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Abstract

Risk managers use portfolios to diversify away the unpriced risk of

individual securities. In this paper we compare the beneÞts of portfolio

diversiÞcation for downside risk with the variance. The risk of a secu-

rity is decomposed into a part which is attributable to the market risk

and an orthogonal risk factor. The orthogonal part consists of an id-

iosyncratic part and a part which is attributable to dependency between

assets, but which cannot be explained by the market risk. We Þnd that

the idiosyncratic downside risk evaporates more rapidly than the idiosyn-

cratic variance risk. For this we offer a theoretical explanation on basis

of the heavy tail properties of the asset return distributions. We also Þnd

that the non-diversiÞable non-market factors are more important for the

downside risk than for the global risk measure.

∗The Þrst author beneÞtted from a research grant of the Tinbergen Institute.
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1 Introduction

Risk managers use portfolios to diversify away the unpriced risk of individual

securities. This topic has been well studied for global risk measures like the

variance, see e.g. the textbook by Elton and Gruber (1995, ch.4). In this

paper we study the beneÞts of portfolio diversiÞcation with respect to extreme

downside risk known as the zero-th lower partial moment (i.e. the inverse of the

VaR -Value at Risk- risk measure). The risk of a security is decomposed into a

part which is attributable to the market risk and an orthogonal risk factor. The

orthogonal part consists of an idiosyncratic part and a part which is attributable

to dependency between assets but which cannot be explained by the market risk,

i.e. there are other factors. Let the "diversiÞcation speed" denote the inverse

of the number of assets that have to be included into the portfolio in order to

eliminate the idiosyncratic parts of the orthogonal risk factors. We compare the

diversiÞcation speed of the downside risk measure with the diversiÞcation speed

regarding the variance. We Þnd that the idiosyncratic downside risk evaporates

at double the speed by which the idiosyncratic variance part disappears. For

this we offer a theoretical explanation on basis of the heavy tail properties of the

asset return distributions. We also Þnd that the non-diversiÞable non-market

factors are more important for the downside risk than for the global risk measure.

Furthermore, we provide predictions for the downside risk diversiÞcation beneÞts

beyond the range of the empirical distribution function.

The diversiÞcation speed of the variance risk measure for the idiosyncratic

risk part is equal to 1/n, where n is the number of securities (assuming the
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idiosyncratic parts of the different securities have comparable variances). With

independent risks, the variance of the sum is just the sum of the variances,

regardless the distribution of the risks (provided the variance exists). The in-

tuition for the higher diversiÞcation speed of the downside risk measure is as

follows. For downside risk measures like the lower partial moments the tail

shape of the distribution is important, since the tail shape governs the upper

boundary of the integral. It is a well known fact that security returns are heavy

tail distributed, see e.g. Jansen and De Vries (1991). Thus the diversiÞcation

speed is dictated by the heavy tail property of the sum (by comparison, this

would be an exponential rate in case of the normal distribution). For a global

risk measure like the variance, the tail properties only play a role in the deter-

mination of the size of the variance of the individual random variable. But for

partial moments the sum operator enters the boundary of the integral. A sine

qua non for the existence of the variance is that the tail of the distribution must

go down at least at a quadratic speed. Thus the tail shape, even of the heavy

tail distributions, must be such that it beats the quadratic rate and hence the

higher diversiÞcation speed of the downside risk measure. For example, in case

of independent Student-t distributions with ν > 2 degrees of freedom, ensuring

the existence of the variance, the diversiÞcation speed of the downside risk mea-

sure equals 1/n1/(ν−1) (and hence exceeds the speed of the variance in all cases

for which the variance exists, i.e. if ν > 2). This intuition is made rigorous

below by means of the celebrated Feller convolution theorem for heavy tailed

(i.e. regularly varying) distributions.

