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Abstract: This paper studies financial contagion using a methodology that goes beyond the 
simple analysis of correlation breakdown, and, at the same time, is careful in the 
characterization of nonlinearity and asymptotic dependence. It also avoids discretion in the 
identification of the contagious episodes and in the definition of extreme outcomes. It 
accomplishes these objectives by the use of copulas with Markov switching parameters. 
Using daily returns of stock indices from five East Asian countries during the Asian Crisis, 
and from four Latin-American countries during the Mexican Crisis, I find evidence of 
changing dependence structures during periods of financial turmoil. Increased tail dependence 
and asymmetry in times of high volatility characterize the Asian countries, while symmetry 
and tail independence describe better the Latin-American case. This paper makes the case that 
structural breaks in tail dependence are a potentially important dimension of contagion. If 
contagion is a nonlinear phenomenon, as the results of this paper suggest, it is dangerous to 
consider, without further investigation, the rejection of the correlation breakdown hypothesis 
as evidence of a stable dependence structure. 
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1. Introduction 

 
A central issue in asset allocation and risk management is whether financial 

markets become more interdependent during financial crises. This issue acquired 

dramatic importance during the five major crises of the 1990’s1. Common to all these 

episodes was the fact that the turmoil that originated in one market extended to a wide 

range of markets and countries in a way that was hard to explain on the basis of 

changes in fundamentals. The word “contagion” became popular, both in the press 

and in the academic literature, to refer to this phenomenon. 

 During the nineties, the study of financial contagion, defined in a recent 

influential paper2 as “a significant increase in cross-market linkages after a shock to 

one country (or group of countries)”, was conducted mostly around the notion of 

“correlation breakdown”: a statistically significant increase in correlation during the 

crash period. Examples of this literature are the works by Bertero and Mayer (1989) 

and King and Wadhwani (1990), who find evidence of an increase in the correlation 

of stock returns at the time of the 1987 crash. Also, Calvo and Reinhardt (1996) report 

correlation shifts during the Mexican crisis, while Baijn and Goldfajn (1999) find 

significant increases in correlation for several East-Asian markets and currencies 

during the East-Asian crisis.  

The studies of contagion based on structural shifts in correlation were 

challenged by Boyer, Gibson and Loretan (1999)3, who showed that tests for changes 

in correlation that not take into account conditional heteroskedasticity may be 

severely biased. Calculating the correlation between two random variables, 

conditioning on the extreme realizations of one of them, will likely suggest 

correlation breakdown, even if the true data generation process has constant 

correlation.Forbes and Rigobon (2002) generalized the approach of Boyer et al. 

(1999) and applied it to the study of three major crises (the 1987 crash, the Mexican 

devaluation, and the East-Asian crisis). After adjusting for heteroskedasticity, they 

could not find evidence of correlation breakdown in any of them. They concluded that 

contagion is nonexistent. The phenomenon that has been labeled as contagion is just 

                                                 
1 These were the ERM attacks (1992), the Mexican devaluation (1994), the East Asian crisis (1997), 
the Russian default (1998), and the devaluation of the Brazilian real (1999). 
2 See Forbes and Rigobon (2002). 
3 See also Loretan and English (2000). 

 1



the continuation in times of increased volatility of the strong dependence among 

international markets that exists in tranquil times. 

In this way, by the end of the decade of 1990 the literature was far from 

having reached a consensus about the very existence of contagion. At this point, some 

authors began to recognize the necessity to go beyond the linear approach to address 

the issue. For example, Longin and Solnik (2001), Hartman, Straetmans and de Vries 

(2000) and Bae, Karolyi and Stulz (2001) presented models based on extreme value 

theory, while others, like Ramchand and Susmel (1999), Ang and Bekaert (2002) and 

Chesney and Jondeau (2000), explored Markov switching models. These works cope 

with the Forbes and Rigobon critique either by studying tail correlation (extreme 

value models), or by providing a consistent model to accommodate structural breaks 

in the variance (Markov switching models). An additional advantage of Markov 

switching models in the study of contagion is that they do not rely on an ad-hoc 

determination of the crisis period. As Dungey and Zhumabekova (2000) have shown, 

tests of contagion can be seriously affected by the size of the “crisis” and “non-crisis” 

periods. 

Markov switching models have been limited to analyze the case of bivariate 

normality4. In this way, they have missed a potentially important dimension of the 

contagion phenomenon such as nonlinear dependence. As Bae et al. (2001) have 

pointed out: “The concerns (about contagion) are generally founded on the 

presumption that there is something different about extremely bad events that leads to 

irrational outcomes, excess volatility, and even panics. In the context of stock returns, 

this means that if panic grips investors as stock returns fall and leads them to ignore 

economic fundamentals, one would expect large negative returns to be contagious in a 

way that small negative returns are not”5.  

On the other hand, models based on extreme value theory, even those that 

have tested for some form of nonlinearity, have implicitly assumed an asymptotically 

dependent structure. There are two forms of extreme value dependence for random 

variables: asymptotic dependence and asymptotic independence, and both allow for 

dependence between relatively large realizations of each variable. But to be 

asymptotically dependent, the random variables must be associated in the very tails of 

                                                 
4 An exception is Ang and Chen (2003), who consider mixtures of normals.  
5 Bae, Karolyi and Stulz (2001), page 2. See also Longin and Solnik (2001) for a paper that addresses 
directly this issue. 
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the distribution. In a recent paper, Poon, Rockinger and Tawn (2003) could not find 

evidence of asymptotic dependence in daily stock market returns for the US, Japan, 

Germany and France after filtering the series from GARCH effects. An important 

conclusion of this work is that assuming asymptotic dependence can lead to serious 

overestimation of financial risks. Another potential shortcoming of Extreme Value 

models is that there always exists discretion in defining what an extreme observation 

is6. 

This paper studies financial contagion using a methodology that goes beyond 

the simple analysis of correlation breakdown, and, at the same time, is careful in the 

characterization of nonlinearity and asymptotic dependence. It also avoids discretion 

in the identification of the contagious episodes and in the definition of extreme 

outcomes. It accomplishes these objectives by the use of copulas with Markov 

switching parameters.  

Nelsen defines copulas as “functions that join or couple multivariate 

distribution functions to their one-dimensional marginal distribution functions” 

(Nelsen, 1999, page 5). Copulas contain all the information about the dependence 

structure of a vector of random variables. They can capture nonlinear dependence 

among random variables, while correlation is only a linear measure of dependence. In 

particular, copulas contain information about the joint behavior of the random 

variables in the tails of the distribution7, which should be of primary interest in a 

study of contagion of financial crises8. Moreover, copulas are able to capture tail 

behavior without the need of using discretion to define extreme outcomes. 

Copulas enable the modeler to construct flexible multivariate distributions 

exhibiting rich patterns of tail behavior, ranging from tail independence to tail 

dependence, and different kinds of asymmetry. They are an alternative to correlation 

in the modeling of financial risks. This is important in Finance, as correlation is the 

canonical measure of dependence only in the case of the multivariate normal 

distribution (or, more in general, of spherical and elliptical distributions), but there is 

                                                 
6 For a critical assessment of extreme value theory in Finance, see Diebold, Schuerman and Stroughair 
(2000). 
7 Section 3 of this paper provides a short survey on copulas. For an introduction to copulas, see Nelsen 
(1999). 
8 Multivariate normality assumes tail independence, which is another reason to look for better models 
to study financial crises. 
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mounting evidence that distributions in Finance are outside of this class9. Moreover, 

research in multivariate extreme value theory has shown that it is possible to construct 

multivariate distributions with identical correlations but otherwise completely 

different dependence structures.  

Fitting copulas with different tail behavior makes it possible to test whether 

times of increased dependence can be also characterized by changes in one or both 

tails of the distribution. However, in order to capture shifts in the dependence 

structure, the copula that describes it must be time-varying. Patton (2001a, 2001b) 

pioneered the study of time-varying copulas10. He introduced the concept of 

conditional copula, and applied it to the study of asymmetries in the dependence 

structure of a set of exchange rates.  

In this paper I explore whether financial crises can be described as periods of 

change in the dependence structure between markets. I model the dependence 

structure as a mixture of copulas11, with parameters changing over time according to a 

Markov switching model. I study two classes of copulas: a finite mixture of the Frank, 

Gumbel, and Clayton copulas12, which can capture asymmetries in tail dependence, 

and the bivariate Student t copula, which exhibits symmetric tail dependence and has 

the tail independent Normal copula as a special case. With purposes of better 

comparison with the mixture, I also present results on the Frank copula, which, as the 

Normal, is symmetric and exhibits tail independence. 

To identify the crisis episodes, I model the marginals using the SWARCH 

structure introduced by Hamilton and Susmel (1999). In a SWARCH model, the 

variance of the series under study is subject to occasional shifts, which are the 

outcome of a random variable that follows a Markov process. In this way, I can 

explore whether different dependence structures are associated to different variance 

regimes. In the mixture, the shifting parameters of the dependence structure are the 

weights. Otherwise, the remaining parameters of the mixture are assumed constant13. 

In the Student copula, the changing parameters are the correlation coefficient and the 

                                                 
9 For an analysis of the shortcomings of the use of correlation as the main measure of dependence in 
finance and insurance, see Embrechts et al. (1999). 
10 See also Rockinger and Jondeau (2001). 
11 Mixtures of copulas are copulas. See Nelsen (1999). Finite mixtures of distributions are discussed in 
Hamilton (1994) in the context of Markov switching Models. See also Everitt and Hand (1981). 
12The Frank copula exhibits tail independence, while the Gumbel and Clayton copulas exhibit upper 
and lower tail dependence, respectively.  See Section three for a detailed description of these copulas. 
13 Under these assumptions I can construct parsimonious models in which the change in the 
dependence structure is captured by the shift in only one parameter.  

 4



degrees of freedom. The Frank copula has only one parameter, which is allowed to 

switch between regimes. 

 This paper is related to Patton (2001a, 2001b) and Rockinger and Jondeau 

(2001) in that it models dependence using copulas with time-varying parameters. But 

unlike these authors, I also allow the parameters of the copula to change with the 

states of the variance to identify shifts in the dependence structure in times of crisis. 

In order to do this, I build a multivariate SWARCH model on the lines of Ramchand 

and Susmel (1999). The key difference with Ramchand and Susmel (1999) is that I 

model the dependence structure using switching copulas instead of assuming bivariate 

normality. A switching copula can capture increases in tail dependence, reflecting 

that, for example, the probability of markets crashing together is higher in periods of 

financial turmoil, while a model based on multivariate normality imposes tail 

independence. This is the first paper that uses “switching copulas” to study contagion 

of financial crises. 

