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Abstract

In this paper we study intermittency for the parabolic Anderson equation du/0t =
kAu + fu, where u: Z? x [0,00) — R, k is the diffusion constant, A is the discrete
Laplacian, and ¢: Z4 x [0,00) — R is a space-time random medium. We focus on the
case where £ is 7 times the random medium that is obtained by running independent
simple random walks with diffusion constant p starting from a Poisson random field with
intensity v. The solution of the equation describes the evolution of a “reactant” w under
the influence of a “catalyst” &.

We consider the annealed Lyapunov exponents, i.e., the exponential growth rates of
the successive moments of u, and show that they display an interesting dependence on the
dimension d and on the parameters x and 7, p, v, with qualitatively different intermittency
behavior in d = 1,2, in d = 3 and in d > 4. Special attention is given to the asymptotics
of these Lyapunov exponents for « | 0 and k& — oo.
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1 Introduction and main results

1.1 Motivation

The parabolic Anderson equation is the partial differential equation

%u(m,t) = kAu(z,t) + &(z, t)u(z, 1), zeZt>0. (1.1.1)

Here, the u-field is R-valued, k € [0, 00) is the diffusion constant, A is the discrete Laplacian,
acting on u as

Au(z,t) = Y [u(y.t) —ulz,1)], (1.1.2)

Hy—eﬂczllil
while
¢ ={&(x,-): zezY (1.1.3)

is an R-valued random field that evolves with time and that drives the equation.

Equation (1.1.1) is the parabolic analogue of the Schrédinger equation in a random po-
tential. It is a discrete heat equation with the ¢-field playing the role of a source or sink.
One interpretation, coming from population dynamics, is that u(z,t) is the average number
of particles at site x at time ¢ when particles perform independent simple random walks at
rate k, split into two at rate &(z,t) when &(x,t) > 0 (source term) and die at rate —¢(z,t)
when &(z,t) < 0 (sink term). For more background on applications, the reader is referred to
the monograph by Carmona and Molchanov [4] (Chapter I).

What makes (1.1.1) particularly interesting is that the two terms in the right-hand side
compete with each other: the diffusion induced by A tends to make u flat, while the branching
induced by £ tends to make u irregular. Consequently, in the population dynamics context,
there is a competition between particles spreading out by diffusion and particles clumping
around the areas where the sources are large.

A systematic study of the parabolic Anderson model for time-independent random fields
¢ has been carried out by Gértner and Molchanov [16], [17], [18], Gartner and den Hollander
[11], Gartner and Konig [12], Gartner, Konig and Molchanov [14], [15], Biskup and Koénig [1],
[2] (for a survey, see Gartner and Konig [13]). The focus of these papers is on the study of the
dominant spatial peaks in the u-field in the limit of large ¢, in particular, the height, the shape
and the location of these peaks. Both the discrete model on Z¢ (with i.i.d. ¢-fields) and the
continuous model on R? (with Gaussian and Poisson-like ¢-fields) have been investigated, in
the quenched setting (i.e., conditioned on &) as well as in the annealed setting (i.e., averaged
over §).

Most of the theory currently available for time-dependent random fields £ is restricted
to the situation where the components of the £-field are uncorrelated in space and time.
Carmona and Molchanov [4] (Chapter III) have obtained an essentially complete qualitative
description of the annealed Lyapunov exponents, i.e., the exponential growth rates of the
successive moments of u(0,¢) averaged w.r.t. £, for the case where the components of ¢ are
independent Brownian noises. The quenched Lyapunov exponent, i.e., the exponential growth
rate of u(0,t¢) conditioned on ¢, is harder to come by. Carmona, Molchanov and Viens [5],
Carmona, Koralov and Molchanov [3], Cranston, Mountford and Shiga [6] have computed the
asymptotics for k | 0 of the quenched Lyapunov exponent for independent Brownian noises,
which turns out to be singular. Cranston, Mountford and Shiga [7] have extended this result to



independent Lévy noises. Further refinements for independent Brownian noises are obtained
in Greven and den Hollander [19], including sharp bounds on the critical values of £ where
the annealed Lyapunov exponents change from positive to zero, respectively, the quenched
Lyapunov exponent changes from negative to zero, as well as a description of the equilibrium
behavior when the quenched Lyapunov exponent is zero. These results are obtained from
variational expressions for the Lyapunov exponents and are valid for general random walk
transition kernels replacing A.

In the present paper we will be considering the situation where £ is given by

E(z,t) =7 Sy (@) (1.1.4)
s

with v € (0,00) a coupling constant and
{Yi(-): ke N} (1.1.5)

a collection of independent continuous-time simple random walks with diffusion constant p €
(0,00) starting from a Poisson random field with intensity v € (0,00) (the index k is an
arbitrary numbering). As initial condition for (1.1.1) we take for simplicity

u(-,0) = 1. (1.1.6)

We are interested in computing the annealed Lyapunov exponents of v and studying their
dependence on the parameters x and v, p, v.

