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Abstract
In this paper we consider a problem of adaption in estimating a fractional

derivative of an unknown density from observations in the Gaussian white noise.
This problem is closely related to the Wicksell problem. Under the assumption
that density belongs to a Sobolev class with unknown smoothness, an adaptive
estimator is constructed.

1 Introduction

We observe noisy data
Xk = θk + εξk, k = 1, 2, . . . , (1)

where ξk are i.i.d. N(0, 1), and the parameter ε > 0 is assumed to be known. Our
goal is to recover a vector v(θ) = (v1(θ), v2(θ), . . . ), with components vk(θ) = θk/

√
k,

such that v(θ) ∈ `2.
The problem of estimating v(θ) was recently considered by Golubev and Enikeeva

(2001). There, it is assumed that the vector θ = (θ1, θ2, . . . ) belongs to a certain
ellipsoid Θ:

θ ∈ Θ =

{
θ :

∞∑

k=1

a2
kθ

2
k ≤ 1

}
(2)

with fixed coefficients {ak}. For example, if Θ = Θβ is a Sobolev ellipsoid with the
smoothness parameter β and radius P , then ak = (πk)β/

√
P . Under the assumption

(2), the authors follow the classical approach of Pinsker (1980) to obtain an asymptot-
ically minimax estimator of v(θ). Unfortunately, ak, the parameters of the ellipsoid,
often cannot be completely specified a priori. Moreover, the estimator in (Golubev
and Enikeeva 2001) depends on an implicitly given smoothness parameter. There-
fore, there arises the problem of adaptive estimation. In adaptive estimation, one
usually has a list of models, for example, a family of Sobolev ellipsoids Θβ where P
is fixed, the parameter β belongs to some set B, but otherwise is unknown. It is then
desirable to construct an estimator that depends only on the observations X1, X2, . . .
and is asymptotically minimax for any Θβ, β ∈ B. Such an estimator is called an
adaptive estimator.

To motivate our investigation, consider the stochastic differential equation

dx(t) = g(t) dt + ε dw(t), t ∈ [0, 1], x(0) = 0, (3)
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where w(t) is the standard Wiener process, ε > 0 is a small parameter, and g(t) is
an unknown periodic function. We can consider the observations (3) in the domain
of their Fourier coefficients:

X̃k = θ̃k + εξ̃k, k = ±1,±2, . . . , (4)

where

X̃k =

∫ 1

0

φk(t) dx(t), θ̃k =

∫ 1

0

φk(t)g(t) dt

and ξ̃k =
1∫
0

φk(t) dw(t) are i.i.d. N(0, 1); {φk} is the trigonometric basis of L2(0, 1).

It is well-known that the derivative of order α ∈ R of the function g(t) can be
defined by the following formula (Zygmund 1968):

g(α)(t) =
∞∑

k=−∞
θ̃kφk(t) (2πik)α,

and, consequently,

g(−1/2)(t) =
∞∑

k=−∞

θ̃k√
k
φk(t) (2πi)−1/2.

Thus, the problem of estimating v(θ) from the observations (1) is similar to the prob-
lem of recovering the fractional derivative of order −1/2 from the observations (3).

The latter problem is, in turn, closely related to the Wicksell problem (Wick-
sell 1925), formulated as follows: A number of spheres are embedded in an opaque
medium. Let their radii be i.i.d. with an unknown distribution function F (x). Since
the medium is opaque, we cannot observe the radii of spheres directly. Instead, we
intersect the medium by a plane and observe resulting circular cross-sections. Let
Y1, . . . , Yn be the squared radii of the cross-sectional circles. The problem is to esti-
mate the distribution function F (x) from these observations. Under some reasonable
assumptions, it can be seen (Stoyan, Kendall, and Mecke 1995) that the random vari-
ables Yi are i.i.d.; denote their distribution function by G(y). The relation between F
and G is well-known:

1−G(y) =

∫ ∞

y

√
x− y dF (x)

( ∫ ∞

0

√
x dF (x)

)−1

.

