 − p) ν2π(n, 2), n ≥ 1,

(λ + ν2)π(0, k) = p ν1π(1, k − 1) + ν2π(0, k + 1), k ≥ 2,

(λ + p ν1 + (1 − p) ν2)π(n, k) = λπ(n − 1, k) + p ν1π(n + 1, k − 1) + (1 − p) ν2π(n, k + 1),

n ≥ 1, k ≥ 2.
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We define the joint probability generating function

P (x, y) :=
∑

n≥0

∑

k≥0

π(n, k)xnyk, |x| ≤ 1, |y| ≤ 1,

which is, for every fixed y, regular for |x| < 1 and continuous for |x| ≤ 1. A similar statement
holds for the role of x and y interchanged. From the balance equations it follows that P (x, y)
satisfies the functional equation

h1(x, y)P (x, y) = h2(x, y)P (x, 0) + h3(x, y)P (0, y) + h4(x, y)P (0, 0), (3.1)

where

h1(x, y) := (λ + p ν1 + (1 − p) ν2)xy − λx2y − p ν1y
2 − (1 − p) ν2x,

h2(x, y) := (1 − p) [ν1 y(y − x) + ν2 x(y − 1)],

h3(x, y) := p [ν2 x(1 − y) + ν1 y(x − y)],

h4(x, y) := p ν2 x(y − 1) + (1 − p) ν1 y(x − y).

The constant P (0, 0) can be determined by substituting x = γ(y) := ν1y
2/(ν1y − ν2y + ν2)

into (3.1). For this choice of x, both h2(x, y) and h3(x, y) equal zero, and hence (3.1) reduces
to

P (γ(y), y) =
h4(γ(y), y)

h1(γ(y), y)
P (0, 0). (3.2)

Letting y ↑ 1 in (3.2), we obtain P (0, 0) = 1−λ/ν1−λ/ν2. This result can again be explained
by the fact that, independent of p, the two stations together always work at capacity 1 (if
there is work in the system), and that λ/ν1 + λ/ν2 equals the amount of work brought into
the system per time unit.

4 Analysis of the kernel

In the analysis of the functional equation (3.1) a crucial role is played by the kernel h1(x, y).
Due to the regularity properties of P (x, y), for each pair (x, y) on or within the unit circle for
which h1(x, y) equals zero, the right-hand side of (3.1) must vanish. This provides us with
a relation between the unknown functions P (0, y) and P (x, 0). From the observation that
h1(x, y) is a polynomial in either x or y, we can construct two Riemann-Hilbert boundary
value problems, one for the function P (x, 0) and one for the function P (0, y).

Blanc [2] has investigated the transient behavior of the ordinary tandem queue without
coupled processors, for which the kernel h1(x, y) is of the exact same form. Since Blanc has
studied h1(x, y) as a polynomial in y, most of the results presented in Section 4.1 stem from
his work. Using these results, the problem of finding the stationary queue length distribution
can be reduced to a Riemann-Hilbert boundary value problem for P (0, y), as presented in
[13] and Section 5 of this paper. In Section 4.2 we present results concerning h1(x, y) as a
polynomial in x, from which we derive a Riemann-Hilbert boundary value problem for P (x, 0)
in Section 6.
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4.1 h1(x, y) as a polynomial in y

We introduce

r1 =
λ

pν1
, r2 =

λ

(1 − p)ν2
,

as the loads on each of the stations during periods when both stations are nonempty. For
notational convenience, we also introduce

r̂ = 1 +
1

r1
+

1

r2
,

such that

h1(x, y) = λ
[

r̂xy − x2y −
1

r1
y2 −

1

r2
x
]

. (4.1)

Observe that h1(x, y) is, for each x, a polynomial of degree 2 in y. We thus have that for every
value of x there are two possible values of y, say y1(x) and y2(x), such that h1(x, y1(x)) =
h1(x, y2(x)) = 0. These can be described by the two-valued function

y(x) =
r1

2
[s1(x) ±

√

D1(x)], (4.2)

where

s1(x) = (r̂ − x)x, D1(x) = s1(x)2 −
4x

r1r2
.

We then obtain the following result:

Lemma 4.1. The algebraic function y(x), defined by h1(x, y(x)) = 0, has four real branch
points 0 = x1 < x2 ≤ 1 < x3 < x4.

Proof: The branch points of y(x) are zeros of the discriminant D1(x). Clearly, D1(0) = 0,
limx↓0 D1(x) < 0, D1(1) ≥ 0, D1(r̂) < 0 and limx→∞ D1(x) = ∞. Furthermore, if D1(1) = 0
(i.e. r1 = r2 < 1) then D′(1) > 0. �

For later use, we now study the mapping y(x) for x ∈ [0, x2] in some more detail. This
mapping can be shown to give rise to a smooth and closed contour L, as specified in the next
lemma, and illustrated in Figure 1.

Lemma 4.2. For each x ∈ [0, x2], y(x) lies on the closed contour L, which is symmetric with
respect to the real line, and defined by:

|y|2 =
r1

2r2
(r̂ −

√

r̂2 − 8Re(y)/r1), (4.3)

|y|2 ≤
r1

r2
x2. (4.4)

Proof: For x ∈ [0, x2], D1(x) is negative, so y1(x) and y2(x) are complex conjugates. It also
follows that

Re(y) =
r1

2
(r̂ − x)x. (4.5)

Furthermore, from h1(x, y(x)) = 0 we have |y|2 = r1x/r2 ≤ r1x2/r2. Since (4.5) is a
quadratic equation in x, substituting one of the two solutions into |y|2 = r1x/r2 yields (4.3).
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PSfrag replacements L

0

C

1

1

x2

y(x)

α−1

−1

Re(y)

Im(y)

Figure 1: The mapping y = y(x) : [0, x2] → L.

