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1 Introduction

This work is about objects that, when acted upon, do not change, or stay invariant.
The notion of invariance is fundamental in many realms of human thought but we
specialize it here to a collection of mathematical objects that can represent data
observed in real experiments.

Our focus is probability distributions on Ω ⊂ R
m, where Ω is invariant under a

finite group G of nonsingular linear transformations. Within this class of distributions
we are most interested in ones that assign the same mass to all g-transforms (g ∈ G)
of every (measurable) set B ⊂ Ω. These are G-invariant distributions.

We set two goals for this work. The first one is to generalize the problem of unique
determinacy of (multivariate) measures by their moments in the following way:

In the ordinary formulation, one studies whether or not a measure with finite
(absolute) mixed moments, is uniquely determined by its mixed moments, or simply
determinate, [1], [2], [8], [11], [20], [21], [31], [35].

Several sufficient conditions for determinacy ([1], [2], [8], [11], [31]) and indetermi-
nacy ([31], [35]) are commonly known for measures on R or R

+. For determinacy of
measures on R

m, [8] generalizes some of those conditions and gives several new ones.
Now, we think of these (multivariate) measures in question as G-invariant where G
is the trivial group of the identity transformation. Action of a non-trivial G nar-
rows down the class of G-invariant measures under investigation. Hence, adapting
the standard conditions for determinacy, we expect to need only a subset of all the
moments in order to uniquely identify a G-invariant measure among all G-invariant
ones.

Toward this goal, §2 reviews basic notions of group action and associated invari-
ance, introduces G-invariant measures, and minimal sets of generators {f1, . . . , fN} of
the ring (algebra) of G-invariant polynomials in m indeterminates ([7], [9], [34], [36]).
We also introduce Reynolds operatorsR ([7], [9], [34], [36]) that average real functions
to make them G-invariant. Finally, we explain the sufficiency of f = (f1, . . . , fN ) to
represent any G-invariant function on R

m. Relevant proofs are given in Appendix A.
We continue in §3 by defining G-invariant moments and formulating the notion
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of determinacy of G-invariant measures by their G-invariant moments. Paralleling
the main results of [8] obtained for the case of ordinary determinacy, we state several
sufficient conditions for determinacy of G-invariant measures by their G-invariant
moments. These include the Extended Carleman Theorem for G-invariant moments,
and some integral conditions based on quasi-analytic weights (§3.1). All of these re-
sults rely on the one-to-one correspondence between the invariant measures on R

m and
measures on R

N established via an extension of the multinomial map f = (f1, . . . , fN)
(Lemma 20). Auxiliary proofs are deferred till Appendix B.

We acknowledge that to a certain extent, symmetry has already been studied in
connection with the problem of moments. Thus, for instance, [21] studies the ex-
istence and uniqueness of symmetric measures on R with given moments. Also, [8]
generalizes this case and studies determinacy of multivariate measures supported in
the positive cone (“C-determinacy”). In one dimension, the correspondence between
symmetric measures and measures on the nonnegative half-line is rather obvious and
well-known [11]. Apparently, this correspondence generalizes easily to the multi-
variate setting (proof of Theorem 5.1 of [8] and Example 1), also illustrating the
significance of our Lemma 20. The symmetry with respect to the continuous group
of all the rotations on R

m is discussed, for example, in [1], [2]. In this case all of the
invariant functions are “generated” by a single invariant polynomial

∑m
i=1 x

2
i , which

is a maximal invariant in the language of equivariance theory. We, however, focus
on finite subgroups of GL(m,R). Finally, note the difference between our theme and
the related notion of equivariance in statistics [27], [33]. In the latter case it is entire
(parametric) families of distributions and not individual measures that are fixed un-
der groups of transformations. Also, the relevant groups in the equivariance theory
are continuous. However, there appear not so many interesting examples (besides
the aforementioned one with the rotational symmetry) of finite measures individually
fixed by an infinite subgroup of GL(m,R).

Our second goal is to develop a framework for model selection in the presence of
the above types of invariance. The main motivation comes from modeling distribu-
tions of very small square subimages of digitized natural images [15], [24], [26], [32].
§7 describes the particular state space Ω, the symmetry group G acting on Ω, a mini-
mal set of generators of the corresponding G-invariant polynomials, and several other
relevant details of the studies undertaken in [24]. Thus, §7 illuminates most of the
concepts developed in this work, and proofs of the results from this section are given
in Appendices D and E.

The framework that we propose is based on the constrained Entropy Maximization
Principle ([4], [6], [20], [25], [28], [38], [41]). Recall that according with this principle,
the knowledge of the distribution to be modeled is formulated by a finite set of con-
sistent constraints of the form EP ′φ(X) = νφ. Among all distributions P ′ that satisfy
the constraints, one chooses P ′ that maximizes the entropy H(P ) that represents
mathematically our intuitive notion of distributional uncertainty. Equivalently, such
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P ′ maximizes the likelihood under the exponential family of distributions for which
φ’s are a sufficient statistics.

We work with moment constraints, i.e. φ(X) = Xα, α ∈ A ⊂ N
N , considering

sequences of maximum entropy problems with expanding A’s. Unlike in the related
works of [16], [20], [29], [37] on maximum entropy problems with moment constraints,
our moment matching, or pursuit, is multidimensional, adaptive, and G-invariant.
Adaptiveness (also see below) here refers to a certain optimality in the sequential
expansion of A’s, and is meant to accelerate the approximation of the modeled dis-
tribution. The connection with the notion of determinacy is that a determinate P
can be approximated arbitrarily well by progressively matching all its moments. The
one-dimensional version of the latter result was already successfully used for density
estimation in, for example, solid state and quantum physics [29] and econometrics
[16], [37].

We take advantage of a key observation that entropy maximization forces the
resulting distributions to inherit G-invariance of the constraining functions (proof of
Theorem 26).

Although for us the pivotal case is that of Ω finite, §5, in §4 we nonetheless lay a
foundation for a more general sequential reconstruction of a G-invariant distribution
by G-invariant moment pursuit (Theorem 24). We also touch on the continuous case
(Theorem 26) for completeness of the presentation. We term our modeling approach
“Adaptive minimax learning” in recognition of its origin in texture modeling [39],
[40], [41]. Minimax learning of an unknown distribution P refers to an incremen-
tal model construction, in which at each step l the entropy maximization problem
is solved with one new constraint added at a time. In the original formulation, the
l-th constraint is chosen to minimize the Kullback-Leibler divergence of the candidate
maximum entropy distribution (with l constraints) from the target distribution.

However, this formulation stops short of balancing model fit and model complex-
ity, which is the main task of model selection. In response to this, we discuss in §5.1
a simple ad hoc way to prevent overfitting within the original formulation. In §5.2,
we explain that our adaptive minimax learning allows one to replace the Kullback-
Leibler divergence with a more suitable cost function of their own choice, such as, for
example, description length [18]. In §8 we summarize the main features of our mod-
eling framework as minimax learning, incorporation of multivariate moments, and
incorporation of G-invariance.

In §6 we discuss several computational issues of our modeling, such as computa-
tion of G-invariant polynomial generators, Reynolds operators, and the partition SΩ

(§6.2). §6.3 is dedicated to a computational result (Theorem 36 and Corollary 37)
on dimensionality reduction in the entropy maximization problem with constraints
that have nontrivial finite constancy classes. §6.4 discusses efficient computations of
additional terms for the minimax learning algorithm. In §8 we also discuss directions
for future work that include model selection experiments based on real data pertinent
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to our example in §7.

2 Group action, invariance, polynomial generators

In this section we review several notions from algebra and introduce relevant notation.

Definition 1 A group action of a group G on a set A is a map from G × A to A
(written as ga, for all g ∈ G and a ∈ Ω) satisfying the following properties ([10]):

1.) g1(g2a) = (g1g2)a, for all g1, g2 ∈ G, a ∈ A, and

2.) 1a = a, for all a ∈ A.

Definition 2 Let G act on A and let a ∈ A. a is said to be fixed under G, or G-
invariant, if ga = a ∀g ∈ G. B ⊂ A is said to be fixed under G, or G-invariant, if
∀b ∈ B ∀g ∈ G gb ∈ B.

We will also use the following observations that show how the original G action on A
induces G actions on objects from various categories involving A:

Proposition 3

1.) Let B ⊂ A be fixed under G. Then the restriction of the original G action on A
is a well-defined G action on B.

2.) The following defines a G action on R
A, the set of all real valued functions on A:

(gf)(a) = f(g−1a), where g ∈ G and f ∈ R
A and a ∈ A. (1)

3.) The following defines a G action on PA, the power set of A:

gB = {gb : ω ∈ B} for B ⊂ A. (2)

Let a finite group G act on W = R
m in a way that admits a linear (matrix) repre-

sentation ρ : G ↪→ GL(W ) (∼= GL(m,R)). We will simply identify the original action
of G on W with its matrix representation, ρ and will therefore think of g ∈ G as an
m×m matrix.

Instantiating Proposition 3, we introduce the following G actions:

Proposition 4 The following actions are well-defined.

1.) The (restricted) action of G on an invariant Ω ⊂ W .

2.) The G action on B, the Borel σ-algebra on Ω:

gB = {gω : ω ∈ B}. (3)
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3.) The G action on M, the set of (positive) measures on B:

(gP )(B) = P (g−1B), B ∈ B, P ∈M. (4)

4.) The G action on R[W ], the set of real polynomials in m indeterminates:

(gf)(v) = f(g−1v), where g ∈ G and f ∈ R[W ] and v ∈ W. (5)

Proposition 5 Any group action partitions the set on which it acts.

Definition 6 Let SΩ = Ω/G be the set of equivalence classes (also called orbits) of
the given G action on Ω.

Proposition 7 For any Ω1 ⊂ Ω2, two invariant subsets of W , SΩ1 ⊂ SΩ2.

We will also need the following sets of invariant measures on B:

Definition 8

MG = {P ∈M : gP = P ∀g ∈ G} and MG
∗ =MG ∩M∗,

where

M∗ = {P ∈M : EP |X
α| <∞ α ∈ N

m}, and X = (X1, . . . , Xm).

The multiindex notation fα for f ∈ R
N and α ∈ N

N means fα11 · · · fαNN , thus: Xα =
Xα1

1 · · ·Xαm
m . We also extend the expectation notation EP to all P ∈M.

Proposition 9
M∗ = {P ∈M : EP‖X‖

d <∞ ∀d ≥ 0}

Other useful invariant objects include:

1. PG, the set of invariant probability measures on Ω.

2. (RΩ)G, the set of invariant real functions on Ω.

3. BG, the σ-algebra of invariant Borel sets.

4. R[W ]G (alternatively R[x]G), the ring of invariant polynomials on W (3 x).

The following operator projects R
Ω, the linear space of real functions on Ω, onto

(RΩ)G, the linear subspace of G-invariant real functions on Ω, and plays a key role in
the ensuing development (see also §A):

R(f) =
1

|G|

∑

g∈G

gf. (6)

We will also be interested in the restricted operator R : R[W ]→ R[W ]G, and in the
adjoint R∗ :M→MG:

R∗(P ) =
1

|G|

∑

g∈G

gP (7)
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Proposition 10 Consider R mapping the space of measurable functions on W onto
(RW )G and the linear functionals f 7→

∫

W
f(x)dP (x) indexed by P ∈ M. Then R

and R∗ are adjoint.

Proposition 11

1.) Let P ∈M have a density p relative to some reference measure µ. Then R(p) is
a density of R∗(P ) relative to µ.

2.) Let p be a density of a G-invariant measure P relative to µ, then p is µ-a.e.
G-invariant.

Our main ingredients are invariant polynomials from R[W ]G and their special repre-
sentatives that generate the entire ring:

Definition 12 Polynomials f1, . . . , fN from R[W ]G are said to generate R[W ]G if
any f ∈ R[W ]G can be expressed as a polynomial in terms of f1, . . . , fN . We will also
refer to such f1, . . . , fN as generators.

Definition 13 Let f1, . . . , fN generate R[W ]G. We call f1, . . . , fN a minimal system
of generators if none of the generators can be expressed as a polynomial in terms of
the others. In this case, we will also refer to such f1, . . . , fN as fundamental integral
invariants.

The fact that there always exists a finite system of such generators was proved by
Hilbert for polynomials with coefficients from fields of characteristic zero (e.g. R),
and later extended for certain fields of positive characteristic by Noether ([13], [34]).

Remark 14 Let C[W ]G be the ring (also, a complex algebra) of G-invariant poly-
nomials with complex coefficients. Then note that for any r(x) ∈ C[W ]G, Re(r(x)),
Im(r(x)) ∈ R[W ]G since the complex conjugation on C[W ] commutes with the G
action on C[W ].