3



For the empirical counterpart of this analysis, we brießy review the semi-

parametric approach to estimating the (extreme) downside risk. The heavy

tail feature is captured by a Pareto distribution like term, of which one needs to

estimate the tail index and scale coefficient. We consider estimation by means of

a pooled data set on basis of the assumption that the tail indices of the different

securities and risk components are equal. We do allow for heterogeneity of the

scale coefficients, though. Most securities� distributions display equal hyperbolic

tail coefficients, but do differ considerably in terms of their scale coefficients, see

Hyung and De Vries (2002). Within this framework it is possible to calculate

the diversiÞcation effects beyond the sample range and for hypothetically larger

portfolios, if we make some assumptions regarding the market model betas and

scale coefficients of the orthogonal risk factors.

We start our essay by reviewing the Feller�s convolution theorem for distri-

butions with heavy tails. Subsequently, we study the diversiÞcation problem

in more detail by adding the market factor. The relevance of the theoretical

results for the downside risk portfolio diversiÞcation question is demonstrated

by an application to S&P stock returns.

2 DiversiÞcation Effects and the Feller Convo-

lution Theorem

In this section we only consider securities which are independent and identically

distributed. In the next section this counterfactual assumption, as least as far as
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equities are concerned, is relaxed by allowing for common factors. Let Ri denote

the logarithmic return of the i−th security. Suppose the {Ri} are generated by

a distribution with heavy tails in the sense of regular variation at inÞnity. Thus

far from the origin the Pareto term dominates:

Pr {Ri ≤ −x} = Aix
−α[1 + o(1)], α > 0, Ai > 0, (1)

as x → ∞. The Pareto term implies that only moments up to α are bounded

and hence the informal terminology of heavy tails. Per contrast the normal

distribution has all moments bounded thanks to the exponential tail shape.

Distributions like the Student-t, Pareto, non-normal sum-stable distributions

all have regularly varying tails. Downside risk measures like the VaR directly

pick up differences in tail behavior. In this paper we focus on the loss probability

Pr {Ri ≤ −x} at high loss levels x as our measure of downside risk, rather than

at the loss level x as in case of the VaR measure.

An implication of the regular variation property is the simplicity of the tail

probabilities for convoluted data. Suppose the {Ri} are generated by a heavy-

tailed distribution which satisÞes (1). From the Feller�s Theorem (1971, VIII.8),

the distribution of the k−sum satisÞes

Pr

(
kX
i=1

Ri ≤ −x
)

= kAx−α[1 + o(1)], as x→∞.

From this one can derive the diversiÞcation effect for the equally weighted port-

folio R = 1
k

Pk
i=1Ri, see Dacorogna et al. (2001). The following Þrst order
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approximation for the diversiÞcation effect regarding the downside risk obtains

Pr

(
1

k

kX
i=1

Ri ≤ −x
)
≈ k1−αAx−α. (2)

By comparison, if the variance would be used as the risk measure (assuming

α > 2), the portfolio has a variance which declines at a rate k only.

Under the heterogeneity of the scale coefficients Ai, the equivalent of equa-

tion (2) reads

Pr

(
1

k

kX
i=1

Ri ≤ −x
)
≈ k−α

Ã
kX
i=1

Ai

!
x−α. (3)

At a constant VaR level x, increasing the number k of included securities

decreases the probability of loss by k1−α. If α > 2, then downside diversiÞca-

tion goes at a higher speed than if the returns would be normally distributed.

Hyung and De Vries (2002) investigate these diversiÞcation effects by means of

a simulation study and an application to portfolios with equities. This study

did not distinguish between different risk components and their contribution to

the downside risk. The following section extends the results to the case where

there are common and idiosyncratic risk factors.

3 DiversiÞcation Effects in Factor Models

We relax the assumption of independence between security returns and allow

for non-diversiÞable market risk. The market risk reduces the beneÞts from
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diversiÞcation to the elimination of the idiosyncratic component of the risk.

First consider the single index model in which all risk which is orthogonal to

the market risk R is security speciÞc

Ri = βiR+Qi, (4)

where R, is the return on the market portfolio, βi is the amount of market

risk and Qi is the idiosyncratic risk of the return on asset i. The idiosyncratic

risk may be diversiÞed away fully in arbitrarily large portfolios and hence is

not priced. But the cross-sectional dependence induced by common market risk

factor has to be held in any portfolio.