Of course, we choose the solution of x for which y(0) = 0 and y(x2) =
√

r1x2/r2 lie on the
contour. �

We will henceforth denote the interior of L by L+, and set

α := y(x2) =
√

r1x2/r2, (4.6)

representing the point on L with the largest modulus. With respect to α, the following
assertions hold.

Lemma 4.3. If r1 = r2, then α = 1. If r1 < r2, then α < 1. If r1 > r2, then α > 1.

Proof: For r1 = r2, we have that D1(1) = 0, so x2 = α = 1. For r1 < r2, knowing x2 < 1,
it follows that α < 1. For r1 > r2, knowing x2 < 1, we have that D1(r2/r1) < 0 since
r2 + r2(1 − r2)/r1 < 1, and thus r2/r1 < x2 and α > 1. �

We note that α = 1 (resp. α < 1, α > 1) implies 1 ∈ L (resp. 1 /∈ L∪L+, 1 ∈ L+), which
plays a crucial role in the numerical work to be presented in Section 8. We will elaborate on
this in Section 8.1.

4.2 h1(x, y) as a polynomial in x

Paralleling the approach in Section 4.1, the kernel h1(x, y) is, for each y, a polynomial of
degree 2 in x. Thus for each y there are two possible values of x, say x1(y) and x2(y), such
that h1(x1(y), y) = h1(x2(y), y) = 0. These can be described by the two-valued function

x(y) =
1

2y
[s2(y) ±

√

D2(y)], (4.7)

where

s2(y) = r̂y −
1

r2
, D2(y) = s2(y)2 −

4y3

r1
.

The following then holds:
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0
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1

1

−1
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Re(x)

Im(x)

Figure 2: The mapping x = x(y) : [y1, y2] → R.

Lemma 4.4. The algebraic function x(y) defined by h1(x(y), y) = 0 has three real branch
points 0 < y1 < y2 ≤ 1 < y3.

Proof: The branch points of x(y) are zeros of the discriminant D2(y). Clearly, D2(0) =
1/r2

2 > 0, D2(1) = (1 − 1/r1)
2 ≥ 0 and limy→∞ D2(y) = −∞. For ŷ = 1/(r2r̂) ∈ (0, 1), it

holds that D2(ŷ) = −4ŷ3/r1 < 0. Furthermore, if D2(1) = 0 (i.e. r1 = 1 and, due to the
ergodicity condition, r2 < 1) then D′

2(1) = 4(1/r2 − 1) > 0. �

We now study the mapping x(y) for y ∈ [y1, y2] in some more detail. This mapping can
be shown to give rise to a smooth and closed contour R, as specified in the next lemma and
illustrated in Figure 2.

Lemma 4.5. For each y ∈ [y1, y2], x(y) lies on the closed and smooth contour R, which is
symmetric with respect to the real line, and defined by:

|x|2 =
1

r1r2(r̂ − 2Re(x))
, (4.8)

|x|2 ≤
y2

r1
. (4.9)

Proof: Similar to the proof of Lemma 4.2. �

We set
β := x(y2) =

√

y2/r1, (4.10)

the point on R with the largest modulus, for which it holds that

Lemma 4.6. (i) When either r1 = 1 or r2 = 1 we have that β = 1. (ii) When both r1 < 1
and r2 < 1 we have that β > 1. (iii) When either r1 > 1 or r2 > 1 we have that β < 1.
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Proof: (i) If r1 = 1, then y2 = 1 and thus β = 1. If r2 = 1, then y2 = r1 and thus β = 1.
(ii) For β > 1 we should prove that r1 < y2. Consider the function f(r1) := D2(r1) =

−4r2
1 + (1 + r1 + r1/r2 − 1/r2)

2. The solutions to f(r1) = 0 are given by r1 = 1 and
r1 = r̂1 = (1− r2)/(1+3r2). For r1 = r̂1 it holds that r1 = y1 < y2. Assume that there exists
a value r1 ∈ (0, 1) for which it holds that r1 > y2. Then, since y2 is a continuous function
of r1, there should be a value in (0, 1) other than r̂1 for which r1 = y2 and hence f(r1) = 0.
This is not the case, and thus r1 < y2 for all values r1 ∈ (0, 1).

(iii) If r1 > 1, then obviously r1 > y2 and thus β < 1. Now assume r2 > 1. Then, for
β < 1 we should prove that r1 > y2. Note that f(r1) is positive for all values r1 ∈ (0, 1). This
implies that r1 < y1 or r1 > y2 (see the proof of Lemma 4.4). Furthermore, y1 < ŷ < 1/2 for
r2 > 1 and r1 ∈ (0, 1), when ŷ as defined in the proof of Lemma 4.4. Hence, for r1 ≥ 1/2
it clearly holds that r1 > y1. Assume that there exists a value r1 ∈ (0, 1) for which it holds
that r1 < y1. Then, since y1 is a continuous function of r1, there should be a value in (0, 1)
for which r1 = y1 and hence f(r1) = 0. This is not the case, and thus r1 > y2 for all values
r1 ∈ (0, 1). �

We again note that β = 1 (resp. β < 1, β > 1) implies 1 ∈ R (resp. 1 /∈ R∪R+, 1 ∈ R+),
which plays a crucial role in the numerical work to be presented in Section 8.

5 Boundary value problem I

In the previous section we considered the kernel as a polynomial in either y or x, which may
lead to the curves L and R, respectively. In this section we will show how the curve L, derived
in Section 4.1, leads to a Riemann-Hilbert boundary value problem for the function P (0, y).