The next well-known fact is also fundamental for our discussion and follows from
more general results in Invariant Theory [7], [30], [34], [36]. In §A we give a short,
basic proof of this result.

Proposition 15 Let f1, . . . , fN generate R[W ]G and let f = (f1, . . . , fN ) : W → R
N .

Then the map f̄ : SW → R
N mapping [w], the equivalence class of w ∈ W , to f(w),

is well-defined and injective. Thus SW ∼= f(W ), the image of f in R
N .

Example 1 Let G ∼= Z
m
2 be the group of order 2m generated by the component-wise

sign inversions. As a matrix group, G is generated by m matrices whose all off-
diagonal entries equal 0, and all but one diagonal entries equal to 1. The k-th matrix
has its k-th diagonal entry equal to −1. It can be shown that {fi = x2i , i = 1, . . . ,m}
is a minimal set of generators of R[W ]G. [w], the equivalence class of w ∈ W ,
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is the smallest set containing w and symmetric with respect to reflections about all
hyperplanes xi = 0 i = 1, . . . ,m. The size of [w] is 2l, where l is the number of
nonzero components of w, which also stays invariant under the transformations in G.

In particular, in one dimension this is simply the symmetry around 0. Also, if
such an invariant measure has a density, then the density must be an even function,
i.e. function of x2.

3 Invariant Moments, Determinacy of Invariant Measures

The problem of moments is whether a measure exists with prescribed moments and
if so, whether it is unique within the class of all measures with finite moments. We
are going to generalize the latter question to include situations when measures are to
be determined within special subclasses of the original class and by, one would then
expect, “fewer” moments. In particular, we are introducing the notion of determi-
nacy of G-invariant measures by “G-invariant moments”. Our notation intentionally
resembles that from [1] and [8].

Let f1, . . . , fN be a minimal set of generators. Let P ∈M, and let α ∈ N
N be the

degree multi index.

Definition 16 Given the f generators, we call EPf
α =

∫

W
fαdP (x) the mixed G-

invariant moment of order α, or, invariant α-moment and denote it by sα(P ).

Let us also denote by s(P ) the set of all such moments (sα(P ))α∈NN for a given
measure P . When the measure P is clear from the context, we will overload the
notation sn(k) = EPf

k
n for k ∈ N and 1 ≤ n ≤ N .

Proposition 17 Let f1, . . . , fN be a minimal generating set. Then MG
∗ = {P ∈

MG : EP |f
α| <∞ α ∈ N

N}.

Definition 18 Let P ∈ MG
∗ have s(P ), its G-invariant moments, relative to some

minimal generating set. Then P is said to be G-determinate by s(P ), or simply G-
determinate, if no other measure in MG

∗ has the same set of moments s(P ) relative
to the chosen generating set.

In §B we prove that this notion is well-defined, i.e. independent of the choice of the
generators.

We next give a generalized version of the extended Carleman theorem (§C, [8]):

Theorem 19 (Extended Carleman theorem for G-invariant measures). Let f1, . . . , fN
be some minimal set of generators. Let P ∈ MG

∗ and assume that for each n =
1, . . . , N , {sn(k)}

∞
k=1 satisfies Carleman’s condition

∞∑

k=1

1

sn(2k)1/2k
=∞, (8)
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then P is determinate by G-invariant moments. Also, C[W ]G and SpanC{e
i(λ,f)|λ ∈

S} are dense in LGp (W,P ), the G-invariant subspace of complex Lp(W,P ), for 1 ≤

p <∞ and for every S ∈ R
N which is somewhere dense (i.e. S̄, the closure of S, has

a nonempty interior).

Proof. The proof of the first statement takes two steps. First, notice that the map
f = (f1, . . . , fN ) : W → R

N as in Proposition 15 induces an injection f̃ of MG
∗

to M̃∗, the set of probability measures on R
N with finite mixed absolute moments

(E|Xα| <∞ ∀α ∈ N
N) via f̃(P )(B) = P (f−1(B)) for any B ∈ B(RN).

Lemma 20 The map f̃ : MG → M̃ is one-to-one.

Second, suppose P , Q ∈MG
∗ , P 6= Q, and s(P ) = s(Q) that satisfy (8), the conditions

of the Theorem. By Lemma 20, f̃(P ) 6= f̃(Q), and by definition the latter measures
have all their mixed (ordinary N -dimensional) moments identical and satisfying the
conditions of the extended Carleman theorem (§C). (Note that the definition of M∗

in [8] and Definition 8 are equivalent by Proposition 9.) Thus, according to that

theorem, f̃(P ) is determinate, i.e. f̃(P ) = f̃(Q), which contradicts our previous
observation.

The proof of the denseness results closely parallels that of Theorem 2.3 of [8] (§C):
Let 1 ≤ p <∞ be fixed and let h ∈ LGq (W,P ), where 1/q + 1/p = 1, and such that

∫

W

r(x)h(x)dP (x) = 0 (9)

∀r ∈ C[W ]G. In order to prove that h = 0 P -a.s., we first note that due to G-

invariance of h combined with Proposition 15, there exists h̃ : R
N → C such that

h = h̃(f). Next, following [8], we perform the following Fourier-like transform:

ξ̂h(λ) =

∫

W

ei(λ,f(x))h(x)dP (x) =

∫

RN
ei(λ,y)h̃(y)d[f̃(P )](y), (10)

resulting in a smooth function on R
N . All derivatives of this function vanish at

0 ∈ R
N since (9) implies

∫

RN
yαh̃(y)d[f̃(P )](y) = 0, ∀α ∈ N

N .

From this point, the corresponding part of the proof in [8] applies to conclude that
under the hypotheses of the present Theorem, and based on Theorem 2.1 of [8] (see

§C), ξ̂h(λ) is identically 0. This in turn implies that h̃ = 0 f̃(P )-a.s., which finally
implies that h = 0 P -a.s.

The denseness of SpanC{e
i(λ,f)|λ ∈ S} can be proved by a similar chain of argu-

ments, replacing λ in the right-hand side of (10) by λ + a, where a ∈ Interior(S̄).
¦
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Example 1 continued.
LetMC be the set of positive Borel measures with supports in C = {(w1, . . . , wm) ∈
R
m : wi ≥ 0, i = 1, . . . ,m}, the positive cone relative to the standard basis, and let
MC

∗ = M∗ ∩M
C . Then Lemma 20 applies to show MG ∼= MC , and MG

∗
∼= MC

∗

f̃(MG) =MC , and f̃(MG
∗ ) =M

C
∗ .

3.1 Integral criteria for G-invariant determinacy

In [8], it is argued that integral criteria for determinacy are more convenient in practice
than series conditions such as Carleman’s conditions, and the notion of quasi-analytic
weights is introduced in order to formulate suitable integral conditions. Thus, follow-
ing [8]:

Definition 21 A quasi-analytic weight on W is a bounded nonnegative function w :
W → R such that

∞∑

k=1

1

||(vj, x)kw(x)||
1/k
∞

=∞

for j = 1, . . . ,m and v1, . . . , vm, some basis for W .

We next provide simple generalizations of Theorems 4.1 and 4.2 of [8] (§C) that
provide sufficient integral conditions for determinacy by invariant moments. We omit
proofs of these results since they are straightforward analogs of their prototypes in
[8] and are based on the same “change of variable” argument that we used to prove
Theorem 19.

Theorem 22 Let P ∈MG
∗ be such that

∫

W

w(f(x))−1dP <∞

for some measurable quasi-analytic weight on R
N . Then P is determinate by its

G-invariant moments. Furthermore, C[W ]G and SpanC{e
i(λ,f)|λ ∈ S} are dense in

(complex) LGp (W,P ), for 1 ≤ p < ∞ and for every S ⊂ R
N which is somewhere

dense.

Following [8], we point out that due to the rapidly-decreasing behavior of w, the
premise of the Theorem implies that P is necessarily in MG

∗ .

Theorem 23 For j = 1, . . . , N , let Rj > 0 and let a non-decreasing function ρj :
(Rj,∞)→ R

+ of class C1 be such that

∫ ∞

Rj

ρj(s)

s2
ds =∞.
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Define hj : R → R
+ by

hj(x) =

{

exp
(∫ |x|

Rj

ρj(s)

s
ds
)

for |x| > Rj

1 for |x| ≤ Rj.

Let A be an affine automorphism of R
N . If P is a positive Borel measure on W such

that
∫

W

N∏

j=1

hj((Af(x))j)dP (x) <∞,

then P is determinate by its G-invariant moments. Also, C[W ]G and SpanC{e
i(λ,f)|λ ∈

S} are dense in (complex) LGp (W,P ), for 1 ≤ p <∞ and for every S ∈ R
N which is

somewhere dense.

We conclude this part by pointing out that other integral criteria discussed in [8] also
have their G-invariant formulations similar to the above ones. Thus, for example,
Theorem 4.3 of [8] provides a significantly weakened version of the following classical
condition for determinacy:

∫

W

exp(||x||)dP (x) <∞

Both, the classical condition and its weakened versions due to [8], easily incorpo-
rate the G-invariant case by the appropriate adjustment of the radial integrands via:
||x|| 7→ ||f(x)||.

4 Sequential G-invariant modeling

From now on we specialize our discussion to probability measures P . The following
result lays a foundation for modeling invariant distributions via (invariant) moment
constraints.

Theorem 24 Let a sequence of G-invariant probability measures {Pl}
∞
l=1 ⊂ PG be

such that
∀α ∈ N

N lim
l→∞

EPlf
α = sα. (11)

Assume that there can exist at most one G-invariant P with such sα. Then, such P
indeed exists and Pl ⇒ P .

Note that such P would necessarily be in MG
∗ .

Proof. Clearly ([12]), (11) implies that the m families of marginals of Pl’s are indi-

vidually tight, which immediately implies that the family {Pl}
∞
l=1 is itself tight, and

therefore ([3]) contains a weakly convergent subsequence. Since every subsequential
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limit must also be G-invariant and have the same moments sα, all such limits must be
equal to each other by the uniqueness hypothesis of the Theorem. We take P to be
the common value of those limits and finish the proof by invoking the well-known fact
[3] that a tight sequence whose all (weak) subsequential limits are equal, converges
weakly to that common measure. ¦

We next introduce notation to describe G-invariant models based on the Entropy
Maximization Principle (§1). Let a probability measure P be absolutely continu-
ous with respect to some positive σ-finite reference measure µ, P ¿ µ, and let p
be a density dP/dµ. Let Hµ(P ) = −

∫

W
p(x) log p(x)dµ(x) be the entropy of P rel-

ative to µ (for P discrete, a natural choice for µ is the counting measure on Ω,
the support of P : H(P ) = −

∑

Ω p(x) log p(x) (the Shannon’s entropy), and for P
continuous - the Lebesgue measure on Ω: H(P ) = −

∫

Ω
p(x) log p(x)dx). In the ab-

sence of ambiguity, we will suppress the reference measure in the subscript. Thus,
let D(P‖Q) =

∫

W
p(x) log(p(x)/q(x))dµ(x) stand for the Kullback-Leibler divergence

between two probability measures P and Q with densities p and q relative to µ.

Proposition 25 Let P have a density p relative to µ. Then

0 ≤ H(P ) ≤ H(R∗(P )) ≤ H(P ) + log |G|.

The equality in place of the second inequality occurs if and only if P is G-invariant.

Let F be a finite set of (measurable) real-valued functions on (G-invariant) Ω, and
{νφ ∈ R}φ∈F . Let

PF ,ν = arg max
P ′:E

P ′φ=νφ
∀φ∈F

H(P ′), (12)

a maximum entropy distribution relative to the above constraints. Since we are going
to work with (invariant) moment constraints (on P ′) of the form EP ′f

α = EPf
α; α ∈

A ⊂ N
N , for some fixed measure P , we will write PA for the maximum entropy

distribution in such cases.

Theorem 26 Let P be a probability measure on W supported on G-invariant Ω and
having a density relative to some µ. Assume that Hµ(P ) < ∞ and that R∗(P ) is
G-determinate. (Note that G-invariance of Ω implies that R∗(P ) is also a probability
measure on Ω.) Let f1, . . . , fN be a minimal generating set for R[W ]G. Let A1 ⊂
A2 ⊂ . . . be such that ∪∞l=1Al = N

N and that the corresponding maximum entropy
problems (12) with νfα = EPf

α α ∈ Al have solutions Pl = PAl. Then Pl ⇒ R∗(P ).