Using daily returns on stock indices from five East Asian countries (Thailand, 

Malaysia, Indonesia, Korea and Philippines), during the Asian Crisis, and from four 

Latin-American countries (Mexico, Argentina, Brazil and Chile) during the Mexican 

Crisis, I find evidence of changing dependence structures during periods of financial 

turmoil. I also test whether these changes are best described using copulas with tail 

dependence and asymmetry compared to symmetric and also to tail independent 

copulas. Increased tail dependence and asymmetry in times of high volatility 

characterize the Asian countries, while increased dependence with symmetry and tail 

independence describes Mexico-Brazil. Mexico-Argentina and Mexico-Chile are the 

only cases in which a stable dependence structure could not be rejected. 

These results contribute to the ongoing debate on the existence of contagion. 

They show that times of financial turmoil are indeed times of increased dependence. 

Most cases studied in this paper exhibit contagion in the sense of Forbes and 

Rigobon’s (2002) definition. However, although overall dependence increases, 

patterns of tail dependence change differ widely across markets. The cases of 

Thailand-Indonesia and Thailand-Korea, in which a tail independent structure is 

found in the tranquil period, while a tail dependent and asymmetric structure 

characterizes the crisis time suggest that the prevalence of tail independence found by 

Poon et al. (2002) may not be general. On this regard, excessive reliance on tail 

independence, although harmless in stable times, may lead to potentially serious 
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underestimation of financial risks in periods of crisis. From an asset allocation 

perspective, recent results by Ang and Bekaert (2002) and Das an Uppal (2003) on 

portfolio selection establish that the costs of ignoring regime shifts can be substantial, 

especially in the presence of highly correlated jumps between markets. 

The organization of the paper is the following. Section 2 presents the data and 

shows descriptive statistics. Section 3 presents univariate results for the SWARCH 

model, exploring whether the variances of the series studied are state dependent. 

Section 3 gives a short summary of copulas. Section 4 and 5 present results for the 

Asian and Mexican crises, respectively.  Section 6 concludes. An appendix at the end 

of the paper provides tests on the specification of the copulas. 

 

2. Data 

 
This paper uses daily data (in US dollars) of stock indices from five Asian countries: 

Thailand, Malaysia, Indonesia, Korea and Philippines. The series go from 1/1/96 to 

30/6/98 (652 observations). Also, four Latin-American countries are studied (Mexico, 

Argentina, Brazil and Chile), the series going from 1/1/93 to 31/12/95 (781 

observations). Only regional contagion is considered. The variable of interest is daily 

returns, which are calculated as 100 times the difference in the log of the indices. All 

data come from Datastream. Table 1a shows descriptive statistics of the series. The 

non-normality of the data is apparent from the coefficients of skewness and kurtosis. 

Also, the Jarque-Bera test (reported in the last line of the table) strongly rejects 

normality14. Results from Latin-American markets (Table 1b) exhibit a similar 

pattern.  

 

 

 

 

 

 

                                                 
14 Under the null of normality, the Jarque-Bera test statistics follows a chi-squared distribution with 
two degrees of freedom. 
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3. Copulas 

 
Copulas are “functions that join or couple multivariate distribution functions to their 

one-dimensional marginal distribution functions”15. The most important result in 

copula theory is Sklar’s theorem: 

 

Theorem 3.1 (Sklar, 1959): Let D be an n-dimensional distribution function with 

margins . Then there exists an n-copula C such that for al x in nFF ..,.,1
nℜ , 

         ( ) ( ) ( )( )nnn xFxFCxxD ,...,,..., 111 = .           (1) 

If  are all continuous, then C is uniquely determined on . 

Conversely, if C is an n-copula and  are distribution functions, the function 

D defined above is an n-dimensional distribution function with margins .

nFF ..,.,1 nRanFRanF ×× ...1

nFF ..,.,1

nFF ..,.,1

16  

 

 Therefore, if D is a continuous multivariate distribution function, Sklar’s 

theorem says that it is possible to separate the univariate margins from the 

dependence structure. The dependence structure is represented by the copula. This can 

be seen even more clearly if we assume the ’s are differentiable, and C and D are n-

times differentiable. Then, deriving both sides of (1) to get the density of D, we get: 

iF

 

( ) ( ) ( )( ) ( ) ( )nn
nn

n
n

n

xfxf
xx

xFxFC
xx

xxD
×××

∂∂
∂

=
∂∂

∂
...

...
,...,

...
,...,

11
21

11

21

1  

 

That is, the density of D has been expressed as the product of the copula density and 

the univariate marginal densities. It is in this sense that we say that the copula has all 

the information about the dependence structure. 

 Copulas have certain properties that are very useful in the study of 

dependence. First, copulas are invariant to strictly increasing transformations of the 

random variables. Second, widely used measures of concordance17 between random 

                                                 
15 Nelsen (1999). 
16 For a proof, see Nelsen (1999). 
17 Nelsen’s (1999) informal definition of concordance:”Two random variables X and Y are concordant 
if “large” values of X tend to be associatied with “large” values of Y, and “small” values of X tend to 
be associated with “small” values of Y. For a forma treatment, see Nelsen (1999), and also Joe (1997). 
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variables, like Kendall’s tau and Spearman’s rho, are properties of the copula. Third, 

and of the greatest importance in the study of financial contagion, asymptotic tail 

dependence is also a property of the copula.  

 In what follows I provide formal definitions of asymptotic tail dependence and 

of a concordance measure, Kendall’s tau, which will be widely used in the rest of the 

paper.  

Intuitively, asymptotic tail dependence is a measure of the propensity of 

markets to crash (or boom) together. More formally18, let ( )YX ,  be a vector of 

continuous random variables with marginal distribution functions F and G. Let u = 

F(X), an v = G(Y)19. The coefficient of upper tail dependence of ( )YX ,  is: 

 

  ( ) ( ){ } Uu
uFXuGYIP λ=>> −−

↑

11

1
lim . 

 

The coefficient of upper tail dependence can be expressed in terms of  the copula 

between X and Y as follows: 

 

Definition 3.1: If a bivariate copula C is such that: 

 

    ( )
Uu u

uuCu
λ=

−
+−

↑ 1
,21

1
lim  

 

exists, then C has upper tail dependence if ( ]1,0∈λU , and upper tail independence if 

. 0=λU

 In the same way, the coefficient of lower tail dependence can be defined as: 

 

     ( ) ( ){ } Lu
uFXuGYIP λ=<< −−

↓

11

0
lim . 

And, in terms of copulas: 

 

Definition 3.2: If a bivariate copula C is such that: 

 

                                                 
18 This is based on Embrechts et al. (2001). 
19 It is a known theorem in Statistics that u and v are uniformly distributed in [0,1]. 
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    ( )
Lu u

uuC
λ=

↓

,lim
0

 

 

exists, then C has lower tail dependence if ( ]1,0∈λ L , and lower tail independence if 

. 0=λ L

 Kendall’s tau is a measure of concordance between random variables. Two 

points ,  in IR( )21, xx ( 21, yy ) 2 are said to be concordant if ( )( ) 02211 >−− yxyx , and 

to be discordant if ( )( ) 02211 <− yxy−x . In a similar two random vectors ( ) , 2X1,X

( )21
~,~ XX  are said to be concordant if 

( )( )[ ] ( )( )[ ] 00~~0~~
22 ><− XX11 −−> XXIP22 − X

2X

1− XX1XIP , that is, if  tends to 

increase with , and discordant otherwise.  Kendall’s tau measures this difference 

of probabilities: 

1X

 

                   ( ) ( )( )[ ] ( )( )[ ]0~~0~~, 2211221121 <−−−>−−=ρτ XXXXIPXXXXIPXX . 

 

 It is possible to express Kendall’s tau in term of the copula that joins  with 

: 

1X

2X

( ) ( )
[ ]

( ) 1,,4, 21

1,0

2121
2

−=ρ ∫∫τ uudCuuCXX . 

      As a measure of concordance based on copulas, which means that it is invariant to 

increasing transformations of its arguments, Kendall’s tau can capture nonlinear 

dependences that are not possible to measure with linear correlation. As contagion is 

most likely a nonlinear phenomenon, Kendall’s tau will be the main measure of 

association studied in this paper. 

Many copulas have been studied in the literature20. Because of their properties, 

three of them are becoming widely used in Finance and Insurance. These are the 

Gumbel, Clayton, Frank, and Student copulas. I summarize their properties below: 

 

 

 

                                                 
20 For a catalog of copulas and their properties, see Nelsen (1999), and also Joe 1997). 
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A. Gumbel copula: 

 ( ) ( ) ( )[ ]








−+−−= δδδδ
1

lnlnexp;, vuvuGC ,           [ )∞∈ ,1δ  

This copula is characterized by lower tail dependence and upper tail independence. Its 

main properties are: 

 
1) δ  implies 1=

( ) uvvuCG =1;, , 

the independent copula. 

 

2) As , ∞→δ ( ) ( )vuvuCl ,min;, →θC . This limit is the upper Frèchet-Hoeffding 
bound. It can be shown that if U and V are two random variables uniformly distributed 
in (0,1) with copula equal to ( )vu,min , then ( )VUIP =  = 1.  
 
3) Lower Tail Dependence: λ . 0=L

4) Upper Tail Dependence: δ
−

−=
1

22Uλ . 

5) Kendall’s : τ
δ

−
11  . 

 
B. Clayton Copula: 

 

( ) { } θ
−θ−θ− −+=θ

1

1;, vuvuCCl ,    0≥θ .      
 
 
This copula is characterized by upper tail dependence and lower tail independence. Its 

main properties are: 

1) θ  implies 0→

( ) uvvuCCl =↓ 0;, , 

the independent copula. 

 

2) As ∞→θ , the upper Frèchet-Hoeffding bound is attained. 

3) Lower Tail Dependence: θ
−

=
1

2Lλ . 
 
4) Upper Tail Dependence: λ . 0=U

 

5) Kendall’s :  τ
2+θ

θ . 
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C. Frank Copula: 

( ) ( )( )









−
−−

+
α

−=α
α−

α−α−

1
111ln1;,

e
eevuC

vu

F ,       IR∈α . 

This copula is characterized by upper and lower tail independence. Its main properties 

are: 

1) 0→α  implies 

( ) uvvuC =↓α 0;, , 

the independent copula. 

 
2) As ∞→θ , the upper Frèchet-Hoeffding bound is attained. 
 
3) Lower Tail Dependence:  0=λ . L
 
4) Upper Tail Dependence:  0=λ . U

 

5) Kendall’s :  τ
















−
−

α
− ∫

α

0
1

14 dt
e

t
t1 . 