If F is a Lipschitz function, this equation can be solved:

F (x) = 1− G(1/2)(x)

G(1/2)(0)
≡ 1− g(−1/2)(x)

g(−1/2)(0)
,

where g is the density of G. We refer the reader to the paper of Golubev and Levit
(1998) for a derivation of these formulas. Thus, in order to construct an estimator
in the Wicksell problem we have to estimate the fractional derivatives of the density
g at zero and on R+. Obviously, the Wicksell problem does not coincide with the
problem of estimation of the fractional derivative in the Gaussian white noise model.
However, they are related closely since for ε = n−1/2 in (3), on certain conditions, the
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corresponding statistical experiments are asymptotically equivalent in the Le Cam
sense (Nussbaum 1996).

In this paper we construct an adaptive asymptotically minimax estimator of the
vector v(θ) under the assumption that θ belongs to the Sobolev class Θβ with un-
known smoothness β. In Section 2 we formulate the main result and describe a
method of estimation and adaptation. Section 3 contains some auxiliary lemmas.
The proof of the main result and concluding remarks can be found in Section 4.

2 Adaptive estimation

We observe the data
Xk = θk + εξk, k = 1, 2, . . . . (5)

We would like to construct an adaptive estimator of the unknown vector v(θ) =
(v1, v2, . . . )

T with components vk = θk/
√

k from these observations with the only
assumption v(θ) ∈ `2. Denote for brevity the vector (X1, X2, . . . )

T by X.
Let v̂(X) = (v̂1(X), v̂2(X), . . . ) be an estimator of v(θ). Define the mean-square

risk of v̂:

Eθ

∥∥v̂(X)− v(θ)‖2 = Eθ

∞∑

k=1

∣∣v̂k − vk

∣∣2,

where Eθ is the expectation with respect to the measure corresponding to the distri-
bution of X.

We will look for an adaptive estimator of v(θ) in the class P of projection estima-
tors:

P =

{
v̂(W,X) : v̂k(W,X) = λk(W )

Xk√
k

}
,

where

λk(W ) =

{
1, k ≤ W,

0, otherwise.

The integer parameter W is called the bandwidth of the projection estimate. We
denote the corresponding projection estimator by v̂(W ) and its mean-square risk by
Rε(W, θ). Our aim is to find the best projection estimator of the vector θ. It is easy
to calculate the risk of v̂(W ):

Rε(W, θ) = Eθ‖v̂(W )− v(θ)‖2 = ε2

W∑

k=1

1

k
+

∞∑

k=W+1

θ2
k

k
. (6)

The choice of the class of projection estimators for adaptation is suggested by
the minimax approach. Let us return for a moment to the problem where prior
information is available. Suppose that θ belongs to the Sobolev ellipsoid Θβ:

∞∑

k=1

a2
kθ

2
k ≤ 1, a2

k = (πk)2β/P.

3



Taking into account this assumption, we can bound the risk (6) of the projection
estimator v̂(W ) from above:

Rε(W, θ) = ε2

W∑

k=1

1

k
+

∞∑

k=W+1

θ2
k

k

≤ ε2(log W + γ + o(1)) +
∞∑

k=W+1

θ2
ka

2
k ·

1

ka2
k

≤ ε2(log W + γ + o(1)) + sup
k>W

P

π2β
· k−2β−1

≤ ε2(log W + γ + o(1)) +
P

π2β
W−2β−1.

Minimizing the last expression with respect to W we get

W ∗
β =

(
P (2β + 1)

π2βε2

) 1
2β+1

. (7)

Thus an upper bound on the mean square risk is

sup
θ∈Θβ

Rε(W
∗
β , θ) ≤ ε2

2β + 1
log

P (2β + 1)

ε2π2β
+ ε2(γ +

1

2β + 1
) + o(ε2).

From Golubev and Enikeeva (2001) we have a lower bound on the risk and, conse-
quently, the asymptotically minimax risk of the second order in this case is:

infbv sup
θ∈Θβ

Rε(W, θ) =
ε2

2β + 1
log

P (2β + 1)

ε2π2β
+ ε2(γ − 2

2β + 1
) + o(ε2).

Thus the projection estimator is asymptotically minimax on the Sobolev ellipsoid
Θβ. Our goal is to find an adaptive minimax estimator in the class of projection
estimators but with W data dependent.