Proof. First, note that for any (measurable)G-invariant function φ, EPφ = EPR(φ) =
ER∗(P )φ (Proposition 10). Second, note that if Pl exists, then it is necessarily G-
invariant (Proposition 25). This can also be seen from the exponential form of pl(x),
the density of the maximum entropy distribution:

pl(x) = exp

(
∑

α∈Al

λαf
α(x)− ψ(λ)

)

(13)
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ψ(λ) = log

∫

Ω

exp

(
∑

α∈Al

λαf
α(x)

)

dµ(x) (14)

λ = (λα1 , . . . , λα|Al|) : EPlf
α = EPf

α; α ∈ Al (15)

Finally, Theorem 24 applies to finish the proof. ¦

The above Theorem in its present form is too abstract to be immediately applied in
practice. In general, the existence of a solution to the maximum entropy problem
cannot be taken for granted as can be seen from the following well-known example
[4], [6], [20]: There is no solution to the maximum entropy problem on R constraining
only the mean. However, constraining additionally the second moment gives a unique
maximum entropy distribution that is the normal distribution with the given first two
moments. Thus, in order to produce feasible sets Al as above, one may need to make
more assumptions. For example, one sufficient condition for the well-posedness of the
maximum entropy problems with moment constraints is given in [20] for Ω open but
otherwise arbitrary. Using our notation, let Λ(Al) = {λ ∈ R

|Al| : ψ(λ) <∞}, where
ψ(λ) is as in (14) and the reference measure is the Lebesgue one. The condition then
is that Λ(Al) be open, i.e. Λ(Al) ∩ ∂Λ(Al) = ∅. Also, it is often a mild restriction
in practice to assume compactness of Ω. In this case, first of all, the conclusion of
Theorem 24 always holds (provided that {Pl}

∞
l=1 are all supported on the same Ω)

due to the uniform approximation of compactly-supported continuous functions by
polynomials. Secondly, it can be seen that if one additionally required that pG, the
density of R∗(P ) with respect to the Lebesgue measure on Ω, be non-zero almost
everywhere on Ω and have finite entropy, then all subsets A ∈ N

N would give rise to
well-posed maximum entropy problems with exponential solutions (13).

Alternatively, it is noted and used in [37] that all empirical distributions P̂ on [0, 1]
give rise to well-posed maximum entropy problems with constraints on any set of first
J moments (in order to keep all such constraints active, the sample data may not
be identically equal to 1). Based on the multidimensional version of the Hausdorff’s
moment problem (see, for example, [23]) it appears that these latter one-dimensional
results (Theorem 1 of [29] and Lemma 1 of [37]) also generalize to higher dimensions,
in which case Theorem 28 below generalizes appropriately to include the case of
empirical moment constraints. However, since in practice the use of the computer
requires discretization of Ω, we leave aside the discussion of the well-posedness of the
maximum entropy problem in the continuous case. Also, in our motivating example
(§7) Ω is finite, and we therefore focus on this case in §5.

We next present a modification of Theorem 26 on accelerated convergence toward
the target distribution. For completeness, we present the continuous version of this
result before an appropriate algorithm for the finite case. We need the following
notation: Let ≺ be a total well-ordering of N

N such that α, β, γ ∈ N
N and α ≺ β

imply α + γ ≺ β + γ ([7]).
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Definition 27 A monomial ordering on {fα}α∈NN is any relation ≺ on N
N as above.

For α ∈ N
N and for A ⊂ N

N define also

d≺(α, β) = |{γ ∈ N
N : min≺(α, β) < γ ≤ max≺(α, β)}|,

d≺(α,A) = min
β∈A

d≺(α, β),

a discrete distance relative to ≺. Let r be a positive integer parameter.

Theorem 28 Let P be a probability measure supported on compact and G-invariant
Ω. Assume p is a density of P relative to some µ and that Hµ(P ) < ∞ and pG > 0
(µ-) almost everywhere on Ω. Fix a monomial ordering ≺ (Definition 27), and let
0 = (0, . . . , 0) ∈ N

N . Define Pl = PAl in accordance with (12) and the scheme below:

A1 = {α∗1} where α∗1 = arg min
α:d≺(α,0)≤r

D(P‖P{α})

Al = Al−1 ∪ {α
∗
l } for l = 2, . . . , where α∗l = arg min

α:d≺(α,Al−1)≤r
D(P‖PAl−1∪{α}).

Then Pl ⇒ R∗(P ).

Proof. Based on the above discussion of well-posedness of the maximum entropy
problem, the conditions of the Theorem guarantee the existence and uniqueness of
maximum entropy distributions for all finite subsets A and in particular for Al, l =
1, 2, . . . as above. (The optimization of D is over a finite set, and hence α∗l is always
well-defined.) Compactness of Ω results in G-determinacy of R∗(P ), and application
of Theorem 26 completes the proof. ¦

Remark 29 If P 6= R∗(P ), D(P‖Q) need not in general equal D(R∗(P )‖Q) even if
Q = R∗(Q). However, one should not worry about replacing the target distribution P
by its symmetrized version thanks to the additivity of D on nested exponential models
M0 ⊂M1 ⊂M2: D(P2|P0) = D(P2|P1) +D(P1|P0), which in our case gives:

D(P‖PA) = D(P‖R∗(P )) +D(R∗(P )‖PA). (16)

Hence, minimizing D(P‖PAl−1∪{α}) is equivalent to minimizing D(R∗(P )‖PAl−1∪{α}).

5 Adaptive minimax learning of symmetric distributions

We now specialize this modeling scheme to Ω finite, which is often the case in practice.
Fix an enumeration k(·) : Ω = {ω1, . . . , ωK} → ZK . Relative to this enumeration,

identify fα with (fα(ω1), . . . , f
α(ωK)) ∈ (RΩ)G.

Proposition 30 Let M = |SΩ|. There exist α1, . . . , αM ∈ N
N such that {fαk}Mk=1 is

a basis for (RΩ)G.
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Proof. Clearly, (RΩ)G has a basis in terms of G-invariant polynomials. One such
basis, for example, is given by {IO}O∈SΩ , the set of all the orbit indicators computed
as follows:

IO(x) =
h̃(x)

f̄(O)
, where (17)

h̃O(x) =
∏

O′∈SΩ
O′ 6=O

m∑

i=1

[
fi(x)− f̄i(O

′)
]2
,

and f̄([w]) = f(w) [w] ∈ SΩ (Proposition 15). Since IO(x) ∈ R[W ]G and M < ∞,

then the set of all fα(x)’s participating in polynomial expansions of h̃O is finite. Evi-
dently the corresponding set of K-dimensional vectors fα spans (RΩ)G and therefore
contains a sought basis with M elements. ¦

We introduce more notation:

Definition 31 Let A ⊂ N
N and d ∈ N and ≺ be a monomial order.

B≺(A, d) = {α ∈ N
N : d≺(A,α) ≤ d}, B⊥≺(A, d) = {α ∈ B≺(A, d) : α ⊥ A},

C⊥≺(A, r) = ∩d∈N: |B⊥≺(A,d)|≥rB
⊥
≺(A, d), C∗≺(A, r) = ∪0<r′≤rC

⊥
≺(A, r

′),

where for A ⊂ N
N and β ∈ N

N we write β ⊥ A if {fα}A∪{β} is a linearly independent
system.

Adaptive minimax learning of symmetric distributions

A0 = {0}, Al = Al−1 ∪ {α
∗
l } for l = 1, 2, . . . ,

where α∗l = arg min
α:C∗≺(Al−1,r)

D(P‖PAl−1∪{α}). (18)

Then PM−1 = R
∗(P ).

Remark 32

1.) P0 can be included above as the uniform distribution on Ω: it maximizes the
entropy without constraints.

2.) Suppose that P is an empirical distribution based on an i.i.d. sample. It can then
be easily verified ([24]) that Pl gives the maximum likelihood estimate (of the data
generating distribution) relative to the parametric family (13) (parametrized by
λ). In particular, R∗(P ) gives the maximum likelihood estimate relative to PG.

3.) At each step l = 1, 2, . . . ,M − 1 the procedure “explores” upto r new dimensions
each of which is linearly independent of Span{fα : α ∈ Al}, the span of the current
model “factors”. A dimension that promises a fastest approach toward R∗(P ) (or,
equivalently, toward P ), is chosen and the current model is augmented accordingly
(ties being broken arbitrarily).
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4.) Let Dl = D(P‖Pl), and Hl = H(Pl), for l = 0, . . . ,M − 1. It can be easily
seen that {Dl} and {Hl} are strictly decreasing and DM−1 = D(P‖R∗(P )) and
HM−1 = H(R∗(P )). Clearly, if α 6⊥ Al, then Dl = D(P‖PAl∪{α}), i.e. adding a
linearly dependent factor does not change the model and is therefore avoided by
the minimization phase of the procedure.

Even if R∗(P ) is accepted as a working model of P , the utility of the above procedure
would still be limited to simply finding pG(f(x)), an analytic form for R(p). In fact,
computing and working with R(p) (see §6.2) as the K-dimensional vector may also be
acceptable depending on the application. Next, we explain how the ideas of adaptive
minimax learning can combine with a variety of automated model selection schemes,
which we view as the main application of our work.

Model selection is about balancing between fitting the data well and keeping the
complexity of the model low. There are several criteria addressing this problem, and,
for example, the Minimal Description Length Principle [18] appears to suite well our
context. In short, many model selection principles including the MDL one, can be
viewed as a minimization of a cost function C that balances the two penalties, namely
for deficiency and for excess of fit. We now reexamine and generalize our “Adaptive
minimax learning” with a view toward model selection.

5.1 Present approach based on D

In its present form, our “Adaptive minimax learning” is essentially a variation of
the minimax learning [39], [40], [41] originally introduced for texture modeling. This
latter principle considers image filter banks (in our notation, sets F of constraints φ),
each corresponding to its maximum entropy model (maximization step). One then
measures the Kullback-Leibler distance D from the empirical, or target, distribution
to each of such maximum entropy models, and the model with the minimum distance
is selected. In practice one fixes a very large but finite pool of filters to consider, and
the cardinality of F . Since |F| equals the number of model parameters, it can be
thought of as a measure of model complexity that must be set in advance.

Based on our “Adaptive minimax learning”, we propose a model selection that
selects efficiently pGAl , a suboptimal model within the class of the G-invariant ones,
declaring it our best G-invariant approximation to the target P . Specifically, we
propose to halt the model construction algorithm at step l as soon asD(R∗(P )‖PG

Al
) ≤

D(P‖R∗(P )), or, equivalently, D(P‖PG
Al
) ≤ 2 ∗D(P‖R∗(P )).

We then propose to repeat the same minimax learning procedure using ordinary
moments instead of G-invariant ones, and stopping at l. We then choose between PA′

l

and PG
Al
, the resulting generic and G-invariant models, respectively,based on their fit

only: D(P‖PA′
l
) ≷ D(P‖PG

Al
).
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5.2 General approach based on cost C

The choice of D(P‖·) in the minimization step of the above procedure is not the
only one possible. In fact, it is precisely for that reason that D always drives the
model selection toward the extreme fit, that we had to introduce an ad hoc stopping
rule in §5.1 to prevent the overfitting. Suppose one employs a cost function C that
favors neither extreme. For example, C could be a description length as in MDL
[18]. One then modifies the adaptive minimax learning by using C instead of D in
the minimization step, and terminating the model construction once C cannot be
minimized further. Again, if one wants “to test” appropriateness of the G-invariance,
one can repeat the construction with the ordinary moments in order to see if C can
be further reduced outside the G-invariant class.

Clearly, this framework as well as the one of §5.1 applies to other situations, where
f need no longer be generators of invariant polynomials.

6 Computational issues

6.1 Computing minimal generating sets

In Appendix E we compute f “by hand” for our example in §7. However, algorithms
exist to compute such generating sets in a systematic fashion (see, for example, [9], [34]
and [36]) and there are also computer algebra tools implementing those algorithms:
Gap [14], INVAR [22], Macaulay2 [17], Magma [5], to name a few.