The population dynamics interpretation of (1.1.1) and (1.1.4-1.1.6) is as follows. Consider
a spatially homogeneous system of two types of particles, A (catalyst) and B (reactant),
performing independent continuous-time simple random walks such that:

(i) B-particles split into two at a rate that is v times the number of A-particles present at
the same location;

(ii) p and k are the diffusion constants of the A- and B-particles, respectively;

(iii) v and 1 are the initial intensities of the A- and B-particles, respectively.

Then
u(z,t) ={ the average number of B—Particles at site z at time ¢ (1.1.7)
conditioned on the evolution of the A-particles }.
Kesten and Sidoravicius [21] recently investigated this model with additionally:
(iv) B-particles die at rate ¢ € (0, 00).
The latter amounts to the transformation
u(z,t) — u(z, t)e . (1.1.8)

We describe their results in Section 1.4.



1.2 Catalytic and intermittent behavior

Let (-) denote expectation w.r.t. the ¢-field. For p € N and ¢ > 0, define
1
Ap(t) = 7 log (e*'fvt(u(o,t)wl/f)) . (1.2.1)

This quantity monitors the effect of the randomness in the &-field on the growth of the p-th
moment. Indeed, if in (1.1.1) we would replace £(x,t) by its average value (£(z,t)) = vy
(according to (1.1.4)), then the solution would be u(-,t) = €”7*, resulting in Ay(-) = 0.

The key quantities of interest in the present paper are the following Lyapunov exponents:

~

1
A = Jim ~log Ay (1),

(1.2.2)
Ap = lim Ay (1),

(Note that A, is related to the moment Lyapunov exponent Xp = limy_, 0 %log(u((),t)ﬂ via
the relation A\, = Xp/p — v7.) The existence of the limits is not a priori evident and needs
to be established. This will be done in Section 3 for /)\\p and in Section 4.1 for A,. From
the Feynman-Kac representation for the moments of the solution of (1.1.1) and (1.1.4-1.1.6),
given in Proposition 2.1.1 in Section 2.1, it will follow that ¢ — ¢A,(t) is strictly positive and
strictly increasing on (0, 00). Hence /)\\p, Ap > 0. We further have Ap(t) > Ap_1(t) by Holder’s
inequality applied to the definition of A,(¢). Hence A, > A, ;. We will see in Section 4.3 that
Ap > 0.

Depending on the values of these Lyapunov exponents, we distinguish the following types
of behavior.

Definition 1.2.1 For p € N, we say that the system is:
(a) strongly p-catalytic if A, > 0.
(b) weakly p-catalytic if A, = 0.

Strongly catalytic means that the moments of the u-field grow much faster in the random
medium £ than in the average medium (£), at a double exponential rate. Weakly catalytic
corresponds to a slower rate. Strongly catalytic behavior comes from an extreme form of
clumping in the ¢-field.

Definition 1.2.2 For p € N\ {1}, we say that the system is:
(a) strongly p-intermittent if either A, = 00 or A, > Ap_1.
(b) weakly p-intermittent if X\, < oo and A\p = Ap_1.

Strongly p-intermittent means that 1/p-th power of the p-th moment of the u-field grows
faster than the 1/(p — 1)-st power of the (p — 1)-st moment, at an exponential rate. Weakly
p-intermittent corresponds to a slower rate. Strongly intermittent behavior also comes from
clumping in the £-field, but in a less extreme form than for strongly catalytic behavior. Note
that strong p-intermittency implies strong g¢-intermittency for all ¢ > p (see Gértner and
Molchanov [16]). Also note that weakly intermittent in our definition includes the possibility
of no separation of the moments, which is usually called non-intermittent.

In the population dynamics context, both catalytic and intermittent behavior come from
the B-particles clumping around the areas where the A-particles are clumping. It signals the



appearance of rare high peaks in the u-field close to rare high peaks in the &-field. These
peaks dominate the moments of the u-field (for more details, see Gartner and Molchanov [16],
Molchanov [24] (Lecture 8), den Hollander [20] (Chapter 8), Gartner and Konig [13]).

1.3 Main theorems

Let
L as
erd
[|zl|=1
For ;> 0, define
1 dk
flw) = / u+ o(k) 1.3.2
( ) (27T)d [—m,m)d K + (,O(k) ( )
and put
1 =0 ifd=1,2,
”‘m{ >0 ifd>3. (1.3.3)

Note that R(u) is the Fourier representation of the kernel of the resolvent (1 — A)~! at 0;
R(0) equals the Green function at the origin of simple random walk on Z? jumping at rate
2d, i.e., the Markov process generated by A.

The following fact, which is elementary and is well-known, is needed for Theorem 1.3.2
below (see Figure 1).

Lemma 1.3.1 Forr € (0,00), let
p(r) = sup Sp(A + rdy) (1.3.4)

denote the supremum of the spectrum of the operator A + réy in £2(Z9). Then:
(1) Sp(A + rdy) = [—4d,0] U {u(r)} with

=0 if 0<r<ry,
wir) { >0 if r>rg. (1.3.5)

(11) For r > rq, p(r) is the unique solution of the equation R(u) = 1/r, and is an eigenvalue
corresponding to a strictly positive eigenfunction.