 
Note that the Frank copula implies asymptotic tail independence21, while the 

Clayton and Gumbel copulas imply dependence in one of the tails, but not in the 

other. Intuitively, this means that Clayton assigns more probability mass to events in 

the left tail (markets crash together), Gumbel assigns more probability mass to events 

in the right tail (markets boom together), and Frank is symmetric, assigning zero 

probability to events that are deep in the tails. Figure 1 shows the scatter plots of four 

simulated bivariate copulas: Gumbel (left-top panel), Clayton (right-top panel), Frank 

(left-bottom panel) and Student22 (right-bottom panel). In all cases, 1000 observations 

were generated, and margins were selected as standard normal. The parameters of the 

copulas were chosen to give a Kendall’s tau equal to 0.3. Therefore, the simulated 

random variables in Figure 1 differ only on the dependence structure, with the 

Clayton copula showing strong association in the left tail, while the Gumbel copula 

shows strong association in the right tail. It is in this sense that the Clayton and 

                                                 
21 This does not imply independence. Actually, for the Frank copula, concordance increases with α 
(when α is positive).  
22 The Student copula is described in section E. 
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Gumbel copulas describe asymmetric dependence. On the other hand, no clear 

association in the tails can be observed for the Frank copula.  

As returns can exhibit dependence in both tails, it would be useful to have a 

copula that mingles both Clayton and Gumbel. This copula exists, and is known as the 

Clayton-Gumbel copula23. Its properties are: 

 

D. Clayton-Gumbel Copula: 

 
It is a two parameter copula, of the form: 
 

( ) ( ) ( )[ ] θ
δδθδθδθ

1
1

111,;,
−

−−













−+−+= vuvuCCG ,      0,1 ≥≥ θδ . . 

 . 
Properties: 
 
1)  implies: 1=δ
 

  ( ) { } θθθθ
1

11,;, −−− −+= vuvuCGC , 
 
the Clayton Copula. 
 
 
2)  implies: ∞→θ
 

          ( ) ( ) ( )[ ]








−+−−=↓ δδδδ
1

lnlnexp,0;, vuvuCGC , 

the Gumbel copula. 
 

3) Lower tail dependence: δθ
−

=λ
1

2L  
 

4) Upper tail dependence: δ
−

−=
1

22Uλ  
 
5) As θ  and 0→ 1→δ  the independent copula obtains. 
 
As θ  and , the upper Frèchet-Hoeffding bound is attained. ∞→ ∞→δ
 

6) Kendall’s :  τ
( )
( )δθ+

−δθ+
2

22 . 

                                                 
23 See Joe (1997).  
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E. Student t Copula: 

It is a two-parameter copula that is constructed from the Student bivariate distribution 

using directly Sklar’s theorem. With respect to the bivariate Student distribution, the 

copula has the additional flexibility that the marginals do not have to be Student with 

the same degrees of freedom. The t-copula with ν degrees of freedom and correlation 

 is written as: ρ

( )
( )

( )( )

( ) dsdttstsvuC
ut vt 2

1

2

22

2 1
21

12

1,;,
1 1

+ν
−

∞ ∞ 







ρ−ν
+ρ−

+
ρ−π

=ρν ∫ ∫
−
ν

−
ν

. 

 
The t-copula is symmetric and exhibits tail dependence. The coefficient of tail 

dependence is: 

( )( ) ( )( )[ ]ρ+ρ−+ν−=λ=λ +ν 1/1112 1tUL , 

 

where is a standard univariate t distribution with 1+νt 1+ν  degrees of freedom. Note 

that two random variables with copula ( )ρν,;,vuC  can be asymptotically tail 

dependent even in the extreme case in which they are uncorrelated. In particular, for a 

copula with zero correlation and four degrees of freedom, the coefficient of tail 

dependence is equal to 0.08.  Zero correlation, and also ∞→ν , is necessary to get 

independence. As , with ∞→ν 0≠ρ , the normal copula, and therefore tail 

independence, obtains. Kendall’s tau is related to the correlation coefficient through 

the formula: 

( )ρ
π

=τ arcsin2 . 

 The right-bottom panel of Figure 1 shows a scatter plot of 1000 simulated 

observations belonging to a Student t copula with 3 degrees of freedom. Margins were 

selected as standard normal, and the correlation coefficient was chosen to give a 

Kendall’s tau equal to 0.3. Symmetry and tail dependence are patent in the strong 

association in both the right and left tails.  
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4. Univariate Results 

 

The models for the marginal distributions are based on the SWARCH model of 

Hamilton and Susmel (1994). In this section I show results that document the 

presence of different variance regimes in the series analyzed in this paper.  

The general formulation of an AR(p)-GARCH(q,r) model for the stochastic 

process  is:  ty

∑
=

− +φ+µ=
p

i
titit uyy

1

,                    (1) 

where: 
 

ttt vhu = , 
and: 
 

∑∑
=

−
=

− β+α+α=
r

i
iti

q

i
itit huh

11

2
0 . 

The distribution of the residual  has in general been assumed standard normal, 

although the usefulness of the standardized Student-t is also well documented in the 

literature

tv

24, especially to deal with heavy-tailed, high frequency data of financial 

returns. 

 One shortcoming of ARCH models is that they are not well suited to describe 

structural breaks in the variance. Moreover, some authors have suggested that 

structural breaks are the reason of the high persistence found in ARCH models (see 

Lamoreaux and Lastrapes (1990)). 

 As a way to introduce regime switches in variance, Hamilton and Susmel 

(1994)25 presented the Switching ARCH (SWARCH) model, in which the residual 

in equation (1) is modelled as:  tu

    tstt ug ×=u ,          (2) 

and tu follows a  standard ARCH(q) process: 

 
ttt vhu = ,        (3) 

                                                 
24 Another popular distribution is the GED. For a comprehensive survey of ARCH models, see 
Bollerslev (1994). 
25 There is also a contribution by Cai (1994). 
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where   obeys: th
22

22
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110 ... qtqttt uuuh −−− α++α+α+α= . 
 
From equations (2) and (3), we see that the level of the variance can occasionally 

change, depending on the values of , the scaling parameter. The variable  in 

equation (2) is assumed to take values 1,2,…,K, and to be described as a Markov 

Chain: 
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The variable  is regarded as the “state” or “regime” that the process is in at date t. 

So, a SWARCH (K,q) is a model in which the variable s  can be in any K possible 

states at time t, and q is the number of lags in the conditional variance.  

ts

t

Hamilton (1989) describes how to estimate the parameters in (2) through the 

maximization of a likelihood function, and also how to do inference about the state in 

which the process has been at date t. Inferences based on information up to time t are 

called “filtered probabilities”, while inferences based on information from the full 

sample are called “smoothed probabilities”26. 

The model selected to investigate the presence of different volatility regimes 

in the markets considered in this paper, is a SWARCH(2,1). Although the selection of 

the number of states and lags has been based on practical reasons of avoiding 

overparameterization and cumbersome computation in the multivariate case27, 

specification tests on the copulas reported in the appendix suggest that the AR(1)-

SWARCH(2,1) describes well the structure of  the marginals.   

 Therefore, I model returns in country i as:  
 

i
t

i
t

i
t uyy +φ+µ= −1 , 

 
where: 

                                                 
26 This methodology is described in Hamilton (1994). See also the original papers: Hamilton (1989), 
and Hamilton and Susmel (1994). 
27 Adding just one more state for the variance would imply to estimate eighteen additional parameters 
in the bivariate model. 

 15



i
t

i
st

i
t ugu ×= , 

 
and i

tu follows a  standard ARCH(q) process: 
 

i
t

i
t

i
t vhu = , 

 
where   obeys: i

th
 

2
1

2
1

i
t

ii
t

i
t uaah −+= . 

 
The residual  is assumed to have a Student-t distribution with n degrees of freedom, 

which must also be estimated.  

i
tv

Table 2 shows univariate results for five Asian markets: Thailand, Malaysia, 

Indonesia, Phillipines, and Korea. Note that, in all cases, the variance in the high-

volatility state is far higher than the one in the low volatility state (from 7 times higher 

in the case of Thailand, to 26 times higher in the case of Indonesia). The scaling 

variable g is always significantly different from 1, even at the 1% level.  Also, all 

markets exhibit positive autocorrelation. Asian markets (with the exception of Korea) 

exhibit strong ARCH effects, together with Mexico and Chile. However, even in the 

countries exhibiting strong ARCH effects, the persistence of the variance is low. This 

is consistent with the remark made by Lamoreaux and Lastrapes (1990) that the high 

persistence found in ARCH models is due to structural breaks. The estimated degrees 

of freedom are also significantly higher than 2. Smooth probabilities (Figure 2) show 

that Thailand was the first country to enter in the high-variance regime (5/12/1997), 

while Korea entered the last (9/26/1997). Results for Latin-American countries are 

similar. Interestingly, smooth probabilities (Figure 4) show that, in the Mexican crisis, 

all countries entered into the high-volatility state almost simultaneously, with Mexico 

leading the other countries, as expected. From the smooth probabilities, Mexico 

entered into the high volatility state on December 19, 1994. Interestingly, this is the 

same day that Forbes and Rigobon (2002) define as the start of the turmoil period in 

their paper. Mexico stayed in the high volatility period during 72 days. Argentina and 

Brazil entered into the high volatility state on December 20. Argentina remained in 

that state until June 29, 1995, and Brazil until April 4, 1995.  

Table 2 and 3 also show empirical Kendal’s tau between the originator and the 

country in the corresponding column, calculated from the residuals in both the low 
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and high variance states. In all cases, the change in Kendall’s tau shows that times of 

financial turmoil are also times of increased dependence. In the Asian case, the range 

of Kendall’s tau increases goes from 50% (Thailand-Malaysia) to 465% (Thailand-

Korea).  In the Latin-American case, it goes from 56% (Mexico-Argentina) to 122% 

(Mexico-Brazil and Mexico-Chile). The significance of these changes will be 

analyzed in the next section. 

 In the cases of Thailand, Malaysia and Indonesia, the maximum-likelihood 

estimates of the transition probabilities of the high-variance state turn to be one. In 

this case I follow Hamilton and Lin (1996) and impose the value of one with the 

purpose of calculating the standard errors of the remaining parameters.  

 Also, it is important to note that, in the Asian case, countries are 

simultaneously in the high variance state during approximately 40% of the sample 

(see Figure 3), while in the Latin-American case countries are simultaneously in the 

high variance state during approximately 10% of the sample (see Figure 2).  