6.2 Computing R and SΩ

The operator defined in (6) and used throughout this work admits a natural decom-
position

R = π2 ◦ π1, (19)

where π1 : R
Ω → R

SΩ surjectively and π2 : R
SΩ → R

Ω injectively as follows:

(π1(h))(O) =
1

√

|O|

∑

ω∈O

h(ω) (20)

(π2(h̃))(ω) =
1

√

|[ω]|
h̃([ω]). (21)

Simply speaking, this operator averages a function h over the G-invariant orbits, in
particular it computes the maximum likelihood estimate relative to PG based on an
i.i.d. sample (Remark 32). Thus, to implement this averaging with the computer, one
needs to index the orbits of SΩ. We briefly comment on two types of such indexings.
The first type is based on a naive generation-elimination via ρ : G ↪→ GL(W ), the
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matrix representation of G (for a concrete example, see (31)). Below is a sketch of a
naive algorithm that computes χ : ZK → ZM , (M = |SΩ|), an orbit indexing map,
assuming some ordering k(·) of Ω (§5):

χ(m)⇐ 1, m = 1, . . . , K
l = 0, m = 0
R = {m′ : m < m′ < K,χ(m′) = 0}
while R 6= ∅ do
m⇐ minR, l ⇐ l + 1
χ (k (ρ(g) · ωm)) = l

end while

The second approach to calculating S is more algebraic. Recall that IO, O ∈ S can
be computed using minimal generators f as in (17). Next note that writing I and h

as K-dimensional column vectors, we have (π1(h))(O) = I
tr
O × h/

√

|O|. Thus, π1(h)
can be computed as π1×h, where, abusing the notation, π1 become the matrix whose
rows are I

tr
O, the transposed orbit indicator vectors renormalized by the square root

of the orbit size. It can easily be seen that in this matrix formulation, π2 = πtr1 ,
which means that the corresponding linear operators are adjoint. Thus, we obtain
the matrix representation of R = πtr1 × π1.

6.3 Entropy maximization. Sequential approach and dimensionality re-
duction.

To solve for λ, one uses numerical methods that require an initial guess. A cer-
tain computational saving has been noticed in experiments of [24] and [37] involving
nested maximum entropy models with moment constraints. Namely, suppose λ(l) =

(λ
(l)
1 , . . . , λ

(l)
l ) have been found at step l, i.e. the distribution Pl is computed, and sup-

pose an l + 1-st constraint fα is added. One then seeks λ(l+1) = (λ
(l+1)
1 , . . . , λ

(l+1)
l+1 ).

It then often turns out in practice that (λ
(l)
1 , . . . , λ

(l)
l , 0) is a good initial guess for

λ(l+1). It is also noticed in [24] that the minimization step contributes significantly to
the observed continuity in λ, i.e. when the “most informative” moments are added
first, then the subsequent steps affect the corresponding parameters progressively less.
Thus, the overall computations stay comparable to those of the baseline procedure
without the minimization feature: Specifically, on one hand, the minimization re-
quires at each step computing upto r models instead of just one, but on the other
hand, such computations require progressively less time as the number of constraints
grows.

We now show that the G-invariance allows us to translate the entropy maximiza-
tion problem on the original space Ω ⊂ R

m to the quotient space SΩ, which for
nontrivial G is “smaller” than Ω. We also show that in the most important in prac-
tice case of Ω finite, the dimension of the optimization problem indeed reduces from
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|Ω| to |SΩ|.
Let

B̃ = {B̃ ⊂ SW | ∪O∈B̃ O ∈ B}, (22)

which can be seen to be a σ-algebra on SW . Let M̃ be the image of the following
operator:

π∗1 :M→ M̃ via π∗1(P )(B̃) = P (∪O∈B̃). (23)

Note that π∗1 maps P , the probability measures on B, to P̃ , the probability measures
on B̃. π∗1 is also surjective since π∗1 ◦ π

∗
2 = id, where

π∗2 : M̃ →M via π∗2(P̃ )(B) =

∫

S

|B ∩ O|

|O|
dP̃ (O). (24)

The right hand side of (24) is well-defined as can be seen from the following:

Proposition 33 Let hB(O) = |B∩O|
|O|

. Then hB : SW → R is B̃-measurable, and

hB ◦ [w] : W → R is B-measurable.

We now observe the following:

Proposition 34

R∗ = π∗2 ◦ π
∗
1, and π∗1 :MG → M̃ and π∗2 : M̃ →MG are bijective.

Next, we define the adjoints of π∗1 and π∗2:

π2f(O) =
1

|O|

∑

w∈O

f(w) π1f̃(w) = f̃([w]), (25)

and notice:

Proposition 35 π1 and π2 are indeed adjoints of π∗1 and π∗2, respectively, and

R = π1 ◦ π2.

The last two ingredients needed to state the main result of this section are as follows:

τ ∗µ(B̃) =

∫

W

IB̃([w])

|[w]|
dµ(w) τf(O) =

∑

w∈O

f(w), (26)

Theorem 36 Let V : R
m → R

J be measurable and G-invariant. Then

argmax
Q∈PQ¿µ

EQV=EP V

Hµ(Q) = π∗2







arg max
Q̃∈P̃ Q̃¿τ∗µ

E
Q̃
π2V=E

π∗1P
π2V

[

Hτ∗µ(Q̃) + EQ̃(log(|O|)
]







.
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Proof.

argmax
Q∈P Q¿µ
EQV=EP V

Hµ(Q)
by Propositions 10, 25

= arg max
Q∈PG Q¿µ
EQV=EP V

Hµ(R
∗Q)

by Proposition 34
= arg max

Q∈PG Q¿µ
E
π∗2◦π

∗
1Q

V=E
π∗2◦π

∗
1P

V

Hµ(π
∗
2 ◦ π

∗
1Q)

by Propositions 34, 35
= π∗2







arg max
Q̃∈P̃ Q̃¿τ∗µ

E
Q̃
π2V=E

π∗1P
π2V

Hµ(π
∗
2Q̃)







= π∗2







arg max
Q̃∈P̃ Q̃¿τ∗µ γ=

dπ∗2 Q̃

dµ
E
Q̃
π2V=E

π∗1P
π2V

−

∫

W

γ(w) log(γ(w))dµ







by Proposition 11
= π∗2







arg max
Q̃∈P̃ Q̃¿τ∗µ γ=

dπ∗2 Q̃

dµ
E
Q̃
π2V=E

π∗1P
π2V

−

∫

W

τγ([w])

|[w]|
log

(
τγ([w])

|[w]|

)

dµ







= π∗2







arg max
Q̃∈P̃ Q̃¿τ∗µ γ=

dπ∗2 Q̃

dµ
E
Q̃
π2V=E

π∗1P
π2V

−

∫

SW

τγ(O) log(τγ(O))dτ ∗µ (27)

+

∫

SW

τγ(O) log(|O|)dτ ∗µ







= π∗2







arg max
Q̃∈P̃ Q̃¿τ∗µ

E
Q̃
π2V=E

π∗1P
π2V

[

Hτ∗µ(Q̃) + EQ̃(log(|O|)
]







. (28)

It follows from (26) that

∫

S

f̃(O)d(τ ∗µ) =

∫

W

f̃([w])

|[w]|
d(τ ∗µ),

hence (27). Also, τ maps probability densities on W relative to µ to probability
densities on SW relative to τ ∗µ, and τγ = dQ̃/dτ ∗µ, hence (28). Note, that π2γ =
dQ̃/dπ∗1µ is not a probability density. This fact and also the fact that τ ∗ preserves
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uniformity of the reference measure (e.g. counting measures on discrete Ω ⊂ W are
transformed into counting measures on SΩ) are the reasons to use the τ transforms
despite the extra term in (28). ¦

Corollary 37 Let |Ω| = K and |SΩ| = M . Let ρ be the distribution on SΩ defined
via ρ({O}) = |O|/K. Let µ be the counting measure on Ω, and let P be some fixed
probability distribution on Ω. Let V : Ω→ R

J be G-invariant. Then

argmax
Q∈P

EQV=EP V

H(Q) = π∗2







arg min
Q̃∈P̃

E
Q̃
π2V=E

π∗1P
π2V

D(Q̃‖ρ)







.

Proof. Rewrite (27) in the proof of the Theorem as follows:

π∗2







arg min
Q̃∈P̃ γ=

dπ∗2 Q̃

dµ
E
Q̃
π2V=E

π∗1P
π2V

∑

O∈SW

τγ(O) log

(
τγ(O)K

|O|K

)







= π∗2







arg min
Q̃∈P̃

E
Q̃
π2V=E

π∗1P
π2V

D(Q̃‖ρ)− log(K)







= π∗2







arg min
Q̃∈P̃

E
Q̃
π2V=E

π∗1P
π2V

D(Q̃‖ρ)







.

¦

Unlike Theorem 36 that is very general, Corollary 37 emphasizes the practical signif-
icance of the main result, i.e. reduction of dimensionality of the original optimization
problem. Note that the orbit sizes (or the distribution ρ) become available once the
partition SΩ has been computed. Thus, if the original problem is solvable with all
|λj| < ∞, one can manipulate the solution to the original problem given by (29) in
order to obtain (30), the corresponding solution on SΩ.

γ(w) = exp

(
J∑

j=1

λjVj(w)− ψ(λ)

)

ψ(λ) = log
∑

w∈Ω

exp

(
J∑

j=1

λjVj(w)

)

(29)

λ = (λ1, . . . , λJ) : EQ(λ)Vj = EPVj; j = 1, . . . , J,

where we assumed linear independence of ~1, V1, . . . , VJ as K-dimensional real vectors.
Thus, except for computing the orbits, the computations required to solve the problem
on SΩ are essentially identical to those of entropy maximization: Solving (numerically
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or by simulation) a system of exponential equations to find the Lagrange multipliers
λ. The only difference is therefore the reweighting of the summands of the equations
according to the orbit sizes:

τγ(O) = |O| exp

(
J∑

j=1

λjṼj(O)− ψ(λ)

)

ψ(λ) = log
∑

O∈SΩ

|O| exp

(
J∑

j=1

λjṼj(O)

)

(30)

λ = (λ1, . . . , λJ) : EQ̃(λ)Ṽj = EP̃ Ṽj; j = 1, . . . , J,

where we used Ṽ = π2V , P̃ = π∗1P .
Note finally that in the case of Ω finite, the assumption Ω ⊂ R

m andG ≤ GL(m,R)
is not necessary for the above reduction of dimensionality. Thus, in general Ω can be
any finite set with an arbitrary partition S, in which case G can always be recovered
from S as a subgroup of the permutation group S|Ω|. S, on the other hand, may
emerge as the set of constancy classes of V : Ω → R

J as one usually defines models
in terms of V and not S.

6.4 Construction of C∗≺(A, r) from Definition 31

Note that the algorithm (18) refers to the sets C∗≺(Al−1, r) that contain as many as
possible upto r candidate terms fα for model refinement. It would therefore help
analyze the algorithm if we could, at least for some orders ≺, bound (from above)
S(A, r), the number of steps required to generate C∗≺(Al−1, r). Consider, for example,

the Graded Lex Order: α >grlex β if deg(α) =
∑N

n=1 αn > deg(β), or deg(α) = deg(β)
and α >lex β. Let deg(A) = sup{deg(α), α ∈ A}. Suppose at step l < M − 1 we seek
α ⊥ Al−1. We would then like to predict

1. S(Al−1, 1) such that there is at least one α ⊥ Al−1 α >grlex Al−1 with deg(α) ≤
deg(Al−1, 1) + S(Al−1).

2. S(Al−1, r) = max
α>grlexA

deg(α)≤A+S(Al−1,r−1)

S(A ∪ {α}), for r < M − l.

3. S∗ the total execution time of the algorithm.

7 Microimage Distributions

We consider an example from the area of natural image statistics which, in its broad
formulation, studies various statistics defined on digitized images of sufficiently com-
plex scenes. For example, we qualify photographs of a landscape or an urban scene as
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complex, or natural, as opposed to a photograph of an artificially arranged scene of
an isolated chair in an otherwise empty room. Statistics of interest are usually local,
i.e. defined on very small, relative to the image size, regular (e.g. square) subimages,
or, microimages. Suppose that images and microimages are identified with I × I and
n × n matrices (n < I), respectively, with entries from CL = {0, . . . , L − 1} (e.g.
L = 256). We denote the set of microimages by Ω̃L

n . Typical studies are based on
large collections of digital grey scale images of a particular origin (e.g. optical or range
imaging) and a particular domain (e.g. landscapes, terrains) followed by a compar-
ative analysis of findings (e.g. topological and geometrical properties of percentiles).
Distributional properties of such statistics are functions of P , the underlying mi-
croimage distributions on Ω̃L

n . Defining P is, however, application dependent and can
be quite non obvious as one usually starts with fixing a microimage sampling scheme
without worrying about a corresponding microimage population. The microimage
sampling mechanism then also depends on a number of application-specific factors,
and varies from low-density random sampling within the entire image [24] to high-
density sampling within certain globally defined regions of interests, or from sampling
at regular grid nodes [24] to conditional sampling at high contrast regions [15], [26],
and [32]. In principle, every distinct sampling scheme leads to its own definition of
the microimage population or, equivalently, P . Remarkably ([24]), certain properties
of microimage samples appear stable regardless of the particular sampling scheme and
the imaging domain. This, to a certain extent, allows one to think of the microimage
distribution P . It is this “universal” P whose properties we discuss next.