(115) On (rg,00), r — p(r)/r is strictly increasing with lim, o p(r)/r = 1.

(iv) On (0,00), r+— u(r) is convet.

() ()

Fig. 1: r — p(r) for d = 1,2, respectively, d > 3.



Our first result identifies the Lyapunov exponent Xp.

Theorem 1.3.2 Let d > 1 and p € N. For any choice of the parameters, the limit /)\\p exists,
is finite, and equals R
Ap = pp (py/p) - (1.3.6)

Thus, by (1.3.3) and (1.3.5), in d = 1,2 our system is always strongly p-catalytic, while in
d > 3 it is strongly p-catalytic if and only if py/p exceeds the critical threshold rq. This
dichotomy holds irrespectively of the values of x and v. Indeed, )\ in (1.3.6) does not depend
on these parameters.

By (1.2.2), if Xp > 0, then A\, = co. Lemma 1.3.1 and Theorem 1.3.2 imply that when
the system is strongly p-catalytic, it is strongly p-intermittent. Our second result looks at
intermittency in the weakly catalytic regime, which corresponds to

d>3, 0<py/p<ry. (1.3.7)

Theorem 1.3.3 Letd > 3 and p € N.
(i) If 0 < py/p < rq, then the limit X\, exists and is finite for any choice of Kk and v.
(it) If py/p = T4, then the limit A, exists and is infinite for any choice of k and v.

Our third result addresses the k-dependence of the Lyapunov exponent X\, = \,(k) and
its asymptotics for small .

Theorem 1.3.4 Let d >3, p € N and 0 < py/p < ry.
(i) On (0,00), k — A\p(k) is strictly decreasing and convez.

(ii)
Py
— P
lnlﬁ)l)\ p(K) = Ap(0) = vy - %. (1.3.8)

Our fourth and fifth result concern the asymptotics of A,(x) for large «.

Theorem 1.3.5 Letd >4, p € N and 0 < py/p < rqy. Then

lim kKX\p(k) = —. (1.3.9)

K—00 7"d

Theorem 1.3.6 Let d =3, p e N and 0 < py/p < r3. Then

2 ” 1/2
lim k\y(k) = LA ( i p> P (1.3.10)
K—00 73 p
with
= s [ 2w 2 - 190518 | € 0.0, (13.11)
feHL(R3)
Ifll2=1
where Vgs and Ags are the continuous (!) gradient and Laplacian, || - || is the L?-norm,

HY(R3) = {f: R® - R: f,Vgsf € L3(R3)}, and

[caw™ 2, = [ e r@ [ avste) g (1.3.12)



The asymptotics is the same for all p when d > 4 (Theorem 1.3.5). The correction term with
P is present only when d = 3 (Theorem 1.3.6).
Figure 2 shows the splitting of the graphs of the Lyapunov exponents A,(x) for small

(Theorem 1.3.4(ii)) and the asymptotic behavior of the graphs for large £ (Theorems 1.3.5-
1.3.6).

Ap(#) Ap(F)

0 0

Fig. 2: Qualitative picture of k — Ap(k) for p=1,2,3 and d = 3, respectively, d > 4.
The dotted line represents the asymptotics given by (1.3.9).

The background of Theorems 1.3.5-1.3.6 is as follows. Let

Af(t: 1) = %log X <exp [”5—722 /Umds/smdup<X(u) —X(s),g(u_s))b, (1.3.13)

where X is simple random walk on Z¢ with generator A, starting at the origin, and p(-,-) is
its transition kernel. Define

A(k) = tliglo A (t; k), k> 0. (1.3.14)

We will see in Section 5 that

rhs (1.3.9) ifd >4,
lim kX (k) = lim &%Af(k) = (1.3.15)
R0 R0 rhs (1.3.10) if d > 3.
It will follow from a careful analysis of the double integral in the right-hand side of (1.3.13)
that the regime 0 < u—s < x3 gives rise to the term vy2/r; in (1.3.9) and (1.3.10), the regime
u — s < k3 gives rise to the variational term in (1.3.10) for p = 1, while the contribution of
the regime u — s > k? vanishes.