We now apply Feller�s theorem again for deriving the beneÞts from cross-

sectional portfolio diversiÞcation in the single index model. Consider an equally

weighted portfolio of k assets. Let β = 1
k

Pk
i=1 βi. The case of unequally

weighted portfolios is but a minor extension left to the reader for consideration

of space. In the single index model the Qi are cross-sectionally independent and

are independent from the market risk factor R. Suppose in addition that the

Qi satisfy Pr {Qi ≤ −x} ≈ Aix
−α for all i, and that Pr {R ≤ −x} ≈ Arx

−α.

The diversiÞcation beneÞts from the equally weighted portfolio regarding the

downside risk measure for the case of homogenous scale coefficients Ai = A

then follow as

Pr

(
1

k

kX
i=1

Ri ≤ −x
)
≈ k1−αAx−α[1 + o(1)] + β

α
Arx

−α[1 + o(1)], (5)
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as x→∞. If the scale coefficients are heterogenous, the equivalent of equation

(5) reads

Pr

(
1

k

kX
i=1

Ri ≤ −x
)
≈ k−α

Ã
kX
i=1

Ai

!
x−α + β

α
Arx

−α . (6)

In arbitrarily large portfolios one should see that all downside risk is driven by

the market factor, if α > 1

Pr

(
1

k

kX
i=1

Ri ≤ −x
)
≈ βαArx−α

for large k.

In general one Þnds the single index model does not hold exactly due to the

fact that Cov[Qi, Qj ] is typically non-zero for off diagonal elements as well. Thus

though the Qi are uncorrelated with the market risk factor R by construction,

they are not cross sectionally independent from each other; moreover, one can

imagine they may not even be independent from R. This case is usually referred

to as the market model. For example, let there be one other common factor F .

This factor is uncorrelated with R, but the Cov[Qi, F ]/Cov[F,F ] = τi say. Let

τ = 1
k

Pk
i=1 τi, and assume Pr {F ≤ −x} ≈ Afx−α. Then, by analogy with the

foregoing results

Pr

(
1

k

kX
i=1

Ri ≤ −x
)
≈ k−α

Ã
kX
i=1

Ai

!
x−α + β

α
Arx

−α + ταAfx
−α. (7)
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4 Estimation by Pooling

To investigate the relevance of the above downside risk diversiÞcation theory, we

need to estimate the various downside risk components. To explain the details

of the estimation procedure, consider again the simple setup in (3). To be able

to calculate the downside risk measure, one needs estimates of the tail index

α and the scale coefficients Ai. A popular estimator for the inverse of the tail

index is Hill�s (1975) estimator. If the only source of heterogeneity are the scale

coefficients, one can pool all return series. Let {R11, ..., R1n, ..., Rk1, ..., Rkn} be

the sample of returns. Denote by Z(i) the i-th descending order statistic from

{R11, ..., R1n, ..., Rk1, ..., Rkn}. If we estimate the left tail of the distribution, it

is understood that we take the losses (reverse signs). The Hill estimator reads

d1/α =
1

m

mX
i=1

ln
¡
Z(i)

¢− ln
¡
Z(m+1)

¢
. (8)

This estimator requires a choice of the number of the highest order statistics m

to be included, i.e. one needs to locate the start of the tail area. We imple-

mented the subsample bootstrap method proposed by Danielsson et al. (2000)

to determine m. The estimator for the scale A when A = Ai for all i is

bA =
m

kn
(Z(m+1))

bα.

Note that m/nk is the empirical probability associated with Z(m+1), and the

estimator bA follows intuitively from (1). Under the heterogeneity of Ai one
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takes

bAi =
mi

n
(Z(m+1))

bα

where mi is such that

Ri(1) ≥ ... ≥ Ri(mi) ≥ Z(m+1) ≥ Ri(mi+1) ≥ ... ≥ Rin.

Note that
Pk
i=1mi = m. This implies that by the pooling method we obtain

exactly the same portfolio probabilities whether or not one assumes (counter-

factually incorrect) identical or heterogenous scale coefficients, since

k−bα Ã
kX
i=1

bAi!x−bα = k−bα Ã
kX
i=1

mi

n
(Z(m+1))

bα!
x−bα

= k−bα
³Pk

i=1mi

´
n

(Z(m+1))
bαx−bα

= k1−bα bAx−bα.