7.1 The group G of Microimage Symmetries

There has been found ample evidence of P respecting the geometric symmetries of
Ω̃L
n (n is typically 3 or 2 and I = 100, . . . , 1500. Ω̃L

n is identified with the square-
based parallelepiped whose bases correspond to the “all-dark” (0) and “all-bright”
(L− 1) configurations. This evidence includes visual inspection of graphs of various
multidimensional local statistics [19], point estimates of probabilities of high contrast
patches [15], [26], and P -values of statistical tests [24]. Some symmetries, such as
“left-right” and “up-down”, are more pronounced than the others, such as, for exam-
ple, the intensity inversion one. Nonetheless, here we will consider the entire group
G of the corresponding transformations, and one can easily specialize the discussion
to the subgroups of G.

Thus, we define G via its three generators, r, s, and i: Let r represent the counter-
clockwise rotation of the square by π/2, and let s stand for the reflection of the square
through its secondary diagonal. The resulting subgroup of G is isomorphic to D8

1, the
dihedral group of order 8, with the following presentation 〈r, s|r4 = s2 = 1, rs = sr3〉.

1We follow the notation of [10] in which D2n stands for the group of all symmetries of a regular n-gon. Another
popular notation for this group is Dn.
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Recall that composite actions propagate right to left; for example, rsω acts on ω by
the diagonal reflection s followed by the rotation r.

The last symmetry required to generate G is that with respect to the photometric
inversion, denoted here by i: i(ω) = L− ω, ω ∈ Ω̃L

n . Finally, the group G generated
by all the above symmetries has presentation 〈r, s, i|r4 = s2 = i2 = 1, si = is, ri =
ir, rs = sr3〉. Therefore, G ∼= D8 × C2, where C2

∼= Z2
∼= 〈i〉 is the cyclic group of

order two.
In order to simplify computations (including establishing a group isomorphism

between G and the corresponding subgroup of GL(n2,R)), we standardize intensity

ranges CL: {
1−L
2L
, 3−L

2L
, . . . , L−1

2L
}, embedding them in [−0.5, 0.5] via c 7→ 2c−(L−1)

2L
, c ∈

CL. The corresponding state spaces are consequently embedded in Ωn
def
= [−0.5, 0.5]n

2

in the same manner (ω 7→ 2ω−(L−1)
2L

), and will be written as ΩL
n . Thus, by partitioning

(quantizing) Ωn uniformly as below
(

(
−L

2L
+

1 + 2 · 0

2L
,
−L

2L
+

1 + 2 · 1

2L
] ∪ · · · ∪ (

−L

2L
+

1 + 2 · (L− 1)

2L
,
−L

2L
+

1 + 2 · L

2L
]

)n2

one can think of ω = (ω1,1, . . . , ωn,n) ∈ Ω̃L
n as the central point of (ω1,1 −

1
2L
, ω1,1 +

1
2L
]× · · · × (ωn,n −

1
2L
, ωn,n +

1
2L
], the corresponding n2-dimensional partition cell.

We now assume n = 2. With the standard basis for R
4, the matrix version of G is

generated by

r
ρ
7→







0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0







s
ρ
7→







1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0







i
ρ
7→







−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







(31)

As explained in §6, knowing SΩ is important for understanding the complexity of
PG, for obtaining the Reynolds operator R in its matrix form §6.2, and for efficient
computation of the invariant models §6.3.

Proposition 38 Let L be even. Then |SΩL2 | =
L4+2L3+6L2+4L

16
. There are L orbits of

size two, L2

4
orbits of size four, 2L3+3L2−10L

8
orbits of size eight, and L4−2L3−4L2+8L

16
orbits of size 16.

This proposition and its proof (§D) suggest the following asymptotic result for any
finite subgroup G ≤ GL(n2,R) acting on ΩL

n for any n and L: The leading term of

|SΩLn | is
|ΩLn |
|G|

, i.e., |SL||G|
|ΩLn |

→ 1 as L→∞. In particular, not surprisingly the complexity

of the corresponding models PG grows as Ln
2
(= |ΩL

n |). However, one needs to recall
the technical issues of computing invariant distributions (30) in order to appreciate
this reduction of model dimensionality. Thus, for example, L = 16 and n = 2 give
|Ω| = 65536 and |SΩ| = 4708, almost 14-fold reduction that is surely appreciated by
any computational method of parameter estimation.
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7.2 A minimal set of generators of R[R4]G.

Before we propose a particular set of invariant generators for R[x1, x2, x3, x4]
G, let

us recall that, according to (31) and (37), the G action on R[x1, x2, x3, x4] can be
concisely expressed via the action of r, s, i, generators of G, on x1, x2, x4, x4, canonical
generators of R[x]:

rx1 = x2; rx2 = x3; rx3 = x4; rx4 = x1;

sx1 = x1; sx2 = x4; sx3 = x3; sx4 = x2;

ixk = −xk, k = 1, 2, 3, 4 (32)

Theorem 39 The following set of polynomials is a minimal set of generators of
R[x1, x2, x3, x4]

G:

f1(x) = (x1 + x3)(x2 + x4),

f2(x) = x1x3 + x2x4,

f3(x) = x21 + x22 + x23 + x24, (33)

f4(x) = x1x2x3x4,

f5(x) = (x21 + x23)(x
2
2 + x24).

Also,

R[x1, x2, x3, x4]
G

(f1,...,f5)
∼= R[w1, w2, w3, w4, w5]/JF , where (34)

JF = {h ∈ R[w1, w2, w3, w4, w5] : h(f1, f2, f3, f4, f5) = 0 ∈ R[x1, x2, x3, x4]} =

〈q〉, and q(w1, w2, w3, w4, w5) = 4w2
1w3 + 8w1w2w5 + 2w1w3w5 − 2w1w

2
4w5+

16w2
2 − 8w2w3 − 8w2w

2
4 + 4w2w

2
5 + w2

3 − 2w3w
2
4 + w4

4 .

A proof of the theorem is given in §E. We base our proof on a very intuitive approach,
which, in particular, does not require familiarity with algebraic geometry or invariant
theory (§6.1). One classical upper bound due to Noether gives m ≤ N ≤

(
m+|G|
|G|

)
.

In our case the above upper bound is
(
4+16
16

)
= 4845. This is too large for a direct

implementation of the corresponding algorithm to find such generators. Our case
turns out to be special, however, in that we nearly achieve the lower bound determined
by dimR

4 = 4. This small number of generators encourages one to use them in
practice for orbit-indexing (§6.2).

8 Conclusion

Information theory, moments of measures on Euclidean spaces, polynomial invariants
of finite groups, statistical model selection, and computational algebraic geometry,
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are the major faces of the polyhedral conglomerate of tools with which we articulate
the concept of invariance, or symmetry. We have touched on each face just about
as much as necessary to illuminate the central theme, that is representing invariance
under a finite group of symmetry transformations of the Euclidean space. Indeed,
we view establishment of connections among the relevant mathematical areas as the
main contribution of this work. The types of symmetries that had motivated this
work originate from our studies of statistics of small subimages of natural images.
Hence, this work also contributes to the interdisciplinary efforts to analyze and to
model vagaries of the natural image microworld.

To the probability and measure theory, this work offers a novel notion of determi-
nacy within classes MG

∗ of invariant measures indexed by the acting group G. This
extends the ordinary notion of determinacy which formally corresponds to the action
of the trivial group of the identity transformation. Specifically, we present a set of
sufficient conditions, including a generalized Extended Carleman Theorem and some
integral criteria, for determinacy of invariant measures by their invariant moments.
The generalized notion is based on the algebra of invariant polynomials and a one-
to-one correspondence between invariant measures on R

m and measures on R
N . This

correspondence is induced by a multinomial map f = (f1, . . . , fN), where {f1, . . . , fN}
is any minimal set of generators of the ring of invariant polynomials. Thus, given this
“change of variables”, monomial terms in f1, . . . , fN replace ordinary moments. One
important special example of this correspondence is that of measures supported in
C, the positive cone of R

m, where the acting group G ∼= Z
m
2 is generated by the

sign inversions of all the coordinates, and a natural minimal set of generators has
exactly N = m elements, which makes it special. This case is well-known, at least
for m = 1, and is unique in the following sense of “super-symmetry”: R

m = ∪g∈GgC,
dim(g1C ∩ g2C) < m for all g1, g2 ∈ G.

In §7, we provide a less obvious example of this correspondence. This example is
motivated by, and particularly suitable for models arising in natural image statistics,
and is thus relevant for applied statistics. We present this example in great detail to
show to applied statisticians that working with finite symmetries is possible within
the basic algebraic theory, which also is becoming increasingly more accessible to
nonspecialists through symbolic algebra software. Thus, our work also contributes to
the field of algebraic statistics.

Determinate distributions can be approximated arbitrarily closely by matching in
the limit all of their moments. We have shown that this combines perfectly with
the notion of generalized determinacy via, for one example, the maximum entropy
approach: First, given a sequence of invariant measures with all their mixed moments
converging to corresponding mixed moments of P , an invariant measure determinate
by its invariant moments, we obtain weak convergence of the sequence to P . Second,
we construct special approximating sequences from the maximum entropy distribu-
tions that match subsets of the invariant moments of P . We therein make use of
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a key fact that, satisfying invariant constraints, the maximum entropy distribution
inherits the underlying invariance. Requiring the above subsets of moments to cover
in the limit all the moments, we again obtain convergence.

In the second part of this work, we specialize the above theory to modeling invari-
ant distributions on finite state spaces. Instead of convergence in sequential approxi-
mation of P by increasingly refining invariant models, we address optimality of such
approximations and efficiency of the involved computations. The former is closely
related to statistical model selection where one balances model complexity and fit, or
similarly, the amount of detail to be encoded in the model from one experiment. We
propose a framework for efficient modeling of invariant distributions that combines
well with many model selection principles and we give two examples. At the core of
our framework is the fact that monomials fα11 , . . . , fαNN evaluated on the finite state
space Ω span the linear space of the invariant functions on Ω. We give a family of
algorithms to compute bases of nested subspaces of invariant functions on Ω.

A particular model selection principle, such as Minimal Description Length (MDL),
may be applied naturally in this situation to flag the termination of the model con-
struction at a minimum of an appropriate cost function C (description length in
the case of MDL). Besides MDL, we give another example based on D(P‖PG

Al
), the

Kullback-Leibler divergence from P (or its symmetrized versionR∗P ) to the invariant
model PG

Al
. That example employs the ad hoc penalized maximum likelihood crite-

rion to terminate the model construction when the model PG
Al

approaches the best

(in the maximum likelihood sense) invariant model R∗P at “distance” D(R∗(P )‖PG
Al

comparable to that from P to R∗P , e.g.: D(R∗(P )‖PG
Al
) ≤ D(P‖R∗(P )).

In fact, our main algorithms (“adaptive minimax learning”) optimize this sequen-
tial model construction based on C or D by a “look ahead”, or, “adaptive” model
augmentation: Among a feasible set of directions outside the span of the current
model, we choose one with the largest decrease in the cost function. Deriving perfor-
mance bounds for these algorithms presents a direction for future work.

In summary, the proposed combination of our modeling framework and a model
selection principle is essentially a technically special way to apply the model selec-
tion principle to the family of invariant distributions. One can then also “test the
hypothesis” that P in fact possesses the given type of invariance: Carry out the same
model selection including all the moments, and then, again using the same selection
criterion, decide between the best invariant and “general” models. Thus, in selections
based on cost function C, the invariance claim would be asserted if the minimum of
C on the invariant family is lower than that obtained with general moments, and
in the case of using D as above - if the dimension of the parameter space (i.e. the
number of the monomials) of the best invariant model is smaller than that of the
best model with general moments. Carrying out the outlined “testing”, or “super”
model selection experiments for our example of the natural microimage distribution
(§7) shall be a natural continuation of this work.
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From the statistical inference viewpoint, one would like to make an inference about
P based on a sample distribution P̂ . Ideally, the population behind P is defined
clearly and the sample is a simple random one. However, situations are common
where, as in our microimage example, P is not obvious to define or its relation to
the sample distribution P̂ is difficult to establish. It is then also in response to such
situations that we propose to use our “super” model selection principle to judge, how-
ever loosely, whether P is invariant. We finally note that the same methodology of
“super” selection extends beyond invariant families by allowing arbitrary (as opposed
to generating invariant polynomials) functions f .