Lemma 5.1. The function P (0, y) is regular in the domain L+ and satisfies for y ∈ L the
condition

Im[P (0, y)] = Im
[

− P (0, 0)
h4(r2|y|

2/r1, y)

h3(r2|y|2/r1, y)

]

. (5.1)

Proof: For zero-pairs (x, y) of the kernel h1(x, y) for which P (x, y) is finite we have

h2(x, y)P (x, 0) + h3(x, y)P (0, y) + h4(x, y)P (0, 0) = 0, (5.2)

from which it follows that, for those zero-pairs,

P (0, y) =
1 − p

p
P (x, 0) −

h4(x, y)

h3(x, y)
P (0, 0) = 0. (5.3)

Thus, (5.1) follows from the fact that P (x, 0) is real for x ∈ [0, x2] and |y|2 = r1x/r2 for y ∈ L.
If α ≤ 1, L lies entirely within the unit circle. Hence, P (0, y) is regular in L+. If α > 1,
P (0, y(x)) can be continued analytically over the interval [0, x2] via (5.2), because P (x, 0) is
regular on this interval. Hence, the analytic continuation of P (0, y) is finite at y = y(x2).
Because P (0, y) has a power series expansion at y = 0 with positive coefficients, this implies
that P (0, y) is regular for |y| < y(x2) and hence in L+. �

Lemma 5.1 shows that the determination of P (0, y) reduces to the determination of the
solution of the following Riemann-Hilbert boundary value problem on the contour L:
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Determine a function P (0, y) such that

1. P (0, y) is regular for y ∈ L+ and continuous for y ∈ L+ ∪ L.

2. Re [iP (0, y)] = c(y), for y ∈ L,

where

c(y) = Im
[

P (0, 0)
h4(r2|y|

2/r1, y)

h3(r2|y|2/r1, y)

]

.

5.1 Reduction to a Dirichlet problem on a circle

The standard way to solve this type of boundary value problem is to transform the boundary
condition (5.1) to a condition on the unit circle (see e.g. Muskhelishvili [10], p. 108). Denote
the unit circle by C and its interior by C+. We introduce the conformal mapping

z = f(y) : L+ → C+, (5.4)

and its inverse

y = f0(z) : C+ → L+. (5.5)

Using these mappings, we can reduce the Riemann-Hilbert problem on L to the following
problem:

Determine a function G(z) such that

1. G(z) is regular for z ∈ C+ and continuous for z ∈ C ∪ C+.

2. Re [iG(z)] = c̃(z), for z ∈ C, where c̃(z) = c(f0(z)),

which is known as the Dirichlet problem on a circle. Its solution is given by (see [10], p. 108)

G(z) =
1

2π

∫

C

c̃(w)
w + z

w − z

dw

w
+ K1, z ∈ C ∪ C+, (5.6)

where K1 is some constant. In this way, P (0, y) has been formally determined as

P (0, y) = G(f(y)) =
1

2π

∫

C

c(f0(w))
w + f(y)

w − f(y)

dw

w
+ K1, y ∈ L ∪ L+. (5.7)

We can rewrite the contour integral (5.7) as a real integral on [0, x2]. That is, for y ∈ L+ ∪L,
we have that

P (0, y) =
1

2π

∫

L

c(s)
f(s) + f(y)

f(s) − f(y)

df(s)

f(s)
+ K1

=
1

2π

[

−

∫ x2

0
c(y1(x))

f(y1(x)) + f(y)

f(y1(x)) − f(y)

f ′(y1(x))y′1(x)

f(y1(x))
dx

+

∫ x2

0
c(y2(x))

f(y2(x)) + f(y)

f(y2(x)) − f(y)

f ′(y2(x))y′2(x)

f(y2(x))
dx

]

+ K1. (5.8)
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5.2 Mapping f(y)

For this specific problem, an explicit expression for the conformal mapping f(y) can be found
(see Blanc [2]). It is given by

f(y) =
yk(η) − ηk(y)

yk(η) + ηk(y)
, (5.9)

where

k(y) = (α − y)
√

r1 − r2
2α

2y,

and η is some unspecified constant in the interval (0, α). For our computations we set η = α/2.
With the explicit expression for f(y) we have all ingredients for calculating the integral (5.8),
as will be further discussed in Section 8.

6 Boundary value problem II

In this section we will show how the zero-set discussed in Section 4.2 that leads to the curve
R gives rise to a Riemann-Hilbert problem for the function P (x, 0). The approach is similar
to the one followed in Section 5.

Lemma 6.1. The function P (x, 0) is regular in the domain R+ and satisfies for x ∈ R the
condition

Im[P (x, 0)] = Im
[

− P (0, 0)
h4(x, r1|x|

2)

h2(x, r1|x|2)

]

(6.1)

Proof: Similar to the proof of Lemma 5.1 �

Lemma 6.1 shows that the determination of P (x, 0) reduces to the determination of the
solution of the following Riemann-Hilbert boundary value problem on the contour R:

Determine a function P (x, 0) such that

1. P (x, 0) is regular for x ∈ R+ and continuous for x ∈ R ∪ R+.

2. Re [iP (x, 0)] = d(x), for x ∈ R,

where

d(x) = Im
[

P (0, 0)
h4(x, r1|x|

2)

h2(x, r1|x|2)

]

. (6.2)

Note that this problem is inherently different from the Riemann-Hilbert problem for
P (0, y) discussed in the previous section, in the sense that there is no symmetry in x and y.
Moreover, the contours on which the problems have been defined have different features as
well (see Lemma 4.2 and Lemma 4.5).