We can adapt this pooling method to the market model with little modiÞca-

tion. Pooling the series {R} , {Q1} , ... {Qk}, one can use the same procedure as

in the case of cross-independence.1 For the estimation of the tail index one uses

again (8), where in this case {Z} = {Rr1, ..., Rrn, Q11, ..., Q1n, ..., Qk1, ..., Qkn}.

1The determination of the parameters βi and the residuals Qi entering in the deÞnition of
the market model is done by regressing the stock returns on the market return. The coefficient
βi is thus given by the ordinary least squares estimator, which is consistent as long as the
residuals are white noise and have zero mean and Þnite variance. The idiosyncratic noise Qi
is obtained by subtracting βi times the market return to the stock return.
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Estimators for the scales are

bAi =
mi

n
(Z(m+1))

bα, i = 1, ..., k and r,

where mi is such that

Xi(1) ≥ ... ≥ Xi(mi) ≥ Z(m+1) ≥ Xi(mi+1) ≥ ... ≥ Xin,

where Xi can be R or Qi.

In case the tail indices differ across securities and risk factors, the above

can be easily adapted to estimation on individual series. There is however

considerable evidence that the tail indices are comparable for equities from the

S&P 500 index, see e.g. Jansen and De Vries (1991) and Hyung and De Vries

(2002). Therefore we decided to proceed on basis of the assumption that the

tail indices are equal.

5 Empirical Analysis of the DiversiÞcation Speed

We now apply our theoretical results to the daily returns of a set of stocks. In

order to estimate the parameters of the market model we choose the Standard

and Poor�s 500 index as a representation of the market factor. This is certainly

not the market portfolio as in the CAPM; nevertheless, the S&P 500 index

represents about 80% of the total market capitalization. To see the effects of

portfolio diversiÞcation, we choose arbitrarily 15 stocks from the S&P 100 index
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in March of 2001. We use the daily returns (close-to-close data), including cash

dividends. The data were obtained from the Datastream. The data span runs

from January 2, 1980, through March 6, 2001, giving a sample size of n = 5,526.

Thus more than 20 years of daily data are considered, including the 1987 Crash.

All results are in terms of the excess returns above the risk free interest rate

(three month US Treasury bills).

The summary statistics for each stock return series and the market factor

are given in Table 1. On an annual basis the excess returns hover around

7.5% and have comparable second moments. The excess returns all exhibit

considerably higher than normal kurtosis. This latter feature is also captured

by the estimates of the tail index α in Table 2. In this table we report tail index

and scale estimates using the individual series, counter to the pooling method

outlined above. This is done in order to show that the tail indices are indeed

rather similar, while there is considerable variation in the scales. This motivates

the single tail index, heterogenous scale model implemented in the other tables.

Table 2 also gives the beta estimates for the market model.

In Table 3 computations proceed by using the pooling method, assuming

identical tail indices for all risk components. We report the estimates of the

scale parameter A, and the optimal number of order statistics m. Both are

calculated for the series of excess returns and for the (constructed) orthogonal

residuals from the market model (using the betas from Table 2). The tail index

estimate using all excess returns is 3.163, while when we use all the residuals the

tail index is 3.246. The scale parameter estimates, however, differ considerably
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since these range between 14.4 and 46.4 for the excess returns, and are between

4.3 and 42.2 for the market returns and residuals respectively. We note that

the scale estimates for the excess returns using the pooling method are more

homogeneous than when using the individual series approach from Table 2.

The effects of portfolio diversiÞcation are reported in Table 4. The downside

risk measure is the probability of a loss in excess of the VaR level s; we report

at four different loss levels (respectively s =7.10, 11.69, 13.33 and 15.97). Four

different levels of portfolio aggregation are considered: one stock, 5 stocks, 10

stocks and 15 stocks. The numbers in row EMP are the probabilities from the

empirical distribution function of the total return series. The normal law is

often used as the workhorse distribution model in Þnance, even though it does

not capture the characteristic tail feature of the data. Therefore in the rows

labelled NOR we give the probabilities from the normal model based formula,

using the mean and variance estimates from the averaged series. The estimated

values in rows FAT were obtained by the heavy tail model using the averaged

total excess returns
Pk

i=1Ri/k. The rows CDp give the probability estimates

from the pooled series on the basis of (6) assuming the heterogenous scale model.