This work at last discusses a number of computational issues related to invariant
models. All these issues are rather basic, at least for specialists in the respective
areas. However, the intuitively obvious result on dimensionality reduction in con-
strained entropy maximization with invariant, or “piecewise constant”, constraints
is, to our knowledge, presented here in full generality (Theorem 36) for the first time.
Its finite version (Corollary 37), that is more important in practice, has already been
presented in [24]. This observation may also be quite evident to statisticians prefer-
ring the equivalent “exponential family+likelihood maximization” viewpoint to the
constrained entropy maximization one, chosen in this work.

We hope that this work provides a relatively self contained treatment of invariance
under the action of a finite group of nonsingular transformations from the perspective
of probability theory and applied statistics.

A Algebraic Supplements

This section presents proofs and remarks on the notions from §2.
Proposition 4The following actions are well-defined.

1.) The (restricted) action of G on an invariant Ω ⊂ W .

2.) The G action on B, the Borel σ-algebra on Ω:

gB = {gω : ω ∈ B}. (35)

3.) The G action on M, the set of (positive) measures on B:

(gP )(B) = P (g−1B), B ∈ B, P ∈M. (36)

4.) The G action on R[W ], the set of real polynomials in m indeterminates:

(gf)(v) = f(g−1v), where g ∈ G and f ∈ R[W ] and v ∈W. (37)

Proof.

1.) Straightforward verification.
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2.) Clearly, ∀B ∈ B and ∀g ∈ G gB ∈ B (any g maps an open ball in Ω to an open set
in Ω), and (g1g2)B = g1g2B immediately follows from its pointwise counterpart.

3.) Let g and P be arbitrary elements of G and M, respectively. Clearly, ∀B ∈
B g−1B ∈ B, hence gP is defined on the entire B. It is also obvious that
gP (∅) = P (g−1∅) = P (g∅) = 0. Note that this action is also preserved if M is
restricted to the set of probability measures, since in that case 0 ≤ gP (B) ≤ 1 and
gP (Ω) = P (g−1Ω) = P (Ω) = 1 hold (all transformations g ∈ Gmap Ω onto itself).
Finally, for any collection {Bn}

∞
n=1 of disjoint Borel sets, the Borel sets {g

−1Bn}
∞
n=1

are clearly also disjoint (all transformations g ∈ G are one-to-one), and thus:

gP (∪∞n=1Bn) = P (g−1 ∪∞n=1 Bn) = P (∪∞n=1g
−1Bn) =

∞∑

n=1

P (g−1Bn) =
∞∑

n=1

gP (Bn).

4.) Straightforward verification.

¦

Proposition 9
M∗ = {P ∈M : EP‖X‖

d <∞ ∀d ≥ 0}

Proof. Let P ∈ M∗, and let d ≥ 0 be arbitrary. Then, EP‖X‖
d < P (B(0, 1)) +

EP‖X‖
D, where B(0, 1) is the unit ball, D is even and D > d. The first term is finite

as α = 0 is included in the definition of M∗ and the second term breaks down into
a finite sum of “even” mixed moments, each of which is again finite by the definition
of M∗. To see the reverse inclusion, assume EP‖X‖

d < ∞ ∀d ≥ 0 and let α ∈ N
N

be arbitrary. Then, EP |X|
α ≤ P (B(0, 1)) + EP |X|

2α ≤ 1 + EP‖X‖
d < ∞, where

d = 2
∑m

i=1 αi. ¦

More on Reynolds operator defined in (6).
In polynomial algebra, this “averaging” map is called the Reynolds Operator. The
orbit-averaging feature of this operator is apparent from its definition and the fol-
lowing property further underlines the correspondence with probabilistic averaging:
∀f ∈ R

Ω and ∀h ∈ (RΩ)G, R(hf) = hR(f). The probabilistic interpretation is that a
random variable which is measurable relative to the σ-algebra on which conditioning
is performed can almost surely be factorized through the conditional expectation.
Proposition 10
Consider R mapping the space of measurable functions on W onto (RW )G and the
linear functionals f 7→

∫

W
f(x)dP (x) defined by P ∈M. Then R and R∗ are adjoint.

Proof. First show that for simple functions φ,
∫

W
R(φ(x))dP (x) is indeed equal to

∫

W
φ(x)d(R∗(P ))(x) and then use the definition of the Lebesgue integral to extend

this equality to all the measurable functions. ¦

Proposition 11

1.) Let P ∈ M have a density p relative to some reference measure µ. Then R(p) is
a density of R∗(P ) relative to µ.
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2.) Let p be a density of a G-invariant measure P relative to µ, then p is µ-a.e.
G-invariant.

Proof. The second statement follows immediately from the first one. To prove the
first, let B ∈ B be arbitrary and note

R∗P (B) = 1
|G|

∑

g∈G

P (gB) =
1

|G|

∑

g∈G

∫

gB

p(x)µ(dx)

= 1
|G|

∑

g∈G

∫

B

p(gy)| det(g)|µ(dy) =

∫

B

Rp(y)µ(dy).

| det(g)| = 1 follows from the finiteness of G ⊂ GL(m,R). ¦

Remark 40 Despite being finite, minimal generating sets need not in general have
the same cardinality unless one explicitly requires the minimality of their cardinality.

Proposition 15 Let f1, . . . , fN generate R[W ]G and let f = (f1, . . . , fN) : W →
R
N .Then the map f̄ : SW → R

N mapping [w], the equivalence class of w ∈ W , to
f(w), is well-defined and injective. Thus SW ∼= f(W ), the image of f in R

N .
Proof. The G-invariance of f1, . . . , fN means constancy of f on the orbits of SW .

Thus [w]
f̄
7→ f(w) is indeed well-defined as a map from SW onto f(W ). Therefore,

we need only prove that, given any two distinct orbits O1,O2 ∈ SW , f̄(O1) 6= f̄(O2).
We show this by exhibiting a G-invariant polynomial h that takes distinct values
on O1 and O2, and then conclude that the values assumed by at least one of the N
generators on these orbits must be distinct since h can be expressed (as a polynomial)
in terms of the given generators.

The finite size of the orbits allows the following crude construction of h:

h̃O1(x) =
∏

g∈G

m∑

l=1

[xl − (gω)l]
2 , ω ∈ O1 (38)

hO1(x) = R(h̃)(x). (39)

The definition (38) ensures that h̃O1(v) = 0 (and consequently h(v) = 0) if and only

if v ∈ O1. In (39), we average h̃O1 over all the G-orbits in order to guarantee G-
invariance. Note that hO1 separates O1 from the rest of the orbits, since for each

g ∈ G the only roots of gh̃O1 are the points in O1. In particular, hO1 assumes distinct
values on O1 and O2. ¦
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B Invariant measures, moments, and determinacy

Proposition 17 Let f1, . . . , fN be a minimal generating set. Then MG
∗ = {P ∈

MG : EP |f
α| <∞ ∀α ∈ N

N}.
Proof. The inclusion ofMG

∗ ⊂ into the right hand side is obvious. To show the other

inclusion, we take α∗ ∈ N
N arbitrary and P ∈ RHS and otherwise arbitrary. Let Σk

be the set of all k-subsets of {1, . . . ,m}, and notice:

EP |X
α∗ | =

∑

0≤k≤m
σ∈Σk

∫

|xj |≥1 ∀j∈σ

|xj |<1 ∀j 6∈σ

|xα
∗

|dP

≤
∑

0≤k≤m
σ∈Σk

∫

|xj |≥1 ∀j∈σ

|xj |<1 ∀j 6∈σ

∏

i∈σ

x
2α∗i
i dP

≤
∑

0≤k≤m
σ∈Σk

∫

Rm

∏

i∈σ

x
2α∗i
i dP

=
∑

0≤k≤m
σ∈Σk

∫

Rm

∏

i∈σ

x
2α∗i
i dR∗P

=
∑

0≤k≤m
σ∈Σk

∫

Rm

R(
∏

i∈σ

x
2α∗i
i )dP <∞.

In the above we used the fact R∗ and R are adjoint (Proposition 10). The last
inequality follows from that R(

∏

i∈σ x
2α∗) is G-invariant and hence is a polynomial

in f -generators:
∑

α aαf
α, but EPf

α ≤ EP |f
α| <∞ for all α ∈ N

N . ¦

Definition 18 Let P ∈ MG
∗ have s(P ), its G-invariant moments, relative to some

minimal generating set. Then P is said to be G-determinate by s(P ), or simply G-
determinate, if no other measure in MG

∗ has the same set of moments s(P ) relative
to the chosen generating set.
Let us prove that this notion is well-defined:
Proof. Let f1, . . . , fN and h1, . . . , hL be two distinct minimal sets of generators, and

let sf (P ) and sh(P ) be the corresponding sets of G-invariant moments. Suppose
that P is the only measure in MG

∗ possessing sf (P ), and suppose that there exists
Q ∈ MG

∗ such that Q 6= P and sh(P ) = sh(Q). Then there must exist α ∈ N
N such

that EPf
α 6= EQf

α. Since fα is G-invariant, it can be written as a polynomial in
h-generators:

∑

β aβh
β, but then for each monomial we have EPh

β = EQh
β. This

clearly contradicts EPf
α 6= EQf

α. ¦

Lemma 20 The map f̃ : MG → M̃ via f̃(P )(B) = P (f−1(B)) for any B ∈ B(RN ),
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is one-to-one.
Proof. Let P,Q ∈ MG

∗ be distinct, and let B ∈ B(Ω) be such that P (B) > Q(B).

Now, define h(x) = R(IB(x)), the G-symmetrized indicator function of B. Next
note that P (B) = EP IB(X) = EPh(X), where the random vector X is distributed
according to P , and the second equality is a consequence of G-invariance of P . Also
note that similarly, Q(B) = EQh(X), and therefore EPh(X) > EQh(X).

Observe that the level sets h−1(x ≥ c) for any c ∈ R are also G-invariant:

gh−1(x ≥ c) = {gw : w ∈W h(w) ≥ c} = {w′ : g−1w′ ∈ Wh(g−1w′) ≥ c} =

= {w′ : g−1w′ ∈Wgh(w′) ≥ c} = {w′ : g−1w′ ∈ Wh(w′) ≥ c} =

= {w′ : w′ ∈Wh(w′) ≥ c} = h−1(x ≥ c)

Now, EPh(X) =
∑

c∈{h(w): w∈W} P (h(X) ≥ c), where the summation has a finite
number of terms due to the special form of h. Hence, there must be at least one
term such that P (h(X) ≥ c) > Q(h(X) ≥ c), which gives us a G-invariant set
A = h−1(x ≥ c) (that is obviously also Borel) on which P and Q differ.

It now remains to prove that f̃(P ) 6= f̃(Q). To this end we show that

f̃(P )(fA) = P (f−1fA)

= P (f̄−1f̄
·
∪O⊂A O) (40)

= P (
·
∪O⊂A f̄

−1f̄(O))

= P (
·
∪O⊂A O) (41)

= P (A) (42)

Proposition 5 gives A =
·
∪O⊂A O used in (40) and (42), and Proposition 15 implies

(41).

Summarizing the above, we get f̃(P )(fA) > f̃(Q)(fA), finishing the proof of the
Lemma. ¦

C Some results from [8]

Theorem 2.1 of [8] on multidimensional quasi-analytic classes.
For j = 1, . . . , n let {Mj(m)}∞m=0 be a sequence of non-negative real numbers such
that

∞∑

m=1

1

Mj(m)1/m
=∞.

Assume that f : R
n 7→ C is of class C∞ and that there exists C ≥ 0 such that

∣
∣
∣
∣

∂αf

∂λα
(λ)

∣
∣
∣
∣
≤ C

n∏

j=1

Mj(αj)
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for all α ∈ N
n and all λ ∈ R

n. Then, if |∂
αf
∂λα

(0)| = 0 for all α ∈ N
n, f is actually

identically zero on R
n.

Theorem 2.3 of [8]: Extended Carleman Theorem.
Let µ ∈ M∗ and suppose {v1, . . . , vn} is a basis of R

n. For j = 1, . . . , n and m =
0, 1, 2, . . . define

sj(m) =

∫

Rn
(vj, x)

mdµ(x).