 In tables 2 and 3 LF is the value of the maximized log-likelihood of the 

SWARCH (2,1) model, while LF* is the value of the maximized log-likelihood under 

the restriction that there is only one state (this is equivalent to estimate an ARCH(1) 

model) . Although a standard likelihood-ratio test is not appropriate, because under 

the null hypothesis of no regime change the parameters of the high variance regime 

are not identified, I still provide the p-values of such a test in both tables for each 

country. The extremely small p-values obtained should be considered as fairly 

convincing evidence of regime switching28. Formal tests (see Hansen (1992)) are 

computationally cumbersome and will be provided in future versions of this paper. 

 

5. Bivariate Results 
 
Following Ramchand and Susmel (1998), I consider only the bivariate case to keep 

the models tractable for estimation. However, given that each univariate series can be 

in one of two variance regimes, the bivariate case will be a Markov switching Model 

with four states. For example, two countries, Malaysia and Thailand, will be at one of 

four states at time t: ts

 

                                                 
28 Hamilton and Lin (1996) discuss informal tests of regime switching.  
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ts  = 1: Malaysia, Low volatility; Thailand, Low volatility. 

ts = 2: Malaysia, High volatility; Thailand, Low volatility. 

ts = 3: Malaysia, Low volatility; Thailand, High volatility. 

ts = 4: Malaysia, High volatility; Thailand, High volatility. 
 

I also follow Ramchand and Susmel (1998) in considering one of the countries 

as the generator of the turmoil. For the Asian crisis, that country is Thailand. Thailand 

was the first Asian country to be hit in the process that led to the Asian crisis. It was 

also the first country to enter into the high volatility state in the sample. I will further 

assume that the dependence structure can change only between states 1 and 2 

(Thailand’s low volatility states) and 3 and 4  (Thailand’s high volatility states). For 

obvious reasons, Mexico will be considered the generator country in the Latin-

American case, and I assume that the dependence structure between Latin-American 

markets can change only between the high and low volatility states of Mexico. 

 As it was shown in Section 3, a bivariate density can be decomposed as the 

product of the copula and the univariate marginals. This is very convenient in 

maximum-likelihood estimation, because it permits to estimate the parameters of the 

density in two steps: first the parameters of the marginals, and then the parameters of 

the copula. However, when the copula and marginal parameters change 

simultaneously according to a Markov switching process, the two-step approach is no 

longer useful, and all parameters must be estimated simultaneously. Assuming a two-

state Markov Chain for each country, the likelihood of each observation can be 

written as:    

 
( )

( ) ( ) ( ) ( ) ,;,;,,,;,,;,,

;,

1

1111121111

1

∑∑
−

Θ×Θ×Θ×Θ

=Θ

−−−−−−−−

−

t tS S
tttttttttttttttttt

tttt

ISSPISSvuCISSygISSxf

Iyxq
 

where ( Θ−− ;, 11 ttt ISSP ) is the probability of the states conditional on past 

information.  f, g and C12 are the marginals and copula densities, respectively,  is a 

vector of parameters, and 

Θ

( ) ( )θ=θ= −−− ;,,,,;,, 111 tttytttttxt SSyFvISSxF −1tIu . 

Then, the likelihood function to be maximized is:   
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To find the copula that best fits the data I estimated three models: 1) a mixture 

of Frank, Clayton and Gumbel, 2) the Frank copula with switching parameter, and 3) 

the Student t copula with switching correlation and degrees of freedom. The mixture 

(model 1) admits asymptotic tail dependence and asymmetry, while the Frank copula 

(model 2) is symmetric and exhibits tail dependence. The Student t copula (model 3) 

is also symmetric and has the property of asymptotic tail dependence. The normal 

copula obtains as a special case of the Student copula as the degrees of freedom go to 

infinity. Having a model that includes normality makes the Frank copula somewhat 

redundant. Nevertheless, I include results on the Frank copula to facilitate comparison 

with the mixture.   

In model 1, to find the “right” mixture I first estimated, for all cases, a 

combination of the three copulas (Clayton, Gumbel, Frank ): 

 

( ) ( ) ( ) ( ) ( )
.,,10

,;,1;,;,,,;,

GCi

vuCvuCvuCvuC

t

tttt

is

FGsCsGGsCCs

=≤π≤

απ−π−+δπ+θπ=αδθ
 

where is the weight of the Clayton copula, 
sCπ sGπ is the weight of the Gumbel 

copula, and 
sss GCF π−π−=π 1 is the weight of the Frank copula. Note that the 

weights depend on the states: this is the way in which I try to capture changes in tail 

dependence. For example, after an increase in
sCπ , the copula will have more 

probability mass in the left tail.  

In the Thailand-Malaysia case π  reached the boundary of zero, so the 

mixture estimated was Clayton, Gumbel: 

tFsˆ

 

     ( ) ( ) ( ) ( ) 10,;,1;,,;, ≤π≤δπ−+θπ=θδ
ttt sGsCs

G
C vuCvuCvuC . 

 

Note that here π  is the only shifting parameter. Lower tail dependence increases 

(and upper tail dependence decreases) as 

ts

tsπ  goes from zero to one. 
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In the remaining Asian cases, all three copulas were found significant, with the 

weights of Clayton and Gumbel increasing from the low variance to the high variance 

state. This means that both lower and upper tail dependence increase in the crisis 

period. Note that a mixture of only two copulas (Frank and Clayton-Gumbel) can 

capture the implied change in tail dependence: 

   ( ) ( ) ( ) ( ) 10,;,1,;,,,;, ≤π≤απ−+θδπ=θδα
ttt sFsGCs

F
CG vuCvuCvuC , 

and this was the mixture estimated for the remaining Asian cases. This is very 

convenient, because now an increase in tail dependence (upper and lower) can be 

captured as just one parameter, , goes from zero to one.  
tsπ

 The Latin-American copulas were selected following the criteria described 

above. In Mexico-Argentina, the best fitting mixture was Frank, Clayton: 

 

( ) ( ) ( ) ( ) 10,;,1;,,;, ≤π≤απ−+δπ=θα
ttt sFsFs

C
F vuCvuCvuC  

 

Here, again, lower tail dependence increases as 
tsπ  goes from zero to one. In Mexico-

Brazil the best fitting mixture was Frank, Clayton-Gumbel. Finally, in the Mexico-

Chile case, the best fitting dependence structure was a mixture of three copulas 

(Clayton, Frank, Gumbel). 

 The mixtures are compared to the Frank (model 2) and Student (model 3) 

switching to find the best fitting model. As the models are nonnested, it is necessary 

to find a criterion to choose among them. In this paper I use the Akaike Criterion29 

adjusted for small sample bias30: 

 

( ) ( )
1
122ˆlog2

−−
+

++θ−=
Kn
KKKLAICC , 

 

where ( )θ̂Llog  is the maximized log likelihood function, K is the number of estimated 

parameters, and n is the sample size. As the purpose of this study is to get an 

understanding of the structure of the data, and not prediction, the Akaike Information 

Criterion is preferred to other criteria that are also widely used in Economics, like the 

                                                 
29 Breymann, Dias and Embrechts (2003) also use the Akaike criterion to select best fitting copulas. 
30 For a survey of model selection and inference, see Burnham and Anderson (1998). 
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Schwartz Information Criterion. The adjustment for small sample bias is 

recommended when n/K < 4031. According to this criterion, the best fitting model is 

the one that minimizes AICC. 

 Detailed results are presented in Tables 4 to 19. Results for each pair of 

countries are presented in two tables: the first table shows estimates of parameters for 

the Mixture, Frank and Student switching copulas32 and tests which kind of 

dependence structure best describes the data at hand. Once the best fitting model has 

been chosen, the second table tests whether changes in dependence are statistically 

significant using a standard likelihood ratio test. Table 12 and Table 19 summarize all 

the results obtained in the above-mentioned tables for the Asian and Mexican case, 

respectively.  

Tables 4 and 5 contain results for the Thailand-Malaysian case. Table 4 shows 

estimates of parameters from the Mixture, Frank and Student switching copulas. The 

Akaike Information Criterion (bottom of the table) selects the Mixture as the best 

fitting copula. This means that the increase in dependence between periods of 

different volatility is best described as an increase in asymmetric tail dependence. A 

test of the statistical significance of this change is provided in Table 5. The first 

column of Table 5 contains results for the Clayton and Gumbel copulas with constant 

parameters of the component functions and shifting weight. A weight equal to one 

means that the dependence structure is completely characterized by lower tail 

dependence (Clayton copula). Note that the weight of the Clayton copula increases, 

which means that more probability mass is assigned to the event of both markets 

crashing together when the markets are simultaneously in the high variance regime. 

The second column shows results for the Clayton-Gumbel mixture with constant 

weights. A standard likelihood-ratio test rejects the hypothesis of constant weights at 

the 5% level (p-value = 0.032). The first column of table 12 shows dependence 

parameters associated to the different s'π . Dependence (as measured by Kendal’s 

tau) increases in the high volatility state. Estimates are reasonable close to the 

empirical Kendal’s tau calculated in Table 2. Lower tail dependence increases also in 

the high volatility state, while upper tail dependence decreases. 

In the Thailand-Indonesia case (Tables 6 and 7) the best fitting copula is the 

Frank, Clayton-Gumbel mixture (see Table 6). The maximum likelihood estimates of 

                                                 
31 See Burnham and Anderson (1998). 

 21



the weights (first column of table 7) are in the boundaries, suggesting that a Frank 

copula describes the structure of dependence in tranquil periods, while the Clayton, 

Gumbel copula, with more probability mass in the tails, does it better in high volatility 

periods33. Following Hamilton and Lin (1996), I imposed those values and 

reestimated the model with the purpose of calculating the standard errors of the 

remaining parameters. A test of constancy of weights is provided in table 7. The third 

column of Table 7 presents results for the constant weight mixture. Note that the 

constant weight mixture estimates more parameters, and gives a lower value of the 

likelihood function that the switching weights mixture. Second column of table 12 

shows dependence parameters associated to the different s'π . Note again that the 

estimates are close to the empirical Kendall’s tau shown in Table 2. Dependence and 

both upper and lower tail probabilities increase in the high volatility period. 

In Thailand-Korea (Tables 8 and 9), the best fitting copula was a mixture of 

Gumbel and the independent copula. The copula originally estimated was Frank, 

Clayton-Gumbel, but θ  attained its lower bound of zero. Also, the independent 

copula was obtained because the parameter of the Frank copula was not found 

significantly different from zero (Table 8). Note that the weight of the Clayton-

Gumbel copula attained its lower bound, suggesting that the series were independent 

in the non-crisis period. Interestingly, all copulas reflect independence in the low-

variance state. The hypothesis of constant weight is rejected (see Table 9): the 

constant-weight copula estimates at least the same number of parameters and gives a 

lower log likelihood value. This result makes the Thailand-Korea case the most 

dramatic in the sample, as it evolves from independence in stability to upper tail 

dependence in turmoil. 