Interestingly, (1.3.11) is precisely the variational problem that arises in the so-called po-
laron model. Here, one takes Brownian motion W on R? with generator Ags, starting at the
origin, and for o > 0 considers the quantity

1 - t t e—(u—s)
O(t;a) = —logE exp a/ ds/ duv —————+—
(i) = 3 log Eg o @ W@ =W
) ) g (1.3.16)
B 1 low EW 1 a td " td e—(u—s)/a
~ e (oo | [0 [ ey | )
It was shown by Donsker and Varadhan [10] that
O(a) = lim O(t; ), « >0, (1.3.17)
t—o0

7



with 1
lim — 0(a) = 4y/7P. (1.3.18)

a=yoo 2

It will turn out that the asymptotics in (1.3.15) and (1.3.18) are linked to each other as
follows. If we consider the middle regime of the exponent in (1.3.13) and apply the Gaussian
approximation to p(-,-) and X through the scaling t — t/k2, z — z/x with & — oo, then we
obtain

(%)1 ”Tf /Ot/n ds /:/K du 1w — s ~ K} pe <W(u) _W(s), (%)1 (u— s)) (1.3.19)

with pg(x,t) = (4mt)~3/2 exp[—||x||?/4t]. This expression is qualitatively similar to the expo-
nent in the second line of (1.3.16) with « given by o = k/p. Although the two exponents are
not the same, it turns out that they have the same large deviation behavior for ¢ — oo and
Kk — 00. Details can be found in Sections 5 and 7.

While Donsker and Varadhan use large deviations on the level of the process, we use large
deviations on the level of the occupation time measure associated with the process.

It was shown by Lieb [23] that (1.3.11) has a unique maximizer modulo translations and
that the centered maximizer is radially symmetric, radially non-increasing, strictly positive
and smooth.

1.4 Discussion

Theorems 1.3.2-1.3.6 show that there is a delicate interplay between the various parameters
in the model.

Catalytic behavior is controlled by 7/p, the ratio of the strength and the speed of the
catalyst ¢, and is sensitive to this ratio only when d > 3. For large ratio the system is strongly
catalytic, for small ratio the system is weakly catalytic. The high peaks in the reactant u
develop at those sites where the catalyst ¢ piles up. The analysis behind Theorem 1.3.2 shows
that strongly catalytic behavior corresponds to the high peaks in the u-field being concentrated
on single sites, whereas weakly catalytic plus strongly intermittent behavior corresponds to
the high peaks being spread out over islands containing several sites (weakly intermittent
behavior corresponds to no relevant high peaks). It follows from Lemma 1.3.1 and Theorem
1.3.2 that p — Xp(p) is strictly decreasing in the strongly catalytic regime. Thus, as the
catalyst £ moves faster it is less effective. Moreover, lim, o /)\\p(p) = pvy. Here &, the speed of
the reactant u, plays no role, nor does v, the intensity of the catalyst &.

Intermittent behavior is also sensitive to the parameters only when d > 3. Theorems
1.3.3-1.3.4 show that for small x the reactant u has a range of high peaks, which grow
at different exponential rates and determine the successive moments, and so the system is
strongly intermittent. For large x, on the other hand, the behavior depends on the dimension.
The large diffusion of the reactant u prevents it to easily localize around the high peaks where
the catalyst £ piles up. As is clear from Theorems 1.3.5-1.3.6, in d = 3 the system is strongly
intermittent also for large k, while in d > 4 it may or may not. To decide this issue we need
a finer asymptotics than (1.3.9). We conjecture the following:

Conjecture 1.4.1 In d = 3, the system 1is strongly p-intermittent for all .

Conjecture 1.4.2 For d > dy > 4, the system is weakly p-intermittent for k > ko(p).



As promised at the end of Section 1.1, we discuss the results obtained by Kesten and
Sidoravicius [21]. Their work was triggered by claims made in the physics literature: Shnerb,
Louzoun, Bettelheim and Solomon [25], Shnerb, Bettelheim, Louzoun, Agam and Solomon
[26].

1. d = 1,2: For any choice of the parameters, the average number of B-particles per site
tends to infinity faster than exponential. This result is covered by our Theorem 1.3.2,
because the inclusion of the death rate ¢ shifts Ay by —d (recall (1.1.8)), but does not
affect A1, while Ay > 0 in d = 1,2 for any choice of the parameters.

II. d > 3: For v small enough and ¢ large enough, the average number of B-particles per
site tends to zero exponentially fast. This result is covered by our Theorems 1.3.3-1.3.4,
because 7y small corresponds to the weakly catalytic regime for which 0 < Ay < o0, so
that exponentially fast extinction occurs when § > A;.

III. d > 1: For ~y large enough, conditioned on the evolution of the A-particles, there is a
phase transition, namely, for small § the B-particles locally survive, while for large §
they become locally extinct. This result is not linked to our theorems because we have
no information on the quenched Lyapunov exponent.

The main focus of Kesten and Sidoravicius [21] is on survival versus extinction, while
our focus is on moment asymptotics. Their approach does not lead to the identification
of Lyapunov exponents, but it is more robust under an adaptation of the model than our
approach, which is based on the Feynman-Kac representation in Section 2.1.

For related work on catalytic branching models, focussing in particular on continuum
models with a singular catalyst in a measure-valued context, we refer to the overview papers
by Dawson and Fleischmann [8] and Klenke [22]. Related references can be found there as
well.

1.5 Future challenges

One challenge is to understand the geometry and the location of the high peaks in the u-field
that determine the Lyapunov exponents in the weakly catalytic regime. These peaks (which
are spread out over islands containing several sites) move and grow with time. The question
is how.