An estimator v̂ of the vector v(θ) is exactly adaptive in minimax sense on the
family of classes Θβ, β ∈ B if

lim
ε→0

sup
θ∈Θβ

Eθ‖v̂ − v(θ)‖2

infev sup
θ∈Θβ

Eθ‖ṽ − v(θ)‖2
= 1 ∀ β ∈ B.

Let us return to the problem of adaptive choice of W . If θ = (θ1, θ2, . . . ) were
known, then an optimal bandwidth could be found as the minimizer of the functional
Rε(W, θ):

W oracle = arg min
W

Rε(W, θ).

Indeed, we cannot do better without knowing θ. We will call a map θ 7→ v̂(W oracle)
an oracle and the value

Rε(W
oracle, θ) = min

W
Rε(W, θ)
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the oracle risk. Hereafter we will also call the bandwidth W oralce oracle. Of course,
v̂(W oracle) is not an estimator because it depends on θ that we can not know. However,
we attempt to construct an estimator which will adapt to the oracle in the sense of
imitating the oracle risk.

More precisely, an estimator v̂(W ) is called adaptive to the oracle W oracle on the
set Θ if there exists a constant C < ∞ such that

Rε(W, θ) ≤ CRε(W
oracle, θ) (8)

for all θ ∈ Θ and 0 < ε < 1.
An estimator v̂(W ) is exactly adaptive to the oracle W oracle on the set Θ if for all

θ ∈ Θ we have
Rε(W, θ) ≤ (1 + o(1))Rε(W

oracle, θ), (9)

where o(1) → 0, as ε → 0 uniformly in θ ∈ Θ.
Inequalities of the type (8), (9) are called oracle inequalities.

We would like to find an optimal bandwidth Ŵ such that the risk of the corre-
sponding projection estimator Rε(Ŵ , θ) converges to the risk of the oracle, as ε → 0.
The general method to find such an estimator is based on the idea of unbiased risk
estimation. This method goes back to the works of Mallows (1973) and Akaike (1973).

It is easy to see that X2
k − ε2 is an unbiased estimator of the parameter θ2

k:

Eθ(X
2
k − ε2) = θ2

k.

Thus, substituting θ2
k by this estimate in Rε(W, θ), we arrive at an unbiased estimate

of the risk:

Rε(W, θ) = ε2

W∑

k=1

1

k
+

∞∑

k=W+1

θ2
k

k

= ε2

W∑

k=1

1

k
+ ‖v(θ)‖2 −

W∑

k=1

θ2
k

k

= 2ε2

W∑

k=1

1

k
+ ‖v(θ)‖2 − Eθ

W∑

k=1

X2
k

k
.

It follows that

Rε(W, θ)− ‖v(θ)‖2 = 2ε2

W∑

k=1

1

k
− Eθ

W∑

k=1

X2
k

k

= EθU(W,X),

where

U(W,X) = 2ε2

W∑

k=1

1

k
−

W∑

k=1

X2
k

k
.

Therefore U(W,X) is unbiased estimator of the risk Rε(W, θ) up to the constant
‖v(θ)‖:

Rε(W, θ)− ‖v(θ)‖2 = EθU(W,X).
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Now, to find an optimal W we minimize the functional U(W,X) in W :

Ŵ = arg min
W∈NU(W,X). (10)

We arrive at

Theorem 1. Let Ŵ be as in (10). For any α ∈ (0, 1) the following oracle inequality
holds:

Rε(Ŵ , θ) ≤ 1

1− α
min
W∈NRε(W, θ) + ε2C(α), (11)

for every v(θ) ∈ `2 and for

C(α) =
1

1− α

(√
2

3
π +

2

α

)
.

We postpone the proof until Section 4.