Results for the Thailand-Philippines case are shown in Tables 10 and 11. 

Again, the best fitting copula is the Frank, Clayton-Gumbel mixture (see Table 10). 

The weights (first column of Table 11) move in the direction of increased tail 

dependence between volatility regimes. This case also provides strong evidence of 

switching parameters between volatility regimes. The likelihood-ratio test presented 

in Table 11 rejects the hypothesis of constant weights at the 5% level (p-value = 

0.0359. The second column of Table 11 shows that a mixture of the CG copula and 

the independent copula  gives the best fit in the Thailand-Philippines case. ( 0=α )
                                                                                                                                            
32 For clarity, only the parameters of the copula are shown. 
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Results in Table 12 (fourth column) show dependence and both upper and lower tail 

probabilities increasing in the high volatility period. 

Results for the Mexican crisis are shown in Tables 12 to 19. Perhaps 

surprisingly, in the Latin American case there was no evidence of changes in tail 

dependence. Although the Student copula was chosen as the best fitting model for 

Mexico-Argentina and Mexico-Brazil (Tables 13 and 15), the estimates of the degrees 

of freedom turned out to be too high (180 and 200 for Mexico-Argentina in the low 

and high volatility states, respectively; 44 and 49 for Mexico-Brazil). Therefore, the 

Normal copula was estimated in these two cases. A mixture of three copulas 

(independent, Clayton and Gumbel) gave the best fit for Mexico-Chile (Table 17). In 

the case of Mexico-Brazil, the correlation coefficient increases from 0.197 to 0.412, 

and this change is significant (p-value = 0.028). Note that this corresponds to an 

increase in Kendall’s tau from 0.126 to 0.270, which is very close to the empirical 

results shown in Table 3. Mexico-Argentina and Mexico-Chile were the only cases in 

which I found evidence of a stable dependence structure across variance regimes. 

Mexico and Argentina appear highly interdependent even in the period of tranquillity 

(the correlation coefficient in the low variance state is 0.378), so one possible 

explanation for this finding is the Forbes and Rigobon (2002) argument. On the other 

hand, and this is relevant also for Mexico-Chile, the crisis period is short relative to 

the entire sample (about 10% of the observations), and therefore the Dungey and 

Zhumabekova (2001) observation could also be applicable. Table 19 shows implied 

measures of dependence for the Latin-American case.  

 Finally, a note on the Student copula. In the cases in which the estimated 

degrees of freedom were too high, I reestimated the models imposing normality (the 

Normal copula). I established an upper bound of 35, and found that when the degrees 

of freedom attained this barrier, there was no loss of likelihood value in switching to 

the Normal. Interestingly, the Normal copula (tail independence) characterizes the 

tranquil times in all cases, with the exception of Thailand-Philippines, while the 

Student copula (tail dependence) turns out to be prevalent in times of turmoil. 

 

 

 

                                                                                                                                            
33 Interestingly, all copulas in Table 6 exhibit asymptotic tail independence in tranquil times. 
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6. Conclusions 

 
This paper provides evidence that the dependence structure between stock 

market returns of countries in Asia and Latin America changed during the Asian and 

Mexican crises. Although dependence (as measured by Kendal’s tau) is low after 

filtering the series from state-varying volatility, changes in dependence during high 

variance regimes are statistically significant in most cases. In this way, most cases 

studied in this paper exhibit contagion in the sense of Forbes and Rigobon’s (2002) 

definition. However, although overall dependence increases, patterns of change in tail 

behavior differ widely across markets, with tail dependence being more prevalent in 

times of financial turmoil.  

This paper makes the case that structural breaks in tail dependence are a 

potentially important dimension of the contagion phenomenon. Changes in tail 

dependence should be taken into account in the design of any sound asset allocation 

strategy. Failing to do so can be very expensive, as recent theoretical literature has 

demonstrated34. However, it is important to note that these changes are not necessarily 

captured by correlation shifts. If contagion is a nonlinear phenomenon, as the results 

in this paper suggest, it is dangerous to consider, without further investigation, the 

rejection of the “correlation breakdown” hypothesis as evidence of a stable 

dependence structure. 

 

 

 

 

 

 

 
 
 
 
 
 
 

                                                 
34 See Ang and Bekaert (2002) and Das and Uppal (2003). 
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Table 1a: Descriptive Statistics. Asian Markets 
 
 

 
Thailand Malaysia Indonesia Korea Philippines 

      
Mean 

 
-0.296 -0.183 -0.267 -0.224 -0.116 

Std. Dev. 2.968 
 

2.631 4.382 3.514 1.998 

Skewness 
 

0.673 1.064 -1.305 0.644 0.116 

Kurtosis 
 

8.87 17.29 19.73 15.991 9.70 

Jarque-Bera* 
 

973.6 5616.8 7723.1 4588.5 1207.0 

*Under the null of normality, the Jarque-Bera test statistics follows a chi-squared distribution with two 
degrees of freedom. 
 
 

 

Table 1b: Descriptive Statistics. Latin-American Markets 
 
 

 
Mexico Argentina Brazil Chile 

     
Mean 

 
-0.057 0.031 0.137 0.107 

Std. Dev. 
 

2.613 2.012 3.672 2.476 

Skewness 
 

-1.022 -0.002 -0.036 0.317 

Kurtosis 
 

15.952 5.531 6.468 8.680 

Jarque-Bera* 
 

5553.0 205.8 387.2 1053.4 

*Under the null of normality, the Jarque-Bera test statistics follows a chi-squared distribution with two 
degrees of freedom. 
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Table 2: Univariate Results, SWARCH (2,1) Model. Asian Markets 
 

      
 Thailand Malaysia Indonesia Korea Philippines 

      
P11 0.997* 0.998* 0.998* 0.998* 0.992* 

 (0.003) 
 

(0.002) (0.002) (0.002) (0.006) 

P22 1.000 1.000 1.000 0.994* 0.992* 
 (See text) 

 
(See text) (See text) (0.006) (0.007) 

g 7.278* 23.743* 26.871* 15.498* 9.965* 
 (1.207) 

 
(3.868) (5.237) (1.003) (1.279) 

a0 1.898* 0.653* 1.018* 2.037* 0.560* 
 (0.281) 

 
(0.091) (0.181) (0.193) (0.082) 

a1 0.212* 0.160* 0.421* 0.053 0.284* 
 (0.082) 

 
(0.067) (0.114) (0.053) (0.02) 

v 4.321* 4.021* 3.612* 5.542* 4.447* 
 (0.797) 

 
(0.715) (0.566) (1.008) (0.887) 

mu -0.233* 0.001 0.041 -0.1095 0.007 
 (0.064) 

 
(0.035) (0.043) (0.062) (0.037) 

phi 0.172* 0.185* 0.227* 0.166* 0.283* 
 (0.042) 

 
(0.042) (0.041) (0.039) (0.043) 

Kendall’s tau 
(low)  0.162 0.130 0.023 0.119 

Kendall’s tau 
(high)  0.242 0.222 0.130 0.217 

LF -1444.1 -1159.8 -1348.7 -1403.0 -1117.1 
      

LF* -1492.3 -1268.8 -1434.8 -1466.6 -1163.0 
p-value 0.00 0.00 0.00 0.00 0.00 

      
 
* Significant at the 5% level. 
Kendal’s tau (low/high) is the empirical Kendal’s tau between Thailand and the corresponding country 
calculated from the residuals of the low/high variance state. 
LF = Maximum Value of the Likelihood Function 
LF* = Maximum Value of the restricted Likelihood Function (no regime switching) 
p-value = probability value of a standard LR test (null = no regime switching) 
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Table 3: Univariate Results, SWARCH (2,1) Model. Latin-American 
Markets 
 
 

     
 Mexico Argentina Brazil Chile 

     
P11 0.997* 0.995* 0.988* 0.969* 

 (0.004) 
 

(0.004) (0.009) (0.019) 

P22 0.978* 0.986* 0.979* 0.980* 
 (0.025) 

 
(0.009) (0.013) (0.013) 

g 15.188* 3.823* 3.496* 3.400* 
 (5.057) 

 
(0.557) (0.497) 0.614 

a0 1.896* 2.109* 6.251* 0.485* 
 (0.203) 

 
(0.194) (0.655) (0.091) 

a1 0.210* 0.068 0.050 0.218* 
 (0.105) 

 
(0.049) (0.051) (0.061) 

v 5.552* 17.696 11.592* 8.303* 
 (1.097) 

 
(1.000) (1.010) (2.700) 

mu 0.021 0.073 0.184 0.083* 
 (0.052) 

 
(0.061) (0.111) (0.037) 

phi 0.218* 0.105* 0.071 0.172* 
 (0.042) 

 
(0.039) (0.038) (0.040) 

Kendall’s tau (low)  0.238 0.120 0.134 

Kendall’s tau (high)  0.372 0.268 0.297 

LF -1524.4 -1572.7 -2053.1 -1213.5 

     

LF* -1555.0 -1598.1 -2073.0 -1223.1 

p-vlue 2.26x10-23 5.24x10-11 21.17x10-08 2.49x10-04 
     

 
* Significant at the 5% level. 
Kendal’s tau (low/high) is the empirical Kendal’s tau between Mexico and the corresponding country 
calculated from the residuals of the low/high variance state. 
LF = Maximum Value of the Likelihood Function 
LF* = Maximum Value of the restricted Likelihood Function (no regime switching) 
p-value = probability value of a standard LR test (null = no regime switching) 
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Table 4: Bivariate Results. Thailand-Malaysia. Estimation of Copula 
Models 
 
The first column gives estimates for the Mixture (Clayton, Gumbel). πL is the weight of the Clayton 
copula in the low volatility state, πH is the weight of the Clayton copula in the high volatility state. 
Lower tail dependence increases with π. θ and δ are the parameters of the Clayton and Gumbel copulas, 
respectively. The second column gives estimates for the Frank Switching model. αL is the parameter of 
the Frank copula in the low variance state. αH is the parameter of the Frank copula in the high variance 
state. Dependence increases with α.  The third column gives estimates for the switching Student t 
copula. ρL and ρH, and υL and υH are the correlation coefficients and the degrees of freedom in the low 
and high variance states respectively. Standard errors are on the right of each column. Only the copula 
parameters are shown. 
 