We introduce the conformal mapping

z = g(x) : R+ → C+, (6.3)

and its inverse

x = g0(z) : C+ → R+, (6.4)
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which allows us, as in Section 5.1, to reduce the Riemann-Hilbert problem to the following
Dirichlet problem on the unit circle:

Determine a function H(z) such that

1. H(z) is regular for z ∈ C+ and continuous for z ∈ C ∪ C+.

2. Re [iH(z)] = d̃(z), for z ∈ C, where d̃(z) = d(g0(z)).

This implies that the solution of P (x, 0) is given by

P (x, 0) = H(g(x)) =
1

2π

∫

C

d(g0(w))
w + g(x)

w − g(x)

dw

w
+ K2, x ∈ R ∪ R+, (6.5)

where K2 is some constant.

6.1 Mapping g0(z)

The explicit mapping for f(y) as described in Section 5.2 has been obtained by exploiting the
specific properties of L, among which that the contour passes through zero. Unfortunately,
we have not been able to derive an exact expression for g(x). The standard approach in these
cases is to determine the inverse mapping g0(z) using a well-known method from the theory
of conformal mappings. This is sufficient to calculate (6.5), since we show in Section 8 that
we do not need the mapping g(x) to evaluate P (x, 0) in x.

For this approach, we need a representation of R in terms of polar coordinates, i.e.

R = {x : x = ρ(φ) exp(iφ), 0 ≤ φ ≤ 2π}, (6.6)

which can be obtained in the following way. Since 0 ∈ R+, we have by (4.8) that for each point
x on R the relation between its absolute value and its real part is given by |x|2 = m(Re(x)),
where

m(δ) :=
1

r1r2(r̂ − 2δ)
. (6.7)

So, given the angle φ belonging to some point on R, the real part of this point, to be denoted
by δ(φ), is the solution of

δ − cos φ
√

m(δ) = 0, 0 ≤ φ ≤ 2π. (6.8)

One may ask whether the solution to (6.8) is unique. This is the case when R is a Jordan
curve for which it holds that every ray from the point 0 intersects the curve R exactly once.
In fact, this is the notion of starshapedness (see [12], p.125, Exercise 109). In all cases we
have considered, R is a smooth and egg-shaped contour, and thus a starshaped Jordan curve.
We see that ρ(φ) = δ(φ)/ cos φ, and so the parametrization in (6.6) is fully specified.

For a contour that can be described in polar coordinates, the mapping from C+ to the
interior of this contour is formally given by (cf. [5], Section I.4.4, [8], Section 2.1):

g0(z) = z exp[
1

2π

∫ 2π

0
log{ρ(θ(ω))}

eiω + z

eiω − z
dω], |z| < 1, (6.9)

with the angular deformation θ(·) uniquely determined as the solution of Theodorsen’s integral
equation

θ(φ) = φ −

∫ 2π

0
log{ρ(θ(ω))} cot{

1

2
(ω − φ)}dω, 0 ≤ φ ≤ 2π. (6.10)

11
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Figure 3: Finding a boundary correspondence point through the mapping x = g0(z) : C → R.

Here, θ(φ) is a strictly increasing and continuous function of φ, and θ(φ) = 2π − θ(2π − φ).
According to the corresponding-boundaries theorem (see [5], p. 66), g0(z) is continuous in
C ∪ C+. Equation (6.10) is nonlinear and cannot be solved in closed form, though a unique
solution can be proven to exist.

We use (6.10) to determine boundary correspondence points. That is, for a point on
the unit circle given by its angle φ, we solve (6.10) numerically to obtain the corresponding
point on R, given by its angle θ(φ), see Figure 3. The numerical issues of this procedure are
discussed in Section 8.3.

7 Performance measures

In this section we present exact expressions for two performance measures: the fraction of
time a station is empty and the mean stationary queue length at a station. Furthermore, we
show for both performance measures that a relation exists between its value at station 1 and
station 2. As a consequence, an expression for a performance measure for one of the stations
yields the performance measure for the other station as well.

7.1 Fraction of time stations are empty

The fractions of time station 1 and 2 are empty are given by P (0, 1) and P (1, 0), respectively.
Determining either P (0, 1) or P (1, 0) is sufficient to obtain both, since they are related in the
following way. Setting x = y in (3.1) and taking the limit x ↑ 1 gives

P (1, 0) = 1 −
λ

ν2
−

p

1 − p

[

1 −
λ

ν1
− P (0, 1)

]

. (7.1)

Equation (7.1) alternatively follows from one of the equations

λ = ν1(P (1, 0) − P (0, 0)) + pν1(1 − P (1, 0) − P (0, 1) + P (0, 0)),

λ = ν2(P (0, 1) − P (0, 0)) + (1 − p)ν2(1 − P (1, 0) − P (0, 1) + P (0, 0)).

These equations stem from the following reasoning: P (1, 0) − P (0, 0) is the fraction of time
station 1 is nonempty while station 2 is empty, and 1 − P (1, 0) − P (0, 1) + P (0, 0) is the
fraction of time both stations are nonempty. Thus, the first equation states that, for station
1, the arrival rate equals the departure rate. Similarly, the second equation corresponds to
the equality of arrival-departure rates for station 2.