One notes that the normal model does well in the center, but performs miserable

as one moves into the tail part. Per contrast, the averaged series in rows FAT

is always quite close to the empirical distribution function in the tail area. This

shows that the heavy tail model much better captures the tail properties. If we

turn to the last rows , one notes that the model in (6) does capture a considerable

part of the tail risk of the portfolio, but that there is a gap between the tail risk
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Figure 1: Downside Risk Decomposition at s=-7.10

which is explained by the model and which is left unexplained. This is further

interpreted below.

To judge these results a graphical exposition is insightful. In Figures 1 and

2 we graph the downside risk (VaR probability levels) against the number of

securities which are included in the portfolio. Figure 1 is for the 7.10 VaR level,

and Figure 2 concerns the 15.97 VaR level. The top line gives the total amount

of tail risk by means of the empirical distribution function. The grey area consti-

tutes the market risk component, while the black area contains the idiosyncratic

risk part of the residual risk from model (6). Note that the idiosyncratic risk is

basically eliminated once the portfolio includes about seven stocks. To put this

result into perspective, we also provide a graph for the speed of diversiÞcation

concerning the variance, see Figure 3. As can be seen from this latter Þgure, it
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takes approximately double the number of securities to eliminate the variance

part contributed by the idiosyncratic risk part (which is consistent with the

value of the tail index), cf. Elton and Grubel (1995). Hence, the diversiÞcation

speed is higher for the downside risk measure. This corroborates the theoretical

predictions above. Interestingly as noted at the end of the previous paragraph,

another remarkable difference between the last Þgure and the Þrst two Þgures

is the size of the residual risk driven by the factors other than the market fac-

tor. While this component is relatively minor for the variance risk measure, it

is even larger than the market risk component for the downside risk measure.

This points to the presence of another factor F uncorrelated with R as in (7).

This other factor induces correlation between the residuals, see Figure 3. This

correlation is small but not negligible. But it the importance of this other factor

is really with respect to the downside risk. In future research we hope to relate

this factor to economic variables.

6 Out-of-sample, Out-of-portfolio

The semi-parametric approach we followed to construct the downside risk mea-

sure can also be used to go beyond the sample. We consider two possible

applications of this technique which might be of use to risk managers. The Þrst

application asks the question how much extra diversiÞcation beneÞts could be

derived from adding more securities, without having observations on these secu-

rities. By making an assumption regarding the value of the average beta and the
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average scale of the residual risk factors in the enlarged portfolio, one can use

(6) to extrapolate to larger than sample size portfolios. A second application is

to increase the loss levels at which one wants to evaluate the downside risk level

beyond the worst case in sample. Moreover, even at the border of the sample

our approach has real beneÞts. By its very nature the empirical distribution is

bounded by the worst case and hence has its limitations, since the worst case

is a bad estimator of the quantile at the 1/n probability level (and vice versa).

Thus increasing the loss level x in (6) beyond the worst case gives an idea about

the risk of observing even higher losses.

In Table 5 the block denoted as Case I just summarizes some information

from the previous Table 4. The Case III block addresses the Þrst application

by increasing the number of securities k beyond the sample value of 15. We

assumed the following average beta values: β = 0.7, 0.83 and 0.9. The Case II

block increases the loss return level. In Table 4 we used 15.97 as the highest

loss level. Above this level many securities have no observations. There is one

equity with much higher loss returns and we used this one to provide the �out

of sample� loss levels of 22.03, 25.21, 33.69 and 40.45 respectively. To interpret

Case III, note that the inclusion of more stocks that have a close correlation

with the market component increases the loss probability for a given VaR level.