 Mixture 
Switching Std Error 

Frank 
Switching Std Error 

Student t 
Switching 

Standard 
Errors 

Lπ  0.091 0.057     

Hπ  0.277 0.079*     

       
θ  3.860 1.072*     

     δ 1.152 0.046*     

       

Lα    1.673 0.030*   

Hα    2.709 0.509*   

       

Lρ      0.275 0.025* 

Hρ      0.412 0.098* 

Lν      >35**  

Hv      3.350 1.392* 
       

LF -2552.7  -2567.3  -2559.6  
Number of 

Param 21  19  20 
 

AICC 5148.9  5173.8  5160.5  
       

 
* Significant at the 5% level. 
LF is the maximized log likelihood function 
Number of Param. is the number of estimated parameters. 
AICC is the Akaike Information criterion adjunted for small sample bias =  
-2LF+2K+2K(K+1)/(n-K-1), where K = Number of Param, and n is the sample size. 
** Degrees of freedom higher than 35. Normal copula was estimated for that state. 
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Table 5: Bivariate Results. Thailand-Malaysia  
 
The first column gives estimates for the Mixture (Clayton, Gumbel). πL is the weight of the Clayton 
copula in the low volatility state, πH is the weight of the Clayton copula in the high volatility state. 
Lower tail dependence increases with π. θ and δ are the parameters of the Clayton and Gumbel copulas, 
respectively. The second column gives estimates for the constant weight mixture.  Standard errors are 
on the right of each column. 
 

           
 

Mixture Switching Std Error Mixture Constant Std Error 
Lπ  0.091 0.057   

Hπ  0.277 0.079* 0.141 0.053* 
     
θ  3.860 1.072* 6.710 3.293* 

       δ   1.152 0.046* 1.165 0.044* 
     

g_M 20.630 3.050* 19.341 2.337* 
a0_M 0.680 0.110* 0.693 0.091* 

a1_M 0.168 0.062* 0.165 0.050* 
v_M 3.878 0.734* 4.012 0.565* 

Mu_M 0.005 0.037 -0.008 0.034 
phi_M 

 
0.143 0.041* 0.123 0.036* 

g_T 9.757 1.781* 9.367 1.105* 
a0_T 1.339 0.230* 1.337 0.162* 

a1_T 0.115 0.052* 0.111 0.047* 
v_T 5.852 1.372* 5.723 1.082* 

Mu_T -0.180 0.091* -0.166 0.060* 
Phi_T 

 
0.167 0.043* 0.168 0.030* 

LF -2552.7  -2555.0  
p-value 0.032    

     
Number of 

Param 21  20  
     

 
 * Significant at the 5% level. 
LF is the maximized likelihood function 
p-value LR test (1 degree of freedom). 
Number of Param. is the number of estimated parameters. 

 31



Table 6: Bivariate Results.  Thailand-Indonesia. Estimation of 
Copula Models 
 
The first column gives estimates for the Mixture (Frank, Clayton-Gumbel). πL is the weight of the 
Clayton copula in the low volatility state, πH is the weight of the Clayton copula in the high volatility 
state. Lower tail dependence increases with π. θ and δ are the parameters of the Clayton and Gumbel 
copulas, respectively. The second column gives estimates for the Frank Switching model. αL is the 
parameter of the Frank copula in the low variance state. αH is the parameter of the Frank copula in the 
high variance state. Dependence increases with α.  The third column gives estimates for the switching 
Student t copula. ρL and ρH, and υL and υH are the correlation coefficients and the degrees of freedom in 
the low and high variance states respectively. Standard errors are on the right of each column. Only the 
copula parameters are shown. 
 

 Mixture 
Switching Std Error 

Frank 
Switching Std Error 

Student t 
Switching Std Error 

Lπ  0.000 See Text     

Hπ  1.000 See Text     

       
θ  0.235 0.103*     
δ  1.158 0.064*     

α  1.201 0.331*     

       

Lα    1.221 0.389*   

Hα    2.255 0.231*   

       

Lρ      0.191 0.053* 

Hρ      0.354 0.058* 

Lν      >35**  

Hv      6.754 1.325* 
       

LF -2761.5  -2765.5  -2762.1  
Number of 

Param 19  18  19 
 

AICC 5562.2  5568.1  5563.4  
       

 
* Significant at the 5% level. 
LF is the maximized log likelihood function 
Number of Param. is the number of estimated parameters. 
AICC is the Akaike Information criterion adjunted for small sample bias =  
-2LF+2K+2K(K+1)/(n-K-1), where K = Number of Param, and n is the sample size. 
** Degrees of freedom higher than 35. Normal copula was estimated for that state. 
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Table 7: Bivariate Results. Thailand-Indonesia 
 
 The first column gives estimates for the Mixture (Frank, Clayton-Gumbel). πL is the weight of the 
Clayton copula in the low volatility state, πH is the weight of the Clayton copula in the high volatility 
state. Tail dependence increases with π. θ, δ and α are the parameters of the Clayton, Gumbel and 
Frank copulas, respectively. The second column gives estimates for the constant weight mixture.  
Standard errors are on the right of each column. 
 

     
 

Mixture Switching Std Error Mixture Constant Std Error 
Lπ  0.000 See Text   
Hπ  1.000 See Text 0.300 0.273 
     
θ  0.235 0.103* 0.464 0.535 
δ  1.158 0.064* 1.425 0.367* 
α  1.201 0.331* 0.710 0.646 

     
g_I 25.761 1.001* 24.248 4.815* 
a0_I 1.018 0.168* 1.122 0.206* 
a1_I 0.408 0.116* 0.437 0.116* 
v_I 3.656 0.611* 3.449 0.516* 

mu_I 0.044 0.044 0.042 0.046 
phi_I 

 
0.200 0.042* 0.197 0.038* 

g_T 7.343 0.993* 7.635 1.170* 
a0_T 1.937 0.291* 2.040 0.292* 
a1_T 0.163 0.076* 0.118 0.067* 
v_T 4.308 0.972* 4.905 1.030* 

mu_T -0.226 0.064* -0.231 0.064* 
phi_T 

 
0.130 0.040* 0.121 0.041* 

LF -2761.5  -2764.2  
p-value -    

     
Number of Param 19  20  

     
 
* Significant at the 5% level. 
LF is the maximized likelihood function 
p-value LR test (1 degree of freedom). 
Number of Param. is the number of estimated parameters. 
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Table 8: Bivariate Results. Thailand-Korea: Estimation of Copula 
Models 
 
The first column gives estimates for the Mixture (Frank, Clayton-Gumbel). πL is the weight of the 
Clayton copula in the low volatility state. πH is the weight of the Clayton copula in the high volatility 
state. Lower tail dependence increases with π. θ and δ are the parameters of the Clayton and Gumbel 
copulas, respectively. α is the parameter of the Frank copula (assumed zero in column two). The third 
column gives estimates for the Frank Switching model. αL is the parameter of the Frank copula in the 
low variance state. αH is the parameter of the Frank copula in the high variance state. Dependence 
increases with α. The fourth column gives estimates for the switching Student t copula. ρL and ρH, and 
υL and υH are the correlation coefficients and the degrees of freedom in the low and high variance states 
respectively. Standard errors are on the right of each column. Only the copula parameters are shown. 
 

 
Mixture 

Switching Std Error 

Mixture 
Switching

0=α  Std Error
Frank 

Switching Std Error
Student t 
Switching 

Standard 
Errors 

Lπ  0.000 See Text 0.000 See Text     

Hπ  0.251 0.174 0.301 0.126*     

         
θ  0.000 See Text 0.000 See Text     
δ   2.013 0.952* 1.888 0.529*     

α  0.242 0.306       

         

Lα      0.209 0.997   

Hα      1.354 0.402*   

         

Lρ        0.061 0.056 

Hρ        0.218 0.064* 

Lν        >35**  

Hv        6.659 3.176* 
         

LF -2835.4  -2835.7  -2838.8  -2836.5  
Number 
of Param 19  18 

 
18  19 

 

AICC 5710.0  5708.5  5714.7  5712.2  
         

* Significant at the 5% level. 
LF is the maximized log likelihood function 
Number of Param. is the number of estimated parameters. 
AICC is the Akaike Information criterion adjunted for small sample bias =  
-2LF+2K+2K(K+1)/(n-K-1), where K = Number of Param, and n is the sample size. 
** Degrees of freedom higher than 35. Normal copula was estimated for that state. 
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Table 9: Bivariate Results. Thailand-Korea 
The first column gives estimates for the Mixture (Frank, Clayton-Gumbel). πL is the weight of the 
Clayton copula in the low volatility state, πH is the weight of the Clayton copula in the high volatility 
state. Tail dependence increases with π. θ, δ and α are the parameters of the Clayton, Gumbel and 
Frank copulas, respectively. The second column gives estimates for the constant weight mixture.  
Standard errors are on the right of each column. 
 

     
 Mixture Switching

0=α  Std Error Mixture Constant Std Error 

Lπ  0.000 See Text   
Hπ  0.301 0.126* 0.252 0.174 
     
θ  0.000 See Text 0.000 See Text 
δ  1.888 0.529* 2.013 0.952* 

α    0.242 0.306 

     

g_I 13.828 2.198* 13.857 2.253* 
a0_I 2.010 0.216* 2.005 0.186* 
a1_I 0.069 0.055 0.069 0.052 
v_I 5.718 1.237* 5.740 1.382* 

mu_I -0.113 0.062 -0.117 0.063 
phi_I 

 
0.153 0.038* 0.154 0.038* 

g_T 8.159 1.242* 8.176 1.254* 
a0_T 1.849 0.236* 1.845 0.241* 
a1_T 0.208 0.026* 0.210 0.081* 
v_T 4.587 0.828* 4.594 0.936* 

mu_T -0.233 0.063* -0.234 0.065* 
phi_T 

 
0.163 0.043* 0.162 0.041* 

LF -2835.7  -2839.4  
p-value     

     
Number of Param 19  20  

     
 
* Significant at the 5% level. 
LF is the maximized likelihood function 
p-value LR test (1 degree of freedom). 
Number of Param. is the number of estimated parameters. 
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Table 10: Bivariate Results. Thailand-Philippines. Estimation of 
Copula Models 
 
The first column gives estimates for the Mixture (Frank, Clayton-Gumbel). πL is the weight of the 
Clayton copula in the low volatility state, πH is the weight of the Clayton copula in the high volatility 
state. Lower tail dependence increases with π. θ and δ are the parameters of the Clayton and Gumbel 
copulas, respectively. The second column gives estimates for the Frank Switching model. αL is the 
parameter of the Frank copula in the low variance state. αH is the parameter of the Frank copula in the 
high variance state. Dependence increases with α. The third column gives estimates for the switching 
Student t copula. ρL and ρH, and υL and υH are the correlation coefficients and the degrees of freedom in 
the low and high variance states respectively. Standard errors are on the right of each column. Only the 
copula parameters are shown. 
 