Remark 1. It follows from the oracle inequality (11) that the estimator v̂(Ŵ ) is
exactly adaptive to the oracle W oracle for all v(θ) ∈ `2.
Proof. Indeed, take α = (log log ε−2)−1. Then we have for any v(θ) ∈ `2

Rε(Ŵ , θ) ≤ (1 + (log log ε−2)−1)R(W oracle, θ) + 2ε2 log log ε−2(1 + o(1))

≤ (1 + o(1)R(W oracle, θ), ε → 0. 2

Remark 2. The constructed adaptive to the oracle estimator v̂(Ŵ ) is exactly adaptive
in minimax sense on the family of Sobolev ellipsoids {Θβ, β > 1/2}:

lim
ε→0

sup
θ∈Θβ

Eθ‖v̂(Ŵ )− v(θ)‖2

infev sup
θ∈Θβ

Eθ‖ṽ − v(θ)‖2
= 1, ∀ β > 1/2.

Proof. Let β be fixed. From the oracle inequality it follows that

sup
θ∈Θβ

Eθ‖v̂(Ŵ )− v(θ)‖2 ≤ 1

1− α
sup
θ∈Θβ

Eθ‖v̂(W oracle)− v(θ)‖2

+ ε2C(α).

Then, for the optimal bandwidth W ∗
β from (7),

sup
θ∈Θβ

Eθ‖v̂(W oracle)− v(θ)‖2 ≤ sup
θ∈Θβ

Eθ‖v̂(W ∗
β )− v(θ)‖2

≤ 1

2β + 1
ε2 log ε−2(1 + o(1)), ε → 0.

Thus for any ellipsoid Θβ, and for a sequence α = α(ε) = (log log ε−2)−1, ε → 0, we
have

sup
θ∈Θβ

Eθ‖v̂(Ŵ )− v(θ)‖2 ≤ 1

2β + 1
ε2 log ε−2(1 + o(1)).
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As it was mentioned before, the lower bound of the minimax risk for Sobolev ellipsoids
has the same form (see Golubev and Enikeeva (2001)):

infbv sup
θ∈Θβ

Eθ‖v̂ − v(θ)‖2 ≥ 1

2β + 1
ε2 log ε−2(1 + o(1)).

It follows that the estimator v̂(Ŵ ) is asymptotically minimax efficient for any ellipsoid
Θβ:

lim
ε→0

sup
θ∈Θβ

Eθ‖v̂(Ŵ )− v(θ)‖2

infev sup
θ∈Θβ

Eθ‖ṽ − v(θ)‖2
= 1, ∀ β > 1/2.

This estimator is adaptive and does not depend on the smoothness parameter of the
ellipsoid Θβ. 2

Oracle inequalities in minimax adaptive constructions appeared in the works of
Golubev and Nussbaum (Golubev 1987; Golubev 1992; Golubev and Nussbaum
1992). We refer the reader to the paper of Kneip (1993) for an extensive bibliog-
raphy on data-driven choice of smoothing parameters. More recent references are
(Donoho and Johnstone 1995; Birgé and Massart 2001; Cavalier and Tsybakov 2002;
Cavalier, Golubev, Picard, and Tsybakov 2002).

3 Auxiliary tools

To prove the main result we need two auxiliary lemmas.

Lemma 1. Let ν be a positive integer random variable, ξk be i.i.d. standard Gaussian
random variables. Then

E
ν∑

k=1

ξ2
k − 1

k
≤

√
2

3
π. (12)

Proof. Let us note that

E
ν∑

k=1

ξ2
k − 1

k
≤ Emax

m∈N

m∑

k=1

ξ2
k − 1

k
= lim

N→∞
E

(
max

1≤m≤N

m∑

k=1

ξ2
k − 1

k

)
. (13)

It is easy to see that the sequence

∣∣∣∣
m∑

k=1

ξ2
k−1

k

∣∣∣∣ is a non-negative submartingale bounded

in L2, thus we can apply Doob’s Lp inequality (Williams 1991, pg. 143) taking p =
q = 2: 

E max
1≤m≤N

∣∣∣∣∣
m∑

k=1

ξ2
k − 1

k

∣∣∣∣∣

2



1/2

≤ 2


E

∣∣∣∣∣
m∑

k=1

ξ2
k − 1

k

∣∣∣∣∣

2



1/2

.

Since ξk are standard Gaussian, we have

E

(
N∑

k=1

ξ2
k − 1

k

)2

= E
N∑

k=1

(ξ2
k − 1)2

k2
= 2

N∑

k=1

1

k2
.