For example consider a portfolio of k = 30 stocks, at the -15.97 quantile when

β = 0.7 the probability is 0.0169 but when β = 0.9 the probability increases to

0.0381.
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7 Conclusion

Risk managers use portfolios to diversify away the unpriced risk of individual

securities. In this paper we study the beneÞts of portfolio diversiÞcation with

respect to extreme downside risk, or the VaR (Value at Risk) risk measure.

The risk of a security is decomposed into a part which is attributable to the

market risk and an orthogonal risk factor. The orthogonal part consists of

an idiosyncratic part and a part which is attributable to dependency between

assets but which cannot be explained by the market risk, i.e there are other

factors. We compare the diversiÞcation speed of the downside risk measure with

the diversiÞcation speed regarding the variance and Þnd that the idiosyncratic

downside risk evaporates at a higher speed. For this we offer a theoretical

explanation on basis of the heavy tail properties of the asset return distributions.

We also Þnd that the non-diversiÞable non-market factors are more important

for the downside risk than for the global risk measure. Furthermore, we provide

predictions for the downside risk diversiÞcation beneÞts beyond the range of the

empirical distribution function.

This research can be extended in several directions. For theoretical reasons

as well for empirical reasons it is of interest to extend the analysis to portfolios

which include securities with heterogenous tail indices. Given the large gaps in

Figures 1 and 2 between the total downside risk and the market factor downside

risk contribution, it is of interest to see whether one can identify the remaining

risk factors F as in (7). Moreover, one would like to explain why these remaining

risk factors are relatively unimportant for the global risk measure.
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Table 1. Selected Stocks and Summary Statistics of Excess returns

Series Name µ1 µ2 µ3 µ4

m S&P 500 Index .0747 2.52 -2.31 55.49
1 ALCOA .0707 4.84 -0.26 13.39
2 AT & T .0392 4.33 -0.35 16.41
3 BLACK & DECKER -.0168 5.61 -0.32 10.57
4 CAMPBELL SOUP .0897 4.37 0.28 9.06
5 DISNEY (WALT) .0981 4.86 -1.30 29.82
6 ENTERGY .0454 4.06 -0.97 23.66
7 GEN.DYNAMICS .0764 4.53 0.26 10.24
8 HEINZ HJ .0968 3.99 0.11 6.35
9 JOHNSON & JOHNSON .1053 4.08 -0.32 9.45
10 MERCK .1212 3.96 -0.03 6.31
11 PEPSICO .1170 4.43 -0.04 7.82
12 RALSTON PURINA .1077 4.08 0.70 15.41
13 SEARS ROEBUCK .0542 4.91 -0.24 16.83
14 UNITED TECHNOLOGIES .0851 4.19 -0.10 6.83
15 XEROX -.0423 5.48 -1.78 33.74

Note: Observations cover 01/01/1980 - 03/06/2001, giving 5526 daily observa-
tions. The µ1, µ2, µ3 and µ4 denote the sample mean, standard error, skew-
ness and kurtosis of annualized excess returns, respectively. The estimates are
reported in terms of the excess returns above the risk free interest rate (US
Treasury bill 3 months).
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Table 2. Left Tail Parameter Estimates and Beta

Series α A m β
Rm 2.963 2.522 298 1
1 3.789 110.117 113 0.877
2 2.785 7.953 289 0.929
3 3.220 58.601 136 0.938
4 3.505 48.766 68 0.719
5 2.549 6.211 496 1.012
6 1.981 1.339 682 0.475
7 3.218 27.687 140 0.710
8 3.404 25.811 197 0.640
9 3.377 23.663 292 0.927
10 4.035 104.724 62 0.854
11 3.789 103.171 71 0.867
12 3.136 14.106 190 0.669
13 3.166 28.244 256 1.074
14 4.335 288.036 66 0.895
15 2.098 2.999 537 0.949

Note: The values in α,A,m, and β are respectively the tail index, the scale
parameter, the estimated optimal number of order statistics and market model
beta.
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Table 3. Left Tail Parameter Estimates