 
Mixture 

Switching Std Error 

Mixture 
Switching

0=α  Std Error
Frank 

Switching Std Error
Student t 
Switching Std Error

Lπ  0.175 0.166 0.245 0.090*     

Hπ  0.401  0.172* 0.463 0.102*     

         
θ  1.005 0.662 0.913 0.416*     
δ  1.460  0.301* 1.400 0.220*     

α  0.399 0.837       

         

Lα      1.186* 0.348   

Hα      2.312* 0.397   

         

Lρ        0.195 0.058* 

Hρ        0.349 0.063* 

Lν        >35**  

Hv        3.763 1.409* 
         

LF -2519.7  -2520.0  -2530.3  -2522.2  
Number 
of Param 22  21  19  20 

 

AICC 5085.0  5083.5  5099.8  5085.7  
         

 
* Significant at the 5% level. 
LF is the maximized log likelihood function 
Number of Param. is the number of estimated parameters. 
AICC is the Akaike Information criterion adjunted for small sample bias =  
-2LF+2K+2K(K+1)/(n-K-1), where K = Number of Param, and n is the sample size. 
** Degrees of freedom higher than 35. Normal copula was estimated for that state. 
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Table 11: Bivariate Results. Thailand-Philippines 
 
The first and second columns give estimates for the Mixture (Frank, Clayton-Gumbel). πL is the weight 
of the Clayton copula in the low volatility state, πH is the weight of the Clayton copula in the high 
volatility state. Tail dependence increases with π. θ, δ and α are the parameters of the Clayton, Gumbel 
and Frank copulas, respectively. The third column gives estimates for the constant weight mixture.  
Standard errors are on the right of each column. 
 

 
Mixture 

Switching Std Error 

Mixture 
Switching 

0=α  Std Error 
Mixture 
Constant Std Error 

Lπ  0.175 0.166 0.245* 0.090   

  0.401* 0.172 0.463* 0.102 0.378* 0.085 

       
    θ 1.005* 0.662 0.913* 0.416 0.924* 0.397 

         δ  1.460* 0.301 1.400* 0.220 1.327* 0.192 
α  0.399 0.837     

       
G_Ph 10.870* 1.000 10.834* 1.034 10.284* 1.019 

a0_Ph 0.613* 0.081 0.615* 0.081 0.628* 0.085 
a1_Ph 0.234* 0.075 0.236* 0.077 0.240* 0.080 
V_Ph 4.656* 0.992 4.574* 0.969 4.555* 0.991 

mu_Ph -0.002 0.036 -0.001 0.037 -0.004 0.036 
phi_Ph 0.253* 0.038 0.255* 0.039 0.255* 0.039 

       

G_T 7.052* 0.991 6.989* 0.994 6.581* 0.978 
a0_T 1.855* 0.261 1.884* 0.266 1.940* 0.269 
a1_T 0.170* 0.071 0.169* 0.070 0.174* 0.063 
V_T 4.540* 0.984 4.480* 0.910 4.494* 0.811 

mu_T -0.228* 0.064 -0.228* 0.064 -0.237* 0.047 
phi_T 

 
0.129* 0.040 0.133* 0.040 0.137* 0.040 

LF -2519.7  -2520.0  -2522.2  
p-value   0.0359    

       
Number of 

Param 
21  20  19 

 
       

 
* Significant at the 5% level. 
LF is the maximized likelihood function 
p-value LR test (1 degree of freedom). 
Number of Param. is the number of estimated parameters. 
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Table 12: Summary of Results: Asian Case (generator: Thailand) 
 
 
 Malaysia Indonesia Korea Philippines 
 (Cla,Gu) (Fra,Cla-Gu) (Fra, Gu) (Fra,Cla-Gu) 
     
↑ Dependence Yes Yes Yes Yes 
↑ Tail Dependence Yes Yes Yes Yes 
     
     

Lτ  (Empirical) 0.162 0.130 0.023 0.119 
Hτ  (Empirical) 0.242 0.222 0.130 0.217 

     
Lτ  (Estimated) 0.178 0.132 0.000 0.125 

Hτ  (Estimated) 
 

0.269 0.228 0.146 0.236 

     
Lλ  (Low Variance) 0.078 0.000 0.00 0.148 

Lλ  (HighVariance) 
 

0.224 0.078 0.00 0.280 

Uλ  (Low Variance) 0.155 0.000 0.000 0.091 

Uλ  (HighVariance) 0.125 0.180 0.167 0.171 
 

τi is Kendall’s tau in state i (i = Low, High) 
λj is the tail probability in the Low/High variance state (j = Lower, Upper) 
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Table 13:  Bivariate Results.  Mexico-Argentina. Estimation of 
Copula Models 
 
The first  column gives estimates for the Mixture (Frank, Clayton). πL is the weight of the Clayton 
copula in the low volatility state, πH is the weight of the Clayton copula in the high volatility state. 
Lower tail dependence increases with π. θ and δ are the parameters of the Clayton and Gumbel copulas, 
respectively. The second column gives estimates for the Frank Switching model. αL is the parameter of 
the Frank copula in the low variance state. αH is the parameter of the Frank copula in the high variance 
state. Dependence increases with α. The third column gives estimates for the switching Student t 
copula. ρL and ρH, and υL and υH are the correlation coefficients and the degrees of freedom in the low 
and high variance states respectively. Standard errors are on the right of each column. Only the copula 
parameters are shown. 
 

 Mixture 
Switching Std Error 

Frank 
Switching Std Error 

Student t 
Switching Std Error 

Lπ  0.050 0.049     

       π  H 0.354 0.183*     

       
  θ   2.355 0.980*     

         α 2.213 0.296*     

       

Lα    2.330 0.251*   

Hα    3.901 0.996*   

       

Lρ      0.378 0.035* 

Hρ      0.495 0.078* 

Lν      >35**  

Hv      >35**  
       

LF -3029.9  -3032.1  -3030.5  
Number of 

Param 21  20  20 
 

AICC 6103.3  6105.5  6102.3  
       

 
* Significant at the 5% level. 
LF is the maximized log likelihood function 
Number of Param. is the number of estimated parameters. 
AICC is the Akaike Information criterion adjunted for small sample bias =  
-2LF+2K+2K(K+1)/(n-K-1), where K = Number of Param, and n is the sample size. 
** Degrees of freedom higher than 35. Normal copula was estimated for that state. 
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Table 14: Bivariate Results. Mexico-Argentina 
 
The first column estimates the Normal copula with switching parameter. ρL is the correlation 
coefficient in the low volatility state, is the correlation coefficient in the high volatility state. The 
second column gives estimates for the Normal copula with constant correlation. Standard errors are on 
the right of each column. 
 

 
Mixture Switching Std Error Mixture Constant Std Error 

Lρ  0.378 0.035*   

Hρ  0.495 0.078* 0.394 0.033* 
     

g_A 3.659 0.515* 3.574 0.388* 
a0_A 2.038 0.195* 2.029 0.185* 
a1_A 0.072 0.045 0.068 0.042 
v_A 14.512 7.350* 15.087 7.870* 

mu_A 0.085 0.061 0.084 0.059 
phi_A 

 
0.073 0.037* 0.074 0.036* 

g_M 13.788 3.505* 12.976 3.390* 
a0_M 1.997 0.208* 2.010 0.205* 
a1_M 0.209 0.060* 0.213 0.055* 
v_M 5.164 1.023* 5.142 0.996* 

mu_M 0.026 0.053 0.026 0.049 
phi_M 

 
0.163 0.037* 0.165 0.038* 

LF -3030.5  -3031.4  
p-value 0.180    

     
Number of Param 19  18  

     
     
     

 
 
* Significant at the 5% level. 
LF is the maximized likelihood function 
p-value LR test (1 degree of freedom). 
Number of Param. is the number of estimated parameters. 
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Table 15: Bivariate Results.  Mexico-Brazil: Estimation of Copula 
Models 
 
The first column gives estimates for the Mixture (Frank, Clayton-Gumbel). πL is the weight of the 
Clayton copula in the low volatility state, πH is the weight of the Clayton copula in the high volatility 
state. Lower tail dependence increases with π. θ and δ are the parameters of the Clayton and Gumbel 
copulas, respectively. The second column gives estimates for the Frank Switching model. αL is the 
parameter of the Frank copula in the low variance state. αH is the parameter of the Frank copula in the 
high variance state. Dependence increases with α. The third column gives estimates for the switching 
Student t copula. ρL and ρH, and υL and υH are the correlation coefficients and the degrees of freedom in 
the low and high variance states respectively.  Standard errors are on the right of each column. Only the 
copula parameters are shown. 
 

 Mixture 
Switching Std Error 

Frank 
Switching Std Error 

Student t 
Switching Std Error 

Lπ  0.034 0.065     

Hπ  0.329 0.191     

       
θ  1.965 2.726     
δ  1.106 0.279*     

α  1.075 0.356*     

       

Lα    1.180 0.242*   

Hα    2.890 0.737*   

       

Lρ      0.197 0.041* 

Hρ      0.412 0.086* 

Lν      >35  

Hv      >35  
       

LF -3550.0  -3551.5  -3550.9  
Number of 

Param 22  19  19 
 

AICC 7145.3  7142.0  7140.8  
       

 
* Significant at the 5% level. 
LF is the maximized log likelihood function 
Number of Param. is the number of estimated parameters. 
AICC is the Akaike Information criterion adjunted for small sample bias =  
-2LF+2K+2K(K+1)/(n-K-1), where K = Number of Param, and n is the sample size. 
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Table 16: Bivariate Results. Mexico-Brazil 
The first column estimates the Normal copula with switching parameter. ρL is the correlation 
coefficient in the low volatility state, is the correlation coefficient in the high volatility state. The 
second column gives estimates for the Normal copula with constant correlation. Standard errors are on 
the right of each column. 
 