7



Therefore

E max
1≤m≤N

∣∣∣∣∣
m∑

k=1

ξ2
k − 1

k

∣∣∣∣∣

2

≤ 4
N∑

k=1

1

k2
.

Next, from the Jensen inequality we have

E max
1≤m≤N

m∑

k=1

ξ2
k − 1

k
≤


E max

1≤m≤N

(
m∑

k=1

ξ2
k − 1

k

)2



1/2

≤ 2

(
N∑

k=1

1

k2

)1/2

.

Applying this inequality to (13), we get

lim
N→∞

E

(
max

1≤m≤N

m∑

k=1

ξ2
k − 1

k

)
≤ 2

( ∞∑

k=1

1

k2

)1/2

=

√
2

3
π.

Thus the lemma follows. 2

Lemma 2. Let ν be a positive integer random variable, ξk be i.i.d. standard Gaussian
random variables, v(θ) ∈ `2, and α ∈ (0, 1). Then

Eθ

(
2ε

∞∑

k=ν+1

θkξk

k
+ α

(
ε2

ν∑

k=1

1

k
+

∞∑

k=ν+1

θ2
k

k

))
≥ −2ε2

α
. (14)

Proof. Note that
∞∑

k=ν+1

θkξk

k
= w

( ∞∑

k=ν+1

θ2
k

k2

)
,

where w(t) is a standard Wiener process. Applying the following property of the
Wiener process:

Emin
t≥0

{
w(t) +

µt

2

}
≥ − 1

µ

we can bound the left-hand side of (14) from above. Set t0 =
∞∑

k=ν+1

θ2
k

k2 . Then

Eθ

{
2ε

∞∑

k=ν+1

θkξk

k
+ α

(
ε2

ν∑

k=1

1

k
+

∞∑

k=ν+1

θ2
k

k

)}

≥ E {2εw(t0) + αt0} = 2εE
{

w(t0) +
α

2ε
t0

}

≥ 2εEmin
t≥0
{w(t) +

α

2ε
t} ≥ −2ε2

α
. 2
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4 Proof of the main result

Now we can prove the main result.

Proof. It is easy to see that for any α ∈ (0, 1)

EθU(Ŵ , X) = 2ε2Eθ

cW∑
k=1

1

k
− Eθ

cW∑
k=1

θ2
k

k
− 2εEθ

cW∑
k=1

θkξk

k
− ε2Eθ

cW∑
k=1

ξ2
k

k

= (1− α)Rε(Ŵ , θ)− ‖v(θ)‖2

+ 2εEθ

∞∑

cW+1

θkξk

k
+ αEθ


ε2

cW∑
k=1

1

k
+

∞∑

k=cW+1

θ2
k

k




− ε2Eθ

cW∑
k=1

ξ2
k − 1

k
.

We can bound this equality from below using Lemmas 1 and 2:

EθU(Ŵ ,X) ≥ (1− α)Rε(Ŵ , θ)− ‖θ‖2 − 2ε2

α
− ε2

√
2

3
π. (15)

Therefore, taking into account that for any W

EθU(Ŵ ,X) ≤ EθU(W,X) ≡ Rε(W, θ)− ‖θ‖2,

we can rewrite (15) as

Rε(W, θ) ≥ (1− α)Rε(Ŵ , θ)− 2ε2

α
− ε2

√
2

3
π,

and, consequently, for any W

Rε(Ŵ , θ) ≤ 1

1− α
Rε(W, θ) +

ε2

1− α

(√
2

3
π +

2

α

)
.

Thus the theorem follows. 2

Concluding Remarks. We discussed the open question of adaptation in the
Wicksell problem by considering a similar problem of adaptation in estimating the
fractional derivative of the signal g in the white noise model. In the latter problem,
we consider two cases: estimating the derivative g(−1/2) on R+ and at 0. These two
cases are equivalent, correspondingly, to the problems of adaptive estimation of a

vector v(θ) = (θ1/
√

1, θ2/
√

2, . . . ) and a linear functional L(θ) =
∞∑

k=1

θk/
√

k from the

observations (1). In the present paper we solved the first problem. In future work, we
intend to treat the second case, using the method of adaptation for linear functionals
recently proposed by Golubev (2004).
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