Excess returns Residuals
Series A m A m
T 23.0 16.3 19.6 1021
Rm - - 4.3 15
1 26.2 122 24.7 86
2 19.5 91 15.2 53
3 46.4 216 42.2 147
4 22.7 106 19.5 68
5 24.0 112 22.1 77
6 14.4 67 14.9 52
7 25.3 118 25.0 87
8 16.3 76 14.9 52
9 13.9 65 10.6 37
10 15.7 73 11.5 40
11 24.2 113 18.7 65
12 15.0 70 16.4 57
13 29.0 135 17.5 61
14 20.2 94 13.2 46
15 32.4 151 26.7 93

Note: The values in row T give estimates from the pooled series imposing
scale homogeneity. The values in rows Rm, 1, 2, ..., 15 give estimates for the
market returns and the individual stock series for the total excess returns and
the residual parts. The values in columns A and m are the scale parameter and
the estimated optimal number of order statistics imposing identical tail indices.
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Table 4. Lower Tail Probabilities in Percentages

s -7.10 -11.69
k 1 5 10 15 1 5 10 15

EMP 4.995 1.195 0.633 0.579 0.995 0.253 0.145 0.145
NOR 7.325 0.934 0.225 0.198 0.817 0.005 0.000 0.000
FAT 6.551 1.181 0.741 0.706 0.988 0.265 0.185 0.171
CDp - 0.633 0.392 0.423 - 0.125 0.078 0.084

s -13.33 -15.97
k 1 5 10 15 1 5 10 15

EMP 0.489 0.163 0.109 0.127 0.235 0.109 0.090 0.090
NOR 0.309 0.000 0.000 0.000 0.051 0.000 0.000 0.000
FAT 0.603 0.179 0.129 0.118 0.304 0.104 0.078 0.071
CDp - 0.082 0.051 0.055 - 0.046 0.028 0.030

Note: The entries in rows EMP are the probabilities from the empirical distri-
bution. The rows NOR and FAT report the probabilities calculated directly
from the parameters of the averaged series itself, where in the former case one
uses the presumption of normality and in the latter case regular variation is
imposed. The numbers in rows CDp are the probabilities estimated using the
pooled series. The k denotes the number of individual stocks included in the
averaged series, and s is the loss quantile. Note probabilities are written in
percentage format.
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Table 5. Lower Tail Probabilities: Beyond the Sample and the Market

s -7.10 -11.69 -13.33 -15.97 -22.03 -25.21 -33.69 -40.45
% 5.0 1.0 0.5 0.25 0.090 0.054 0.018 0.009

k CASE I CASE II
EMP 1.1946 .2534 .1629 .1086 .0362 .0362 .0181 .0181

5 FAT 1.1900 .2660 .1798 .1045 .0397 .0265 .0111 .0064
CDp .6093 .1205 .0789 .0439 .0154 .0100 .0039 .0021
EMP .6335 .1448 .1086 .0905 .0181 .0181 .0181 .0181

10 FAT .6800 .1490 .1001 .0578 .0217 .0144 .0060 .0034
CDp .3914 .0774 .0507 .0282 .0099 .0064 .0025 .0014
EMP .5792 .1448 .1267 .0905 .0181 .0181 .0181 .0181

15 FAT .7087 .1722 .1189 .0712 .0286 .0195 .0086 .0051
CDp .4227 .0836 .0547 .0304 .0107 .0069 .0027 .0015

CASE III
CDp1 .2375 .0470 .0307 .0171

20 CDp2 .4190 .0829 .0543 .0302
CDp3 .5318 .1052 .0689 .0383
CDp1 .2359 .0467 .0305 .0170

25 CDp2 .4175 .0826 .0541 .0301
CDp3 .5302 .1049 .0687 .0382
CDp1 .2350 .0465 .0304 .0169

30 CDp2 .4166 .0824 .0540 .0300
CDp3 .5294 .1047 .0686 .0381

Note: The entries in rows EMP are the probabilities from the empirical distri-
bution. The numbers in rows FAT are the probabilities calculated directly from
the parameters of averaged series itself. The numbers in row CDp are the prob-
abilities from the fat tail market model (6). The numbers in rows CDp1,2and 3
are calculated by imposing β = 0.7, 0.8358 and 0.9, respectively. The k denotes
the number of individual stocks included in the averaged series, and s gives the
loss quantile. Note probabilities are written in percentage format.
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