Another challenge is to compute the quenched Lyapunov exponent, i.e.,
X = Tim ~ logu(0, ) (15.1)
= lim ; og u(0, ¢ —a.s., 5.

and to study its dependence on the parameters.

Finally, the choice in (1.1.4) constitutes one of the simplest types of catalyst dynamics.
What happens for other choices of the ¢-field, e.g. when &(z,t) is 7 times the occupation
number at site z at time ¢ of a system of particles performing a simple exclusion process in
equilibrium (i.e., particles moving like simple random walks but not being allowed to sit on top
of each other)? This extension, which constitutes one of the simplest examples of a catalyst
with interaction, is already quite hard. Since particles cannot pile up in this model, there will
be no strongly catalytic regime (i.e., A, = 0). However, we expect the weakly catalytic regime
to again exhibit a delicate interplay of parameters controlling the intermittent behavior.



1.6 Outline

The outline of the rest of this paper is as follows. In Section 2 we formulate some preparatory
results, including a Feynman-Kac representation for the moments of the solution of (1.1.1)
under (1.1.4-1.1.6), a certain concentration estimate, and the proof of Lemma 1.3.1. In
Section 3 we prove Theorem 1.3.2 for Xp. Section 4 contains the proof of Theorem 1.3.3-1.3.4
for X\p = Ap(k) in three parts: existence, convexity, and behavior for small k. Sections 5-8,
which take up over half of the paper, contain the proof of Theorems 1.3.5-1.3.6: behavior for
large .

2 Preparations
Section 2.1 contains a Feynman-Kac representation for the moments of 4(0,¢), which serves

as the starting point of our analysis. Section 2.2 derives a certain concentration estimate that
is needed for the proof of Theorem 1.3.2, while Section 2.3 contains the proof of Lemma 1.3.1.

2.1 Feynman-Kac representation

The formal starting point of our analysis of (1.1.1) is the following Feynman-Kac representa-
tion for the p-th moment of the u-field.

Proposition 2.1.1 For any p € N,
t P
(wo.7) = B exp |y [ Y w(X(s) o) ds] ] (211)
0 o=

where X1, ..., X, are independent simple random walks on 7% with step rate 2dk starting from
the origin, the expectation is taken with respect to these random walks, and w: Z%x[0,00) — R
is the solution of the Cauchy problem

(z,t) = pAw(z,t) +v | Y dx, @) | {w(@,t) +1},  w(-,0) =0. (2.1.2)

—w
ot ot

Proof. We give the proof for p = 1. Let X,Y be independent copies of X1,Yy. By applying
the Feynman-Kac formula to (1.1.1) and (1.1.6), and inserting (1.1.4), we have

w(0,4) = EX (exp [/Otg(X(s),t _s) dsD
=Ep (1;[ exp [7 /Ot 5Yk(ts)(X(3))d5:|> :

Next, we take the expectation over the &-field. This is done by first taking the expectation
over the trajectories Y} given the starting points Y% (0) and then taking the expectation over

(2.1.3)

10



Y;:(0) according to a Poisson random field with intensity v:

(u(0, 1)) = <]E)§ EIE’;%(O) (exp [7 /Ot Oy (t—s) (X (5)) ds] >>

k
()] (2.1.4)
X vo(y, —
o (s
yeZIneNy
=By | [ exp{v(y,t) — 1}]
yezZd
with ;
v(y,t) = ]E); <exp [7/0 Oy (t—s) (X (5)) ds]) . (2.1.5)
The latter is a functional of X and is the solution of the Cauchy problem
0
&U(I,t) = pAv(z,t) + vix ) (z)v(z, 1), v(-,0) = 1. (2.1.6)

The last expectation in the r.h.s. of (2.1.4) equals EJ (exp[vX(t)]) with X(t) = > yezalv(y,t)—
1}. But from (2.1.6) we see that

%Z(t) — 04 yu(X(8),0),  %(0) =0. (2.1.7)
Hence X(t) = 'yfgv(X(s),s)ds. Now put

w(z,t) =v(z,t) —1 (2.1.8)
to complete the proof. The extension to arbitrary p is straightforward by taking p independent

copies of the random walk X rather than one and repeating the argument. |

It follows from (1.2.1) and Proposition 2.1.1 that

1 '
Ap(t) :ﬁlogE)&__’_”'b’X” exp Vf)//o Zw(Xq(s),s) ds| | . (2.1.9)

This is the representation we will work with later. Note that
W = WXy,...,Xps (2.1.10)

ie., w(-,t) is to be solved as a function of the trajectories X;,...,X, up to time ¢ (and
of the parameters p,v,p), and Ap(t) is to be calculated after insertion of the solution into
the Feynman-Kac representation (2.1.9). Thus, the study of A,(¢) amounts to doing a large
deviation analysis for a time-inhomogeneous functional of p random walks having long-time
correlations.
Note that
w(z,t) >0 VzeZd t>o0, (2.1.11)

as can be seen from (2.1.2). Hence ¢t — tAp(¢) is strictly positive and strictly increasing on
(0,00), as was claimed in Section 1.2.