 
Mixture Switching Std Error Mixture Constant Std Error 

Lρ  0.197 0.041*   

Hρ  0.412 0.086* 0.230 0.037* 
     

g_A 3.606 0.579* 3.576 0.552* 
a0_A 6.029 0.782* 5.847 0.745* 
a1_A 0.030 0.053 0.032 0.053 
v_A 12.188 5.805* 12.762 5.940* 

Mu_A 0.175 0.113 0.166 0.113 
Phi_A 

 
0.061 0.037* 0.066 0.036* 

g_M 14.394 3.679* 13.417 3.314* 
a0_M 1.936 0.204* 1.956 0.211* 
a1_M 0.217 0.066* 0.218 0.070* 
v_M 5.384 1.093* 5.294 1.014* 

Mu_M 0.017 0.052 0.014 0.053 
Phi_M 

 
0.186 0.038* 0.184 0.038* 

LF -3550.9  -3553.3  
p-value 0.028    

     
Number of Param 19  18  

     
     
     

* Significant at the 5% level. 
LF is the maximized likelihood function 
p-value LR test (1 degree of freedom). 
Number of Param. is the number of estimated parameters. 
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Table 17: Bivariate Results. Mexico-Chile. Estimation of Copula 
Models 
 
The first column gives estimates for the Mixture (Frank, Clayton,Gumbel). πL is the weight of the 
Clayton copula in the low volatility state, πH is the weight of the Clayton copula in the high volatility 
state. Lower tail dependence increases with π. θ and δ are the parameters of the Clayton and Gumbel 
copulas, respectively. The second column gives estimates for the Frank Switching model. αL is the 
parameter of the Frank copula in the low variance state. αH is the parameter of the Frank copula in the 
high variance state. Dependence increases with α.  Standard errors are on the right of each column. 
Only the copula parameters are shown. 
 

 
Mixture 

Switching Std Error 

Mixture 
Switching

0=α  

 
Frank 

Switching Std Error 
Student t 
Switching Std Error 

CLπ  0.095 0.070 0.103 0.059*   
  

GLπ  0.366 0.270 0.401 0.188*     

      CHπ 0.000 (See text) 0.000 (See text)     

      GHπ 1.000 (See text) 1.000 (See text)     

         
        θ  2.979 1.553* 2.801 1.554*     

δ  1.272 0.102* 1.268 0.094*     

  α 0.202 0.906       

         

Lα      1.155 0.991   

Hα      3.543 0.641*   

         

Lρ        0.234 0.043* 

Hρ        0.374 0.078* 

Lν        >35  

Hv        >35  

         
LF -2704.7  -2704.8  -2718.7  -2707.6  

Number of 
Param 22  21  19  19 

 

AICC 5454.7  5452.8  5476.2  5454.2  
         

 
* Significant at the 5% level. 
LF is the maximized log likelihood function 
Number of Param. is the number of estimated parameters. 
AICC is the Akaike Information criterion adjunted for small sample bias =  
-2LF+2K+2K(K+1)/(n-K-1), where K = Number of Param, and n is the sample size. 
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Table 18: Bivariate Results. Mexico-Chile 
 
The first column estimates the Mixture (Frank, Clayton, Gumbel). πCL is the weight of the Clayton 
copula in the low volatility state, πCH is the weight of the Clayton copula in the high volatility state. ). 
πCL is the weight of the Clayton copula in the low volatility state, πCH is the weight of the Clayton 
copula in the high 
volatility state. Lower tail dependence increases with πC. Lower tail dependence increases with πG. θ, δ 
and α are the parameters of the Clayton, Gumbel, and Frank copulas, respectively. The third column 
gives estimates for the constant weight mixture.  Standard errors are on the right of each column. 
 

 
Mixture 

Switching Std Error 

Mixture 
Switching 

0=α  

 
Mixture 
Constant Std Error 

CLπ  0.095 0.070 0.103* 0.059* 
  

GLπ  0.366 0.270 0.401* 0.188*   

  CHπ 0.000 (See text) 0.000 (See text) 0.143 0.051* 
  GHπ 1.000 (See text) 1.000 (See text) 0.857 0.051* 

       
    θ 2.979 1.553* 2.801* 1.554* 1.595 0.201* 
δ  1.272 0.102* 1.268* 0.094* 1.128 0.034* 

  α 0.202 0.906 0.000    

       
g_C 3.318 0.706* 3.308 0.525* 3.357 0.590* 
a0_C 0.499 0.089* 0.500 0.072* 0.495 0.084* 
a1_C 0.255 0.058* 0.255 0.055* 0.227 0.057* 
v_C 9.068 1.003* 8.955 3.044* 8.992 0.836* 

mu_C 0.071 0.006* 0.070 0.036* 0.074 0.037* 
phi_C 0.154 0.047* 0.155 0.040* 0.151 0.018* 

       

g_M 11.760 0.998* 11.720 1.113* 12.080 0.604* 
a0_M 1.851 0.126* 1.853 0.152* 1.877 0.142* 
a1_M 0.095 0.044* 0.095 0.045* 0.096 0.052* 
v_M 6.279 1.014* 6.261 1.133* 6.038 0.795* 

mu_M 0.021 0.058 0.021 0.052 0.020 0.052 
phi_M 

 
0.180 0.019* 0.180 0.035* 0.178 0.035* 

LF -2704.7  -2704.8  -2705.7  
p-value   0.1797    

       
Number of 

Param 22  21  20  
       

* Significant at the 5% level. 
LF is the maximized likelihood function, p-value LR test (1 degree of freedom). 
Number of Param. is the number of estimated parameters.                                              
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Table 19: Summary of Results: Latin-American Case (generator: 

Mexico) 

 
 Argentina Brazil Chile 
 (Student) (Student) (Fra,Cla,Gu) 
    
↑ Dependence No Yes No 
↑ Tail Dependence No No No 
    
    

Lτ  (Empirical) 0.238 0.120 0.134 

Hτ  (Empirical) 0.372 0.268 0.297 
    

Lτ  (Estimated) 0.247* 0.126 0.145* 

Hτ  (Estimated) 
 

0.330* 0.270 0.211* 

Lλ  (Low Variance) 0.000 0.000 0.008* 
Lλ  (HighVariance) 

 
0.000 0.000 0.000* 

    
Uλ  (Low Variance) 0.000 0.000 0.109* 

Uλ  (HighVariance) 0.000 0.000 0.273* 
 

τi is Kendall’s tau in state i (i = Low, High) 
λj is the tail probability in the Low/High variance state (j = Lower, Upper) 
* These values were not found significantly different from each other. 
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Figure 1. Simulated Copulas 
 
Scatter plots of simulated Gumbel, Clayton, Frank, and Student Copulas. All marginal 
are standardized normals. The parameter of the copulas were chosen to give a 
Kendall’s tau equal to 0.3. 
 
 
 

 46



 

Figure 2: Asian Markets Returns 
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Figure 3: Smooth Probabilities. High Volatility State 
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Figure 4: Latin-American Market Returns 
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Figure 5: Smooth Probabilities. High Volatility State (Latin-America) 
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APPENDIX. Specification tests for the copulas 
 

If  is a copula, where ( vuC , ) ( )xFu =  and ( )yGv = , it is a well known 

result35 that the conditional distribution of Y xX =| : 

 

    ( ) ( ) ( )( )yGxFCxyH XY ,| 1| = , 

where: 

( ) ( )
u

vuCvuC
∂

∂
=

,,1 , 

is uniformly distributed in (0,1). This suggests testing the adequacy of the copula 

specification by testing its first derivative with respect to each of its arguments. In this 

Appendix I use two tests that are standard in the literature on copulas36: a 

Kolmogorov-Smirnov test, and a graphical test that employs a QQ-plot of C  

against standard uniform quantiles. This QQ-plot should give a straight line if the 

copula is well specified. 

( )vu,1

 In performing the tests it must be noted that the typical copula we are dealing 

with in this paper is a mixture of conditional copulas37, and therefore a copula: 

 

( ) ( ) ( ) ( )111111 ||,,|,|,
1

−−−−−− ∑∑
−

= tttt
S S

tttttttt ISIPSSIPISSvuCIvuC
t t

, 

where the s are constants from the matrix of transition probabilities, and 

the s are the filtered probabilities. The tests are performed on the best 

fitting copulas (see tables 4 to 19), and shown in table A1 (Kolmogorov-Smirnov 

tests) and in Figures A1-A3 (QQ-plots). In table A1 and figures A1-A3 v is the 

transformed residual of the generator country, while u is the transformed residual of 

the receiving country. Note that the tests are performed both ways (that is, testing 

 and ). Both the Kolmogorov-Smirnov tests and the QQ-plot show that the 

quality of the fit is quite good, suggesting that the copulas are well specified.  

( 1| −tt SSIP

( )11 | −tI

uv |

)

                                                

−tSIP

v|u

 

 

 
35 See Klugman and Parsa (1999). 
36 See Klugman and Parsa, and also Breymann et al. (2003). 
37 The theory of conditional copulas is developed in Patton (2001a, 2001b). 
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Table A1. Kolmogorov-Smirnov tests: 
In table A1 v is the transformed residual of the generator country, while u is the transformed residual of 
the receiving country. Note that the tests are performed both ways (that is, testing u|v and v|u). In the 
Asian case, the generator country in Thailand, in the Latin-American case the generator country is 
Mexico. An entry lower than 0.05 indicates rejection of the hypothesis that the conditional copula is 
standard uniform. 
 

   
 C(u|v) C(v|u) 
   

   
Malaysia 0.090 0.333 

   
Indonesia 0.441 0.759 

   
Korea 0.881 0.628 

   
Philippines 0.919 0.657 

   
   
   

Argentina 0.999 0.561 
   

Brazil 0.930 0.821 
   

Chile 0.457 0.886 
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Figure A1. QQ-plots. Asian case: 

 
In Figure A1 v is the transformed residual of the generator country, while u is the transformed residual 
of the receiving country. Note that the tests are performed both ways (that is, testing u|v and v|u). In the 
Asian case, the generator country in ThailandThe graphical test employs a QQ-plot of C(u|v) and 
C(v|u) against standard uniform quantiles. This QQ-plot should give a straight line if the copula is well 
specified. 
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Figure A2. QQ-plots. Asian case:  

 
In Figure A2 v is the transformed residual of the generator country, while u is the transformed residual 
of the receiving country. Note that the tests are performed both ways (that is, testing u|v and v|u). In the 
Asian case, the generator country in Thailand. The graphical test employs a QQ-plot of C(u|v) and 
C(v|u) against standard uniform quantiles. This QQ-plot should give a straight line if the copula is well 
specified. 
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Figure A3. QQ-plots. Mexican case:  

 
In Figure A3 v is the transformed residual of the generator country, while u is the transformed residual 
of the receiving country. Note that the tests are performed both ways (that is, testing u|v and v|u). In the 
Latin-American case the generator country is Mexico. The graphical test employs a QQ-plot of  C(u|v) 
and C(v|u) against standard uniform quantiles. This QQ-plot should give a straight line if the copula is 
well specified. 
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