12



7.2 Mean queue lengths

We will now derive expressions for the mean queue length at both stations, to be denoted
by EX1 and EX2. First, we show how these mean queue lengths are related. Differentiating
both sides of (3.2) w.r.t. y, and letting y ↑ 1, yields

EX1

[ 1

ν1
+

1

ν2

]

+ EX2
1

ν2
=

λ(ν2
1 + ν1ν2 + ν2

2)

ν1ν2(ν1ν2 − λ(ν1 + ν2))
. (7.2)

Again, an interpretation can be given. The left-hand side of (7.2) counts the mean amount
of work in the system by multiplying the mean number of jobs at each station by the mean
service time they still require. The right-hand side of (7.2) corresponds to the mean amount
of work in an M/G/1 queue (see e.g. [4]), with Poisson arrivals with rate λ and service times
distributed as the sum of two exponentially distributed random variables with mean 1/ν1

and 1/ν2, respectively. Both sides of (7.2) are equal due to the work conservation property
of the system. By (7.2) it suffices to calculate either EX1 or EX2 to obtain them both. We
will show how EX2 and EX1 follow from the solution of the Riemann-Hilbert boundary value
problems discussed in Section 5 and 6, respectively.

When setting x = 1 in (3.1), the factor (y − 1) cancels from all terms leaving

P (1, y) =
ν1y + ν2

pν1y − (1 − p)ν2
(−(1 − p)P (1, 0) + pP (0, y)) +

(1 − p)ν1y − pν2

pν1y − (1 − p)ν2
P (0, 0). (7.3)

Taking derivatives w.r.t. y at both sides of (7.3) yields

d

dy
P (1, y) =

ν1ν2

(pν1y − (1 − p)ν2)2
((1 − p)P (1, 0) − pP (0, y))

+
(ν1y + ν2)p

pν1y − (1 − p)ν2

d

dy
P (0, y) +

(2p − 1)ν1ν2P (0, 0)

(pν1y − (1 − p)ν2)2
. (7.4)

Plugging (7.1) into (7.4) and setting y = 1 then gives for pν1 6= (1 − p)ν2:

EX2 =
[ d

dy
P (1, y)

]

y=1
= −

λ

pν1 − (1 − p)ν2
+

(ν1 + ν2)p

pν1 − (1 − p)ν2

[ d

dy
P (0, y)

]

y=1
. (7.5)

Thus, to determine EX2, we only need to compute [ d
dy

P (0, y)]y=1. Note that from (5.7) we
have that

d

dy
P (0, y) =

1

π

∫

C

c(f0(w))
f ′(y)

(w − f(y))2
dw. (7.6)

Similarly, when setting y = 1 in (3.1), the factor (x − 1) cancels from all terms, which
gives

P (x, 1) =
(1 − p)ν1

pν1 − λx

[ p

1 − p
P (0, 1) − P (x, 0) + P (0, 0)

]

(7.7)

Taking derivatives w.r.t. x at both sides of (7.7) yields

d

dx
P (x, 1) =

λν1(1 − p)

(pν1 − λx)2

[ p

1 − p
P (0, 1) − P (x, 0) + P (0, 0)

]

−
(1 − p)ν1

pν1 − λx

d

dx
P (x, 0). (7.8)
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Plugging (7.1) into (7.8) and letting x = 1 then gives for λ 6= pν1:

EX1 =
[ d

dx
P (x, 1)

]

x=1
=

λ

pν1 − λ
−

(1 − p)ν1

pν1 − λ

[ d

dx
P (x, 0)

]

x=1
. (7.9)

Note that from (6.5) we have that

d

dx
P (x, 0) =

1

π

∫

C

d(g0(w))
g′(x)

(w − g(x))2
dw. (7.10)

Remark 7.1. When pν1 = (1 − p)ν2, setting y = 1 in (7.3) gives (after applying l’Hôpital)

[ d

dy
P (0, y)

]

y=1
=

λ

(ν1 + ν2)p
=

λ

ν2
.

We then have an exact expression for [ d
dy

P (0, y)]y=1, but we cannot use (7.5) to determine
EX2. We can, though, use (7.9) to find EX1, and EX2 through (7.2), since λ is always smaller
than pν1 (when pν1 = (1− p)ν2) due to the ergodicity condition (2.1). Likewise, for λ = pν1,
setting x = 1 in (7.7) gives (after applying l’Hôpital)

[ d

dx
P (x, 0)

]

x=1
=

λ

(1 − p)ν1
=

λ

ν1 − λ
,

and we cannot use (7.9) to determine EX1. We can use (7.5) to find EX2, since (1 − p)ν2 is
always smaller than pν1 (when λ = pν1) due to the ergodicity condition. We can thus conclude
that we can calculate either one of the integrals (7.6) or (7.10) for all allowed parameter values.

8 Computational issues

We will now discuss some issues that arise when numerically determining the performance
measures from the formal solutions of the Riemann-Hilbert boundary value problems. In
Section 8.1 we discuss how the location of α and β is related to the set of parameter values
for which we can actually determine the performance measures. In Section 8.2 we discuss
a way to determine the performance measures for all allowed parameter values. In Section
8.3 we discuss how the integrals involved in calculating the performance measures can be
determined numerically.

8.1 Remarks on α and β

For calculating the performance measures described in Section 7, we have to evaluate P (0, y)
and d

dy
P (0, y) in y = 1 or P (x, 0) and d

dx
P (x, 0) in x = 1. We first discuss the first option.

The integration constant K1 can be determined by calculating P (0, 0) from the integral
(5.7), and using that P (0, 0) = 1 − λ/ν1 − λ/ν2. The integrals (5.7), (7.6), however, follow
from the solution of a Dirichlet problem that is only defined on or within the unit circle. So,
in order to evaluate the integrals, f(1) should lie on or within the unit circle, which is the
same as requiring 1 to lie on or within the contour L.

The above problem is very common in queueing applications for which the boundary
value technique is applied (see e.g. Boxma & Groenendijk [3], Cohen & Boxma [5], p. 360,
De Klein [9], p. 89, and Feng et al. [7]). In the current application, a key role is played by
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2
.