11



2.2 Concentration estimate

The following estimate will be needed later on. It shows that the solution of (2.1.2) is maximal
when X1,..., X, stay at the origin.

Proposition 2.2.1 For any p € N and Xy,...,X,,
w(z,t) <w(0,t) VzeZit>0, (2.2.1)

where w: 7% x [0,00) — R is the solution of the Cauchy problem

%ﬁ)(x,t) = pAw(z,t) + pyd(x){w(z,t) + 1}, w(-,0) = 0. (2.2.2)

Proof. Recall (1.3.1). Abbreviate § dk = (27)~¢ Jinmya dk. Let

K
pp(z,t) = fdk e~ Ptolk) gtk z€Z%t>0, (2.2.3)

denote the Fourier representation of the transition kernel associated with pA. From this
representation we see that

max p,(z,t) = p,(0,1) Vit >0. (2.2.4)
A

The solution of (2.1.2) has the (implicit) representation

p t
W t) =7 [ dspy(o = Xg(s),t — ) {w(X(s),) + 1) (2.2.5)
g=1""9
Abbreviate )
W) = = 3 w(X, (), ). (2.2.6)
P

We first prove that
n(t) <w(0,t)  Vt>0. (2.2.7)

To that end, take z = X,.(¢t), r = 1,...,p, in (2.2.5), sum over r, and use (2.2.4), to obtain

t
ﬁmSmAwmmwwm®+u (2.2.8)
Define
h(t) = pyp,(0,t) > 0. (2.2.9)
Then (2.2.8) can be rewritten as
< hx{f+1}. (2.2.10)
Next, put
i(t) = w(0,1). (2.2.11)

Then the same formulas with X (-),..., X,(-) = 0 yield the relation

7=hx*{q+1}. (2.2.12)

12



Thus, it remains to show that (2.2.10) and (2.2.12) imply (2.2.7), i.e.,
<. (2.2.13)

This goes as follows.
Put § =7 — 7. Then (2.2.10) and (2.2.12) give

§ > hxd. (2.2.14)

Iteration gives 0 > h*" x 0, and so to prove (2.2.13) it suffices to show that A*™ tends to zero
as n — oo uniformly on compact time intervals. To that end, put hy = max,c[o 7 h(t). Then

t
0 < h™(t) < hT/ R (s)ds,  te[0,T), (2.2.15)
0
which when iterated gives
tnfl
<A (t) < hp—+ t T|. 2.2.1
0— ()— T(n_l)!a 6[07 ] ( 6)
Let n — oo to get the claim.
Finally, put
n(t) = maxw(z,t), t>0. (2.2.17)
x€Z4
Then (2.2.4-2.2.6) and (2.2.13) give
n<hx{n+1} <hx{f+1}. (2.2.18)
Now use (2.2.12) to get
n <1, (2.2.19)
which via (2.2.17) implies (2.2.1), as desired. |

Proposition 2.2.2 For any p € N, ¢t — w(0,t) is non-decreasing and w(0) = limy_,, w(0, t)

satisfies
al

if 0 < %} < T4,

w(0) = T (2.2.20)
00 otherwise.
Proof. Returning to (2.2.11-2.2.12) and recalling (2.2.9), we have
t
w(0,t) = pfy/ dspy(0,s) {w(0,t —s) + 1}. (2.2.21)
0
From this we see that ¢ — w(0,t) is non-decreasing. Using this fact in (2.2.21), we have
_ > _ py 1o
w(0,t) < py dsp,(0,s) ) {w(0,t) +1} = e w(0,t) + 1} (2.2.22)
0 d
(recall (1.3.3)) and hence
@(0,t) < rhs (2.2.20). (2.2.23)
Taking the limit ¢ — oo in (2.2.21) and using monotone convergence, we get
N > _ _py 1,
w(0) = py dup,(0,u) | {w(0) + 1} = o w(0) + 1}, (2.2.24)
0 d
which implies the claim. |
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2.3 Proof of Lemma 1.3.1.
The proof is elementary.

(i-ii) For r € (0,00), let H = A + rdy. This is a self-adjoint operator on ¢?(Z%). The Fourier
transform of # is the operator on L?([—m,7)¢) given by

() (k) = —3(k)o(k) + 7 7{ ()i, (2.3.1)

A~

where we recall (1.3.1). Since Sp(#H) = Sp(#), (1.3.4) reads
pu(r) = sup Sp(H). (2.3.2)

The spectrum of H consists of those A € R for which A—% is not invertible. Consider therefore
the equation
A-H)f=g. (2.3.3)

Substituting (2.3.1) into (2.3.3), we get
(+Df-rhi=g (2.3.4)

Now, the range of @ is the interval [0,4d]. Thus, if A € [—4d,0], then there exists g €
L%([~m,m)%) for which (2.3.4), and hence (2.3.3), has no solution, i.e.,

Sp(H) D [—4d,0]. (2.3.5)