If each of the sequences {sj(m)}∞m=1 (j = 1, . . . , n) satisfies Carleman’s condition

∞∑

m=1

1

sj(2m)1/2m
=∞,

then µ is determinate. Furthermore, the polynomials and SpanC{exp i(λ, x)|λ ∈ S}
are dense in LGp (R

n, µ) for all 1 ≤ p < ∞ and for every S ∈ R
n which is somewhere

dense.
Theorem 4.1 of [8].
Let µ be a positive Borel measure on R

n such that
∫

Rn
w(f(x))−1dµ <∞

for some measurable quasi-analytic weight. Then µ is determinate. Furthermore,
R[W ]G and SpanC{exp i(λ, x)|λ ∈ S} are dense in LGp (R

n, µ), for 1 ≤ p <∞ and for
every S ∈ R

n which is somewhere dense.
Theorem 4.2. of [8].
For j = 1, . . . , n, let Rj > 0 and let a non-decreasing function ρj : (Rj,∞) → R

+ of
class C1 be such that ∫ ∞

Rj

ρj(s)

s2
ds =∞.

Define hj : R → R
+ by

hj(x) =

{

exp
(∫ |x|

Rj

ρj(s)

s
ds
)

for |x| > Rj

1 for |x| ≤ Rj.

Let A be an affine automorphism of R
n. If P is a positive Borel measure on W such

that
∫

Rn

N∏

j=1

hj((Ax)j)dP (x) <∞,

then P is determinate by its G-invariant moments. Furthermore, the polynomials
and SpanC{exp i(λ, x)|λ ∈ S} are dense in Lp(R

n, P ), for 1 ≤ p <∞ and for every S
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of R
n which is somewhere dense.

Proposition 25 Let P have a density p relative to λ. Then

0 ≤ H(P ) ≤ H(R∗P ) ≤ H(P ) + log |G|.

The equality in place of the second inequality occurs if and only if P is G-invariant.
Proof. Convexity of x log x and Jensen’s inequality establish positiveness of H. To

see the second inequality, first recall that D(P |Q) ≥ 0 with the strict equality if and
only if P = Q (use log x ≤ x− 1 with the strict equality only at x = 1). Then notice
that

0 ≤ D(P |R∗(P )) = −H(P ) + EP log(1/R(p(X))),

and by Proposition 10:

EP log(1/R(p)(X)) = ER∗(P ) log(1/R(p)(X)) = H(R∗(P )).

Finally, noticing that |O| ≤ |G|,∀O ∈ SW , gives:

D(P |R∗(P )) ≤

∫

W

p(x) log
maxy∈[x] p(y)

maxy∈[x] p(y)/|[x]|
dµ(x) =

∫

W

p(x) log |[x]|dµ(x) ≤ log |G|.

Summarizing the above: H(R∗(P )) = H(P ) +D(P |R∗(P )) ≤ H(P ) + log |G|. ¦

Remark 29 continued. In order to see more directly that minimizingD(P |PAl−1∪{α})
is equivalent to minimizing D(R∗(P )|PAl−1∪{α}) note that the minimization takes
place only within the term −EP log(p′), where p′ is a G-invariant density of PAl−1∪{α}
(Proposition 11). Recalling (Proposition 10) that the operators R and R∗ are adjoint
and Proposition 11, establishes EP log(p′) = EPR(log(p′)) = ER∗(P ) log(p

′).

D The structure of SΩ2

L

Proposition 38 Let L be even. Then |SΩ2L | =
L4+2L3+6L2+4L

16
. There are L orbits

of size two, L2

4
orbits of size four, 2L3+3L2−10L

8
orbits of size eight, and L4−2L3−4L2+8L

16
orbits of size 16.
Proof. The n = 1 case is special but trivial. There are two orbits of size two:

{
− 1
2
− 1
2

− 1
2
− 1
2

,
1
2
1
2

1
2
1
2

}

,
{
− 1
2

1
2

1
2
− 1
2

,
1
2
− 1
2

− 1
2

1
2

}

,

one orbit of size four: {
− 1
2
− 1
2

1
2

1
2

,
1
2
− 1
2

1
2
− 1
2

,
1
2

1
2

− 1
2
− 1
2

,
− 1
2
1
2

− 1
2
1
2

}

,

and one orbit of size eight:
{
1
2
− 1
2

1
2

1
2

,
1
2

1
2

1
2
− 1
2

,
1
2

1
2

− 1
2
1
2

,
− 1
2
1
2

1
2

1
2

,
− 1
2

1
2

− 1
2
− 1
2

,
− 1
2
− 1
2

− 1
2

1
2

,
− 1
2
− 1
2

1
2
− 1
2

,
1
2
− 1
2

− 1
2
− 1
2

}
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To prove the general case, one first recalls that ∀O,∀ω ∈ O, |O| = |G : Gω|, the
size of the orbit O equals the index of the stabilizer Gω.

Since |G| = 16, |O| can only be 1, 2, 4, 8, 16. Clearly, there is no ω with Gω = G
because i(ω) = ω has no solution. For the same reason Gω can not contain i, si, or
r2si among its generators. This leaves only two copies of D8 (i.e. 〈r, s|r4 = s2 =
1, rs = sr3〉 and 〈ri, s|(ri)4 = s2 = 1, (ri)s = s(ri)3〉) as possible stabilizers of index
two. The first group gives rise to the two equations r(ω) = ω and s(ω) = ω with L
solutions of the form ( λ λ

λ λ ) , λ ∈ CL, thus yielding L/2 orbits of size two. The second
choice implies that (ri)(ω) = ω and s(ω) = ω, resulting in the 2n patches of the
form

(
−λ λ
λ −λ

)
, λ ∈ CL that are partitioned into L/2 size-two orbits. Hence, the total

number of size-two orbits becomes L.
We now count orbits of size four. The following subgroups are the only subgroups

of G of index four not containing i, si, or r2si: 〈r〉, 〈ri〉, 〈r3i〉, 〈r2, s〉, 〈r2, rs〉, 〈r2, rsi〉,
〈r2i, rs〉, 〈r2i, rsi〉. Since all the ω’s fixed by the rotation group are necessarily fixed by
the entire 〈r, s|r4 = s2 = 1, rs = sr3〉 group, the rotation group can not be a proper
stabilizer itself. Similarly, (ri)(ω) = ω ⇒ s(ω) = ω implies that 〈ri〉 is a proper
subgroup of a larger stabilizer, and for the same reason (r3i)(ω) = ω ⇒ s(ω) = ω
makes it impossible for 〈r3i〉 to be a stabilizer. Now notice, 〈r2, rs〉 can not be a
proper stabilizer since [(r2)(ω) = ω] ∧ [(rs)(ω) = ω] ⇒ r(ω) = ω2; 〈r2, rsi〉 can not
be a proper stabilizer because [(r2)(ω) = ω] ∧ [(rsi)(ω) = ω]⇒ (ri)(ω) = ω. Finally,
〈rs, r3s〉 fails to be a stabilizer since [(rs)(ω) = ω] ∧ [r2(ω) = ω]⇒ r(ω) = ω.

Next, 〈r2, s〉 is a stabilizer for all elements of the form:
(
λ γ
γ λ

)
, where γ, λ ∈ CL, γ 6=

λ, γ 6= −λ. Since there are L(L − 2) such matrices, and the orbit of each of them
consists of matrices of the same form (up to renaming of λ and γ), they must form
exactly L(L− 2)/4 size-four orbits.

Matrices of the form
(
−λ −λ
λ λ

)
, with λ ∈ CL are stabilized by 〈r2i, rs〉. In fact, these

will represent only L/2 distinct matrices as λ runs effectively only through half of the
range CL. Since no two distinct such matrices fall into the same orbit, we obtain L2/4
as the total number of size-four orbits. We also notice that the subgroup 〈r2i, rsi〉 is
a stabilizer for the elements of the form

(
λ −λ
λ −λ

)
, which are rotationally equivalent to

the previous matrices, hence adding no new orbits.
The last task is to compute the number of orbits of size eight. First, we list all

the subgroups of index eight (thus, order two) not containing i, si, or r2si. These
are: 〈r2〉, 〈r2〉, 〈r2i〉, 〈s〉, 〈r2s〉, 〈rs〉, 〈r3s〉, 〈rsi〉, and 〈r3si〉. 〈r2〉 immediately leaves
the list since it is a proper subgroup of a larger stabilizer (r2(ω) = ω ⇒ s(ω) = ω).
Matrices of the form

(
λ δ
γ λ

)
, where δ, γ, λ ∈ CL, γ 6= δ, are stabilized by 〈s〉, whereas

rotationally equivalent to them matrices of the form
(
δ λ
λ γ

)
are stabilized by 〈r2s〉.

Since size-eight orbits generated by these 2L2(L− 1) matrices are composed of these
matrices only, we arrive at L2(L − 1)/4 distinct orbits of size eight. Next, observe
that 〈rs〉 fixes L(L− 2) matrices of the form ( γ γ

λ λ ), with γ, λ ∈ CL, γ 6= λ, γ 6= −λ,

2We use “∧” to denote the logical and.
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whereas their L(L − 2) rotational equivalents
(
λ γ
λ γ

)
are fixed by 〈r3s〉. Since all

the matrices inside the corresponding orbits of size eight are of either of the two
forms, we add L(L− 2)/4 orbits of size eight. The same number of L(L− 2)/4 size-
eight orbits come from L(L − 2) matrices of the form

(
−λ −γ
λ γ

)
fixed by 〈r3si〉, with

γ, λ ∈ CL, γ 6= λ, γ 6= −λ, and from their L(L − 2) rotational equivalents of the
form

(
γ −γ
λ −λ

)
fixed by 〈rsi〉. The last source of size-eight orbits is matrices stabilized

by 〈r2i〉. They are represented by
(
−γ −λ
λ γ

)
, where γ 6= λ, γ 6= −λ. There are exactly

L(L− 2) such matrices, producing the last L(L− 2)/8 orbits of size eight.
Summing over orbits of sizes less than 16, we get 2× L+ 4× L2/4 + 8× (L3/4 +

3L2/8− 5L/4) as the total number of elements in these orbits. Hence, the number of
orbits of size 16 is (L4 − 2L3 − 4L2 + 8L)/16 = n4 − n3 − n2 + n. Finally, the total

number of orbits is L4+2L3+6L2+4L
16

= n4 + n3 + n(3n+1)
2

. ¦

E Generators for R[x]G

Theorem 39. The following set of polynomials is a minimal set of generators of
R[x1, x2, x3, x4]

G:

f1(x) = (x1 + x3)(x2 + x4),

f2(x) = x1x3 + x2x4,

f3(x) = x21 + x22 + x23 + x24, (33)

f4(x) = x1x2x3x4,

f5(x) = (x21 + x23)(x
2
2 + x24).

Also,

R[x1, x2, x3, x4]
G

(f1,...,f5)
∼= R[w1, w2, w3, w4, w5]/JF , where (34)

JF = {h ∈ R[w1, w2, w3, w4, w5] : h(f1, f2, f3, f4, f5) = 0 ∈ R[x1, x2, x3, x4]} =

〈q〉, and q(w1, w2, w3, w4, w5) = 4w2
1w3 + 8w1w2w5 + 2w1w3w5 − 2w1w

2
4w5+

16w2
2 − 8w2w3 − 8w2w

2
4 + 4w2w

2
5 + w2

3 − 2w3w
2
4 + w4

4 .

Proof. It is immediate to see that f1, . . . , f5 respect the action of r, s, i, generators

of G. Therefore, they f1, . . . , f5 ∈ R[x1, x2, x3, x4]
G. We base our computations on a

sequence of decompositions of the original G action, first step of which is given by:

SR4 ∼= (R4/G1)
/
(G/G1) ,

where G1 = 〈s, r
2|s2 = (r2)2 = 1, r2s = sr2〉EG (43)

The equation above simply says that the original action of G on R
4 decomposes into

two actions as follows: First, G1, a normal subgroup of G, acts on R
4, producing
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the orbit set R
4/G1, and then the quotient group G/G1 acts on R

4/G1, resulting
in “the same” orbits SR4 , just as if G acted on R

4 directly. Thus, we first aim to
find y1(x), . . . , yk(x) for some k, generators for R[x]G1 , and then will focus on the
polynomials (in those generators) that are invariant under G/G1.

Claim 41 R[x]G1 = R[x1 + x3, x2 + x4, x1x3, x2x4].