α. In Lemma 4.3 we saw that, when pν1 ≤ (1 − p)ν2 (i.e. r1 ≥ r2), it follows that α ≥ 1
and thus 1 ∈ L ∪ L+. Hence, for these parameter values the integrals (5.7), (7.6) can be
calculated. To obtain results for parameter values for which it holds that pν1 > (1 − p)ν2,
we might consider analytic continuations for the functions (5.7), (7.6), see e.g. Nauta [11].
However, this would most probably result in numerical difficulties. Alternatively, we can use
Taylor series expansion of the corresponding functions around some point in L+, as suggested
by Cohen & Boxma [5], p. 360. For a Taylor series expansion of order n around ŷ ∈ L+, we
then have that

P (0, 1) ≈
n

∑

k=0

(1 − ŷ)k

k!

[ dk

dyk
P (0, y)

]

y=ŷ
. (8.1)

The exact same problem holds for boundary value problem II. In that case, we have to
evaluate the integrals (6.5), (7.10) in x = 1, which is only allowed when 1 ∈ R ∪ R+. In
Lemma 4.6 we have seen that this is the case when pν1 and (1 − p)ν2 are both larger than λ
(i.e. r1 < 1 and r2 < 1).

To summarize things, we show in Figure 4 how the values of α and β are related to the
parameter values λ, ν1, ν2 (for p = 1/2). So, starting from boundary value problem I, we can
determine the performance measures for parameter values that fall within area I and II. By
considering boundary value problem II, we can enlarge this set by area III. For area IV we
can apply the Taylor series expansion. As will be shown in the next section using the Taylor
series expansion can be circumvented by considering a third zero-set of the kernel h1(x, y).

8.2 A third zero-set of the kernel

We now discuss an approach to determine P (0, 1) and d
dy

P (0, y)|y=1 directly from (5.7), (7.6)
despite the fact that α < 1. The approach has been suggested by De Klein [9], p. 89,
and makes use of a zero-set of h1(x, y) other than the one in Section 4.1. By establishing a
relation between P (x, 0) and P (0, y) for zero-pairs (x, y) of this set, we are able to calculate
the performance measures for all allowed parameter values.
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The new zero-set is defined by

{(x, y∗(x)) | h1(x, y∗(x)) = 0, |x| = 1}, (8.2)

where y∗(x) is the zero of the kernel with the smallest modulus. From the function y(x), as
given in (4.2), it is easily seen that

y∗(1) = min
{r1

r2
, 1

}

, (8.3)

for which we have the following result:

Lemma 8.1. For r1 = r2 it holds that y∗(1) = 1 = α. For r1 6= r2 it holds that y∗(1) < α.

Proof: The first assertion follows immediately from Lemma 4.3. For the second assertion
note that if r1 > r2 it holds that y∗(1) = 1 < α. If r1 < r2 it holds that

D1(r1/r2) =
[

1 + r1 +
r1

r2
−

r2
1

r2

]2( 1

r2

)2
− 4

( 1

r2

)2
.

Since r1 < r2 implies that r1 < 1, we have that 1 + r1 + r1/r2 − r2
1/r2 ∈ (−2, 2), and

D1(r1/r2) < 0. So, r1/r2 < x2, and thus y∗(1) = r1/r2 <
√

r1x2/r2 = α. �

We exploit the result in Lemma 8.1 in the following way. Introducing the short-hand
notation hk(x) := hk(x, y∗(x)), we obtain from (3.1) that

h2(x)P (x, 0) + h3(x)P (0, y∗(x)) + h4(x)P (0, 0) = 0, |x| = 1. (8.4)

Setting x = 1 in (8.4) yields

P (1, 0) =
−1

h2(1)

[

h3(1)P (0, y∗(1)) + h4(1)P (0, 0)
]

. (8.5)

Since for r1 6= r2 it holds that y∗(1) < α, the value of P (0, y∗(1)) can be computed directly
from (5.7). Hence, for r1 < r2 we cannot obtain P (0, 1) directly from (5.7), but we can obtain
P (1, 0) using (5.7), and find P (0, 1) through (7.1).

By using a similar approach we can determine [ d
dy

P (0, y)]y=1 through (7.6), despite the
fact that r1 < r2. We do need some extra results concerning the zero-set (8.2) though.
Observe that y∗(1) is of multiplicity 1 unless r1 = r2 (for which y∗(1) is of multiplicity two).
We further have

Lemma 8.2. The zero y∗(x) is of multiplicity 1 and contained in the disk |y| < 1 for every
|x| = 1, x 6= 1.

Proof: For |x| = 1 it holds that h1(x, y) = λx(f(y) + g(y)) where

f(y) := (1 +
1

r1
+

1

r2
− x)y, g(y) := −

( 1

r1
x̄y2 +

1

r2

)

,

and x̄ the complex conjugate of x. We have for |x| = 1, x 6= 1,

|f(y)| = |1 +
1

r1
+

1

r2
− x||y| >

( 1

r1
+

1

r2

)

|y|,

|g(y)| ≤
1

r1
|x̄||y|2 +

1

r2
=

1

r1
|y|2 +

1

r2
.
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Then, for all points y on |y| = 1 we have that

|g(y)| ≤
1

r1
+

1

r2
< |f(y)|, |y| = 1, |x| = 1, x 6= 1,

which implies by Rouché’s theorem (see e.g. Cohen [4], p. 652) that f(y) + g(y) (and
thus h1(x, y)) has as many zeros (counted according to there multiplicity) inside |y| = 1 as
f(y). Since f(y) has only one zero of multiplicity 1 at y = 0, we find that for every x with
|x| = 1, x 6= 1, h1(x, y) = 0 has one solution inside |y| = 1, i.e. y∗(x). �

