Symmetric Measures via Moments
Alexey Koloydenko†
April 6, 2004

Abstract: A finite $G \leq GL(m, \mathbb{R})$ fixes $\Omega \subset \mathbb{R}^m$ and induces its action on \mathcal{P}, the set of probability distributions on Ω. \mathcal{P}^G is the set of distributions invariant under this action. We consider models based on \mathcal{P}^G. Ignoring the invariance, a common approach to modeling $P \in \mathcal{P}$ is to progressively match its moments. Among all distributions with a requested match, one reasonable choice is P^0 that maximizes the entropy $H(P^0)$. Matching in the limit all the moments guarantees convergence to P if P is uniquely determined by its moments. We thereby generalize ordinary determinacy to determinacy within \mathcal{P}^G and prove sufficiency of G-invariant moments for the latter. Using generators of G-invariant polynomials, we also give several sufficient conditions for the generalized property to hold. For applications, we propose a sequential procedure with adaptive convergence toward P. The procedure combines with one’s favorite statistical model selection principle, and we present two such examples. We also describe a distribution of small subimages extracted from a large database of natural images, and compute generators for the relevant invariance. We discuss computations of G-invariant probability distributions. For example, concerned with computational efficiency, we lift the invariantsly constrained entropy maximization problem to an appropriate quotient space of “lower dimension”.

Keywords and phrases: Symmetric distributions, multivariate moments, fundamental invariants of finite groups, maximum entropy, invariant model selection, determinacy by moments.
AMS Subject Classification: 13A50, 62L12, 68U10, 60A10.

†Eurandom, P.O. Box 513 - 5600 MB Eindhoven, The Netherlands. Tel: +31(0)40.247.8113, +31(0)64.180.9703, Fax: +31(0)40.247.8190, email: koloidenko@eurandom.tue.nl