Proof. It suffices to prove that R[x]〈r
2s〉 = R[x1 + x3, x2, x1x3, x4] and R[x]〈s〉 =

R[x1, x2+x4, x3, x2x4], since R[x1+x3, x2+x4, x1x3, x2x4] = R[x1+x3, x2, x1x3, x4]∩
R[x1, x2 + x4, x3, x2x4]. In fact, we only prove the first of these statements since the
second one proves along the same lines interchanging x1 with x2 and x3 with x4. We
argue by induction on the degree function, deg = deg1+deg2+deg3+deg4, where
degk is the highest power of xk (k = 1, 2, 3, 4) in a given polynomial. Let us begin
by noticing that the result holds for all polynomials of deg = 0 (i.e. constants.)
Assume now that the result is true for deg ≤ N, N ≥ 0 and show that it also
holds for deg = N + 1. A generic polynomial r(x1, x2, x3, x4) ∈ R

〈r2s〉[x] such that
deg(r) ≤ N + 1 has the form:

∑

i,j,k,l≥0
i+j+k+l≤N+1

ai,j,k,lx
i
1x

j
2x

k
3x

l
4 =

1
︷ ︸︸ ︷
∑

i,k≥0
i+k≤N

ai,0,k,0x
i
1x

k
3 +

2
︷ ︸︸ ︷

aN+1,0,0,0x
N+1
1 + a0,0,N+1,0x

N+1
3 + (44)

3
︷ ︸︸ ︷

x1x3
∑

i,k>0
i+k=N+1

ai,0,k,0x
i−1
1 xk−13 +

∑

j,l≥0
0<j+l≤N+1






4
︷ ︸︸ ︷

∑

i,k≥0
0≤i+k≤N+1−j−l

ai,j,k,lx
i
1x

k
3




 xj2x

l
4 (45)

In order for the left hand side to be invariant under x1 ↔ x3, each of the terms 1− 4
in (44)-45 must be invariant under the same action. By the induction argument,
terms of degree N and below are already in the desired form. Thus, the first sum and
all the sums labeled 4 belong to R[x1 + x3, x2, x1x3, x4]. This implies that the entire
double sum of (45) is in R[x1 + x3, x2, x1x3, x4]. The cofactor of x1x3 in the third
term of (45) is also invariant and has degree N , hence lies in R[x1 + x3, x2, x1x3, x4]
as well. The invariance of the second term of (44) forces aN+1,0,0,0 = a0,0,N+1,0. We
now notice that if N = 0, then

aN+1,0,0,0x
N+1
1 + a0,0,N+1,0x

N+1
3 = a1,0,0,0(x1 + x3) ∈ R[x1 + x3, x2, x1x3, x4]

For N ≥ 1, on the other hand,

xN+1
1 + xN+1

3 = (x1 + x3)(x
N
1 + xN3 )− x1x3(x

N−1
1 + xN−13 ) ∈ R[x1 + x3, x2, x1x3, x4]

by the induction argument. This shows that the left hand side of (44),(45) belongs
to R[x1 + x3, x2, x1x3, x4]. ¦
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Thus, we have obtained a set of generators for R[x]G1 :

y1 = x1 + x3, y2 = x2 + x4, y3 = x3x4, y4 = x2x4, (46)

which are algebraically independent. We now want to find R
G/G1 [y1, y2, y3, y4]. Recall

that
G/G1 = {1, r, ı, ır}

and that its action on the orbit set R
4/G1 translates into

r : y1 ↔ y2, y3 ↔ y4

ı : y1 7→ −y1, y2 7→ −y2, y3 ↔ y3, y4 ↔ y4

Continuing (43) to decompose the original G action, we write:

(R4/G1)
/
(G/G1) ∼=

(
(R4/G1)

/
G2

)/(
G/G1

/
G2

)
, where G2 = 〈ı〉EG/G1 (47)

Claim 42 R[y1, y2, y3, y4]
G2 = R[y21, y

2
2, y1y2, y3, y4]

Proof. Using induction just as in the proof of Claim 41, we can simply imagine
replacing x1 with y1, x3 with y2, x2 with y3, and x4 with y4, which yields equations
essentially identical to (44),(45):

∑

i,j,k,l≥0
i+j+k+l≤N+1

ai,j,k,ly
i
1y

j
2y

k
3y

l
4 =

∑

i,j≥0
i+j≤N

ai,j,0,0y
i
1y

j
2 +

2
︷ ︸︸ ︷

aN+1,0,0,0y
N+1
1 + a0,N+1,0,0y

N+1
2 + (48)

y1y2
∑

i,j>0
i+j=N+1

ai,j,0,0y
i−1
1 yj−12 +

∑

k,l≥0
0<k+l≤N+1






∑

i,j≥0
0≤i+j≤N+1−k−l

ai,j,k,ly
i
1y

j
2




 yk3y

l
4

The only other difference from the previous proof is as follows: The new second
term 48 disappears if N+1 is odd, whereas even N+1 immediately yields the needed
form, i.e. yN+1

1,2 = (y21,2)
(N+1)/2. ¦

Next, notice:

R[y21, y
2
2, y1y2, y3, y4]

∼= R[z1, z2, z3, z4, z5]
/
〈z1z2 − z25〉,

under:

y21 → z1, y
2
2 → z2, y3 → z3, y4 → z4, y1y2 → z5.

We now show by induction that

(
R[z1, z2, z3, z4, z5]

/
〈z1z2−z

2
5〉
)(G/G1)

/
G2= R[z1+ z2, z3+ z4, z3z4, z1z3+ z2z4, z5], (49)
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where (G/G1)
/
G2 = 〈r〉, and its action results in exchanging z1 with z2 and z3

with z4. First, denote the right hand side of (49) by R and focus on the inductive
transition from deg ≤ N to deg = N +1. A generic polynomial of interest splits into
two sums, one with deg ≤ N and the other - with deg = N + 1, each of which is
separately invariant under the action of r. Since the first sum is in R by the induction
assumption, we continue on to decompose the second one as follows:

∑

i,j,k,l≥0
i+j+k+l=N+1

ai,j,k,lz
i
1z

j
2z

k
3z

l
4 =

1
︷ ︸︸ ︷

z1z2z3z4
∑

i,j,k,l>0
i+j+k+l=N+1

ai,j,k,lz
i−1
1 zj−12 zk−13 zl−14 + (50)

2
︷ ︸︸ ︷

z1z2






∑

i,j,k>0
i+j+k=N+1

ai,j,k,0z
i−1
1 zj−12 zk3 +

∑

i,j,l>0
i+j+l=N+1

ai,j,0,lz
i−1
1 zj−12 zl4




+

3
︷ ︸︸ ︷

z3z4






∑

i,k,l>0
i+k+l=N+1

ai,0,k,lz
i
1z

k−1
3 zl−14 +

∑

j,k,l>0
j+k+l=N+1

a0,j,k,lz
j
2z

k−1
3 zl−14




+

4
︷ ︸︸ ︷

z1z2
∑

i,j>0
i+j=N+1

ai,j,0,0z
i−1
1 zj−12 +

5
︷ ︸︸ ︷

z3z4
∑

k,l>0
k+l=N+1

a0,0,k,lz
k−1
3 zl−14 +

6
︷ ︸︸ ︷
∑

i,k>0
i+k=N+1

ai,0,k,0z
i
1z

k
3 +

∑

j,l>0
j+l=N+1

a0,j,0,lz
j
2z

l
4+

7
︷ ︸︸ ︷
∑

i,l>0
i+l=N+1

ai,0,0,lz
i
1z

l
4 +

∑

j,k>0
j+k=N+1

a0,j,k,0z
j
2z

k
3 +

8
︷ ︸︸ ︷

aN+1,0,0,0z
N+1
1 + a0,N+1,0,0z

N+1
2 +

9
︷ ︸︸ ︷

a0,0,N+1,0z
N+1
3 + a0,0,0,N+1z

N+1
4

An immediate inspection of (50) combined with the symmetry of the coefficients
ai,j,k,l = aj,i,l,k reveals that each of the terms numbered one through nine is individ-
ually invariant under the the given action. By the inductive argument, terms one
through five are already in R, and following the pattern of the second term of (44)
eventually shows that terms eight and nine are also in R. We now rewrite the sum
of terms six and seven as follows:

∑

i,k>0
i+k=N+1

ai,0,k,0
(
zi1z

k
3 + zi2z

k
4

)
+

∑

i,k>0
i+k=N+1

ai,0,0,k
(
zi1z

k
4 + zi2z

k
3

)

38



Observe that for i, k > 0:

zi1z
k
3 + zi2z

k
4 = (z1z3 + z2z4)(z

i−1
1 zk−13 + zi−12 zk−14 )− zi−11 z2z

k−1
3 z4 − z1z

i−1
2 z3z

k−1
4 (51)

zi1z
k
4 + zi2z

k
3 = (z1z4 + z2z3)(z

i−1
1 zk−14 + zi−12 zk−13 )− z1z

i−1
2 zk−13 z4 − zi−11 z2z3z

k−1
4

We conclude by considering the first of the two equations above and noticing that the
second equation can be treated similarly due to that z1z4 + z2z3 equals (z1 + z2)(z3 +
z4)− (z1z3 + z2z4), and thus lies in R. The following expression in conjunction with
the induction argument helps to see why the left hand side of (51) belongs to R:

zi−11 z2z
k−1
3 z4 + z1z

i−1
2 z3z

k−1
4 =







z1z3 + z2z4, if i− 1 = k − 1 = 0

z3z4(z2z
k−2
3 + z1z

k−2
4 ), if i− 1 = 0, k − 1 > 0

z1z2(z
i−2
1 z4 + zi−22 z3), if i− 1 > 0, k − 1 = 0

z1z2z3z4(z
i−2
1 zk−23 + zi−22 zk−24 ), if i− 1, k − 1 > 0.

Summarizing the results proved to this point, we return to the initial x indeterminates:

R[x1, x2, x3, x4]
G = R[(x1 + x3)

2 + (x2 + x4)
2, x1x3 + x2x4, (52)

x1x2x3x4, (x1 + x3)
2x1x3 + (x2 + x4)

2x2x4, (x1 + x3)(x2 + x4)]

These generators are not unique, and recognizing that

(x1 + x3)
2 + (x2 + x4)

2 = f3(x) + 2f2(x),

(x1 + x3)
2x1x3 + (x2 + x4)

2x2x4 =
1
2
[f5(x)− f 21 (x)]+

f2(x)f3(x) + 2f 22 (x)− 2f4(x),

with f1, f2, f3, f4, f5 as in (33), makes it clear that

R[x1, x2, x3, x4]
G = R[f1(x), f2(x), f3(x), f4(x), f5(x)]

G.

A straightforward computation verifies that none of the above five generators can
be expressed as a real polynomial in the remaining four. We conclude by instantiating
a well-known fact (see, for example, [7]):

R[x1, x2, x3, x4]
G ∼= R[w1, w2, w3, w4, w5]/JF , where (34)

JF = {h ∈ R[w1, w2, w3, w4, w5] : h(f1, f2, f3, f4, f5) = 0 ∈ R[x1, x2, x3, x4]} =

〈q〉, and q(w1, w2, w3, w4, w5) = 4w2
1w3 + 8w1w2w5 + 2w1w3w5 − 2w1w

2
4w5+

16w2
2 − 8w2w3 − 8w2w

2
4 + 4w2w

2
5 + w2

3 − 2w3w
2
4 + w4

4

In order to compute JF , the syzygy ideal, one can use, for example, the elimination
method based on computation of a Gröbner basis for the ideal JF = 〈f2 − w1, f4 −
w2, f5 − w3, f1 − w4, f3 − w5〉 ⊂ R[x1, x2, x3, x4, w1, w2, w3, w4, w5] [7]. The above
generator for JF was computed analytically and also verified using Macaulay2 [17]. ¦
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F Computational Issues

Proposition 33 Let B ∈ B and hB(O) = |B∩O|
|O|

. Then hB : SW → R is B̃-measurable,

and hB ◦ [w] : W → R is B-measurable.
Proof. Let B ∈ B, then

hB([w]) =
1

|G|

∑

g∈G

IB(gw). (53)

To see this, notice

hB([w]) =
1

|Gw||[w]|

∑

hGw∈G/Gw

|Gw|IB(hw)

=
1

|G|

∑

hGw∈G/Gw

|hGw|IB(hw) (54)

=
1

|G|

∑

hGw∈G/Gw

∑

g∈hGw

IB(gw) (55)

=
1

|G|

∑

g∈G

IB(gw). (56)

Equalities (54)-(56) follow from the isomorphism between the orbit [w] and G/Gw,
the left cosets hGw of Gw, the stabilizer of [w]. Evidently, IB(gw) is measurable for
all g ∈ G. ¦

Proposition 34
R∗ = π∗2 ◦ π

∗
1

Proof. Let B ∈ B, then

R∗(P )(B) =
1

|G|

∑

g∈G

P (gB) (57)

= EPhB([·]) by (53)

= EP
|[w] ∩B|

|[w]|

= Eπ∗1(P )
|O ∩B|

|O|
(58)

= π∗2 ◦ π
∗
1(P )(B). (59)

Equality (57) is due to (36) and (7). Equalities (58) and (59) follow from the defini-
tions (23) and (24). ¦
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