From Lemma 8.2 it follows for r1 6= r2 and |x| = 1 that

[ d

dy
h1(x, y)

]

y=y∗(x)
6= 0, (8.6)

because otherwise y∗(x) would be of multiplicity 2. From the implicit function theorem we
then have that y∗(x) is differentiable for r1 6= r2 and |x| = 1. Differentiating h1(x, y∗(x)) = 0
at both sides then gives

[ d

dx
h1(x, y)

]

y=y∗(x)
+

d

dx
y∗(x)

[ d

dy
h1(x, y)

]

y=y∗(x)
= 0, (8.7)

and thus

d

dx
y∗(x) = −

[

d
dx

h1(x, y)
]

y=y∗(x)
[

d
dy

h1(x, y)
]

y=y∗(x)

. (8.8)

Consequently, differentiating (8.4) w.r.t. x and setting x = 1 gives

[ d

dx
P (x, 0)

]

x=1
=

−1

h2(1)

(

h′
2(1)P (1, 0) + h′

3(1)P (0, y∗(1)) + h′
4(1)P (0, 0)

+h3(1)
[ d

dx
y∗(x)

]

x=1

[ d

dy
P (0, y)

]

y=y∗(1)

)

. (8.9)

Again, since for r1 6= r2 it holds that y∗(1) < α, the value of [ d
dy

P (0, y)]y=y∗(1) can be
computed directly from (7.6), and P (0, 1) can be computed from (8.5) and (7.1). The approach
outlined in this section can also be applied to determine P (1, 0) and [ d

dx
P (x, 0)]x=1 in case

β < 1.

8.3 Evaluating the integrals

We will now describe how the involved integrals can be determined numerically. For boundary
value problem I, we have rewritten the integral (5.7) as (5.8). The integral (7.6) can be
rewritten in a similar way. We will evaluate the integrals (5.8) and (7.6) using the trapezium
rule, for which we split the interval [0, 2π] into K parts of equal length 2π/K. The fact
that the whole integrand including the mapping f(y) is known explicitly allows for a fine
subdivision. For the numerical results to be presented in the next section we have set K to
250.

For boundary value problem II, we should calculate the integrals (6.5) and (7.10). We will
now outline how these integrals can be computed, along with the numerical determination
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of the mapping g0(z) that was introduced in Section 6.1. For a more detailed exposition we
refer to Chapter IV.1 of [5].

Step 1: Rewriting the integrals (6.5) and (7.10)
Substitution of w = eiφ into (6.5) yields

P (x, 0) =
i

2π

∫ 2π

0
d(g0(e

iφ))
eiφ + g(x)

eiφ − g(x)
dφ + K2, x ∈ R ∪ R+. (8.10)

The integral (7.10) can be rewritten in a similar way, i.e.

d

dx
P (x, 0) =

i

π

∫ 2π

0
d(g0(e

iφ))
g′(x)eiφ

(eiφ − g(x))2
dφ, x ∈ R ∪ R+. (8.11)

Step 2: Numerical evaluation of the integrals (8.10) and (8.11)
We will evaluate the integrals (8.10) and (8.11) in x = 1 using the above rewriting and the
trapezium rule, for which we split the interval [0, 2π] into K parts of equal length 2π/K.
From (8.10) and (8.11) we then see that we need to determine the values of the conformal
mapping g0(·) in the points eiφk , k = 0, 1, . . . , K − 1, with φk = 2πk/K. We further need to
determine g(1) and g′(1).

Step 3: Solving Theodorsen’s integral equation (6.10)
For K points on the unit circle given by their angles {φ1, φ2, . . . , φK}, we should solve (6.10)
to obtain the corresponding points on R, given by their angles {θ(φ1), θ(φ2), . . . , θ(φK)}.
Thereto, we determine θ(φk), k = 0, 1, . . . , K − 1, iteratively (see Gaier [8], p. 67), from

θ0(φk) = φk, (8.12)

θn+1(φk) = φk −

∫ 2π

0
log{

δ(θn(ω))

cos(θn(ω))
} cot{

1

2
(ω − φk)}dω, (8.13)

where δ(θn(ω)) is determined from (see (6.8))

δ(θn(ω)) − cos θn(ω)
√

m(δ(θn(ω))) = 0, (8.14)

using the Newton-Raphson root-finding procedure. For each step, the integral in (8.13) is
numerically determined by again using the trapezium rule with K parts of equal length
2π/K. For the iteration, we have used the following stopping criterion:

max
k∈{0,...,K−1}

|θn+1(φk) − θn(φk)| < 10−6. (8.15)

Finally, it follows from ρ(φ) = δ(φ)/ cos φ that the value of g0(·) in eiφk is given by

g0(e
iφk) =

δ(θ(φk))

cos θ(φk)
eiθ(φk), k = 0, 1, . . . , K − 1. (8.16)

For the numerical results to be presented in the next section we have set K to 250.
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Step 4: Determination of g(1) and g′(1)
g(1) is obtained as the unique solution z of g0(z) = 1 on [0, 1], and can be determined using
(6.9) and Newton-Raphson. g′(1) is given by (see Boxma & Groenendijk [3])

g′(1) =
[ 1

g(1)
+

1

2π
exp[

1

2π

∫ 2π

0
log{

δ(θ(ω))

cos(θ(ω))
}

2eiω

(eiω − g(1))2
dω]

]−1
. (8.17)

We calculate g′(1) by numerically determining the integral (8.17) with the trapezium rule and
K set to 250.