Next, assume that A > 0. Divide (2.3.3) by A + ¢ and integrate to get

1=rRON § 7= § 5= (2.3.)

with R as defined in (1.3.2). If rR(X) = 1, then there is again no solution, i.e.,

rRA) =1 = Xe€Sp(H). (2.3.7)

If, on the other hand, rR(\) # 1, then (2.3.6) yields a unique solution

_ 1 T g
f‘A+$<g+1—rR(A)}[A+g3>’ (2:38)

which is in L?([~m,7)%), i.e.,

rROA) #£1 = A¢ Sp(H). (2.3.9)
The same argument shows that

(—o0, —4d) N Sp(H) = 0. (2.3.10)

Combining (2.3.5), (2.3.7), (2.3.9-2.3.10) and noting that rR(\) = 1 has a unique solution
A = A(r) > 0 if and only if » > r4, we obtain assertions (i) and (ii). Note that if r > r4, then

e=r(u(r) — A)~'d (2.3.11)
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is a positive eigenfunction of A to the eigenvalue u(r), normalized by e(0) = 1 (rather than
by |le|l2 = 1 with || - ||z the £2-norm).

(iii) From (1.3.2) we have

uR(p) = }[ u%sﬁ' (2.3.12)

Differentiate this relation w.r.t. u, to obtain

A~

[WR(p)] = 7{ (L > 0. (2.3.13)

w+ o)
Next, differentiate the relation »R(u(r)) = 1 w.r.t. » and use that R’ < 0, to obtain
R(u(r))
!
piry=——C220 5, (2.3.14)
rR(u(r))

From (2.3.13-2.3.14) we get

[u(r)/r]" = [p(r)R(p(r)]" = [nR(w)] (r)u'(r) > 0, (2.3.15)
which proves the first part of assertion (iii). The second part of assertion (iii) follows from
the estimate ) R ) 0

2 ~
0<——RM:7§7A<—7§¢:— 2.3.16
I (k) plp+o)  p? (1 ( )

after letting y — oo, corresponding to r — oo.

(iv) Differentiating (2.3.14) w.r.t. 7, we obtain

" [R(u(r))*R" (u(r))
wo(r) = . 2.3.17
= RGP (2:3:47)
Since R’ < 0 and R” > 0, this completes the proof.
An alternative way of seeing (iii) and (iv) is via the Rayleigh-Ritz formula:
1

u(r) = sup Srf(0) =5 > [fl@)—fW) . (2:3.18)

fe[2(Zd) T yEZd

1fllo=1 Hx,_y”=1

Indeed, this formula shows that r — u(r) is a supremum of linear functions, and therefore
is convex. Moreover, it shows that r — p(r)/r is non-decreasing, and since the supremum is
attained when r > rg, it in fact gives that r — u(r)/r is strictly increasing on (rg, 00) (and
tends to 1 as r — 00).

3 Proof of Theorem 1.3.2

The proof uses spectral analysis.
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3.1 Upper and lower bounds

Let H = pA + pydy. This is a self-adjoint operator on ¢2(Z%). Equation (2.2.2) reads

%u’) = Hw + pydo, w(-,0) = 0. (3.1.1)

By (1.3.4),
sup Sp(H) = pu(py/p)- (3.1.2)

Suppose first that pu(py/p) > 0. Then, by Lemma 1.3.1, this is an eigenvalue of H
corresponding to a strictly positive eigenfunction e € £2(Z%) (normalized as ||e||z = 1). From
(2.1.9) and Proposition 2.2.1 we have

I 1 [t
—2dk + vy ;/0 w(0,s)ds < Ay(t; k) < 1/7;/0 w(0, s)ds, (3.1.3)
where we use that
Py trg (Xq(s) —0Vse [0, Vg=1,... ,p) = ¢ 2dnpt, (3.1.4)

From (3.1.1) we have
t
w(-,t) :pfy/o ds (e(t_s)H60> (+). (3.1.5)

Moreover, from the spectral representation of e*~* and (3.1.2) we have
e(t*S)pu(m/p)<e’50> < <e(t75)7{50,50> < e(t*S)pu(m/ﬂ)H(;UH%' (3.1.6)

Combining (3.1.3) and (3.1.5-3.1.6), we arrive at

~ . 1
Ap = lim = log Ap(t; 1) = pu(py/p)- (3.1.7)

t—o0

Suppose next that pu(py/p) = 0. Then the upper bound in (3.1.6) remains valid (despite
the fact that no eigenfunction e € £2(Z%) with eigenvalue 0 may exist), and so the limit equals
7ero.

4 Proof of Theorem 1.3.3—-1.3.4

In Section 4.1 we prove Theorem 1.3.3, in Sections 4.2-4.3 we prove Theorem 1.3.4.

4.1 Existence of )\,

We already know that A, exists and is infinite in the strongly catalytic regime, i.e., when
d=1,20rd >3, py/p > rq (see the remarks below Theorem 1.3.2). At the end of Section 4.3
we will see that the same is true at the boundary of the weakly catalytic regime, i.e., when
d > 3, py/p = rq, as is claimed in Theorem 1.3.3(ii). The following lemma proves Theorem
1.3.3(i).