9 Numerical results

In this section we present some numerical results. In Section 8 we have concluded that we
can determine the performance measures for the whole set of parameter values {λ, ν1, ν2, p}
for which the ergodicity condition (2.1) is satisfied. Moreover, as we have seen in Sections
8.1 and 8.2, part of this set allows for multiple ways to determine the performance measures.
Therefore, we explicitly mention that for all results presented in this section that could be
obtained in more than one way, we checked upon the different ways to generate the same
result (to at least two decimals).

Table 1: Performance measures for an average load incurred to the system.

λ ν1 ν2 p r1 r2 α β P (1, 0) P (0, 1) EX1 EX2

1 3 3 0.00 ∞ 0.33 - - 0.44 0.67 1.33 0.33
1 3 3 0.25 1.33 0.44 1.32 0.86 0.47 0.60 1.25 0.50
1 3 3 0.50 0.67 0.67 1.00 1.15 0.52 0.52 1.02 0.97
1 3 3 0.75 0.44 1.33 0.44 0.86 0.60 0.47 0.68 1.63
1 3 3 1.00 0.33 ∞ - - 0.67 0.44 0.50 2.00
1 6 2 0.00 ∞ 0.50 - - 0.50 0.50 1.25 0.50
1 6 2 0.25 0.67 0.67 1.00 1.15 0.61 0.43 0.76 1.16
1 6 2 0.50 0.33 1.00 0.46 1.00 0.73 0.40 0.38 1.67
1 6 2 0.75 0.22 2.00 0.17 0.70 0.80 0.39 0.26 1.83
1 6 2 1.00 0.17 ∞ - - 0.83 0.39 0.20 1.90
1 2 6 0.00 ∞ 0.17 - - 0.39 0.83 1.58 0.17
1 2 6 0.25 2.00 0.22 1.57 0.70 0.39 0.80 1.57 0.22
1 2 6 0.50 1.00 0.33 1.37 1.00 0.40 0.73 1.54 0.34
1 2 6 0.75 0.67 0.67 1.00 1.15 0.43 0.61 1.42 0.83
1 2 6 1.00 0.50 ∞ - - 0.50 0.50 1.00 2.50

Table 1 displays the performance measures for an average load incurred to the system.
The results for the limiting cases p = 0 and p = 1 are obtained with the solutions as given
in [13]. Obvious observations are that the fraction of time station one is busy, and the mean
queue length at station 1, both decrease for higher values of p, and vice versa for station 2.
Further note that EX1 + EX2 increases as a function of p. Table 2 displays the performance
measures for a high load incurred to the system, from which similar conclusions can be drawn.

For procedures that require two sequential stages, balancing either the mean queue length
or the mean workload might be of interest (see e.g. [1]). In Table 1 and 2 we see that the
difference in mean queue lengths at the two stations is highly influenced by p. As an example,
we have plotted in Fig. 5 both mean queue lengths for λ = 1, ν1 = 6, ν2 = 2, and p running
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Table 2: Performance measures for a high load incurred to the system.

λ ν1 ν2 p r1 r2 α β P (1, 0) P (0, 1) EX1 EX2

1.8 4 4 0.00 ∞ 0.45 - - 0.15 0.55 6.53 0.45
1.8 4 4 0.25 1.80 0.60 1.22 0.75 0.16 0.42 6.34 0.82
1.8 4 4 0.50 0.90 0.90 1.00 1.04 0.22 0.22 4.63 4.23
1.8 4 4 0.75 0.60 1.80 0.41 0.75 0.42 0.16 1.42 10.66
1.8 4 4 1.00 0.45 ∞ - - 0.55 0.15 0.82 11.86
1.8 6 3 0.00 ∞ 0.60 - - 0.16 0.40 6.60 0.60
1.8 6 3 0.25 1.20 0.80 1.09 0.90 0.20 0.23 5.78 1.83
1.8 6 3 0.50 0.60 1.20 0.60 0.90 0.45 0.15 1.31 8.53
1.8 6 3 0.75 0.40 2.40 0.23 0.65 0.61 0.13 0.64 9.54
1.8 6 3 1.00 0.30 ∞ - - 0.70 0.13 0.43 9.86
1.8 3 6 0.25 ∞ 0.30 - - 0.13 0.70 6.90 0.30
1.8 3 6 0.25 2.40 0.40 1.38 0.65 0.13 0.61 6.85 0.82
1.8 3 6 0.50 1.20 0.60 1.19 0.90 0.15 0.45 6.67 4.23
1.8 3 6 0.75 0.80 1.20 0.73 0.90 0.23 0.20 3.57 10.26
1.8 3 6 0.25 0.60 ∞ - - 0.40 0.16 1.50 16.38

from 0 to 1. The imbalance is minimal when EX1 = EX2, i.e. p ≈ 0.18. Observe that the
optimal value of p does not correspond to the solution of pν1 = (1 − p)ν2, which would be
0.25 in this case.
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Figure 5: Mean queue lengths for λ = 1, ν1 =
6, ν2 = 2, and p ∈ [0, 1].
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Figure 6: Mean workloads for λ = 1.8, ν1 =
3, ν2 = 6, and p ∈ [0, 1].

An example of the influence of p on the mean workloads 1
ν1

EX1 and 1
ν2

EX2 is given by
Fig. 6, which depicts the mean workloads for λ = 1.8, ν1 = 3, ν2 = 6, and p running from
0 to 1. We observe that the imbalance in workloads is minimal when 1

ν1
EX1 = 1

ν2
EX2, i.e.

p ≈ 0.72.
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