Lemma 4.1.1 Letd >3 and p € N. If 0 < py/p < rq, then the limit \, exists and is finite.
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Proof. Fix d > 3 and p € N, and return to (2.1.3). We have

= Z S:v(t) (4.1.1)
xcZd
with
S.(t) = EY <exp [/ E(X(s),t—s ds] Oz (X(t))) . (4.1.2)
Hence
(u(0,2)") = < > Sa(t) >
r€Z4
- TP p—1
S< Y Su(t) > < Yo Sa®) [ Y Sk > (4.1.3)
[#€Q¢10g ¢ 1¢Qtlogt zeZd
(| S s0[) ¥ ¥ <H5zq ),
[2€Qt10g¢ J T1¢Qtlogt T2,...,TpELY

where Q1og¢ = [—tlogt,tlog t]4 N Z¢. By Jensen’s inequality, the first term in the r.h.s. of
(4.1.3) is bounded above by

|Qt10gt|p_1< Z [Sac(t)]p>

mthlogt

D t p
_ X1, X
— ePvt Q¢ 10g¢]” 1 Z IE(),I___,O ? | exp nyZ/ w(Xg(s),s)ds H(%(X t

TEQ¢1og t

(4.1.4)
where the last line follows the calculation in the proof of Proposition 2.1.1. The second term
in the r.h.s. of (4.1.3) is bounded above by

pepV’Y{TD(O)'i'l}t P)O(l (X1(t) ¢ Qtlogt) ) (4.1.5)

where we use that w(z,t) < w(0,t) < w(0) by Propositions 2.2.1-2.2.2, with w(0) < oo strictly
inside the weakly p-catalytic regime considered here. Now define

p
A, () = max — logE AL X | exp WZ/ s),s)ds| [ 0=(Xe®) |- (4.1.6)
q=1

zeZd pt

Since the probability in (4.1.5) is superexponentially small (SES) in ¢, we see that a comparison
of (2.1.9) and (4.1.6) yields the sandwich (combine 1.2.1) and (4.1.3-4.1.5))

A, () < Aplt) < leOg (1Quiogeler»® + sEs) , (4.1.7)
so that
Jim [Ap(t) — A, (t)] = 0. (4.1.8)
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To prove existence of )\, it therefore suffices to prove existence of

Ap = lim A (t), (4.1.9)

t—o00

after which we conclude that A\, = 5\,,.

The proof of existence of (4.1.9) goes as follows. Write

w(z,s) = WX 1[0,8],...,Xp[0,t] (z,9), s €0,1], (4.1.10)
to exhibit the dependence of w on the p trajectories. We have, for any s,¢ > 0,

= Wx410,5],-..,Xp[0,8] (ZE, U’) for u € [03 3]

4.1.11
> WXy [5,54t],s Xp[5,5+1] (]77 u— 5) for u € [37 5+ t]' ( )

WX, [0,544],..., X,p[0,541] (T5 1) {
Here, the inequality arises by resetting the initial condition to = 0 at time s and using that

the solution of (2.1.2) is monotone in the initial condition. It follows from (4.1.6) and (4.1.11)
that

p
e ,X
p(s+1)A,(s +) > max logEp! 5™ (exp [wz / WX 0,01 Xy 0] (X (1), ) du

z,yeZd
p
xH Ha (5 +1) )

q=1
p

> max {logE Lo N P exp y'yZ/ WX, [0,s],.. ,XPOS](X( ),u)du] H5y(Xq(s))>

d
l’,yEZ q:l

+ log Ey X - P exp y'yZ/ Wx, [0,4],.. ,Xpot}( du]Héx y )}

= psA,(s) +pth,(t),

(4.1.12)
where we use that wy x,[0,4),....y+x,[0,] does not depend on y. Thus, ¢ — A, (?) is superadditive
and so the limit in (4.1.9) indeed exists. It follows from Proposition 2.2.2 and (3.1.3) that
Ap < pryw(0), which proves that X, is finite strictly inside the weakly p-catalytic regime. R

4.2 Convexity in

We will write down a formal expansion of the expectation in the r.h.s. of (2.1.9). From this
expansion it will immediately follow that A,(¢) is a convex function of k, for any p, ¢ and v, p,
v. After that we can pass to the limit ¢ — oo to conclude that A, = lim;_, A,(%) is a convex
function of  too.
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Proposition 4.2.1 For any p € N,

t P
IE)S’{_’_','(')’XP exp wy/ Zw(Xq(s),s) ds

=S (T 0o (1135 55 )it (T [ s

m=1rym=10,=1 a=1 =1

n  la p
X exp _F’ZZ Uq,—1 — Ua,ﬂ)@(ka,ﬁ) H H Z
a=18=1 a=1y=1rq =1

X exp —HZ/ dv o sz ,6{ ra.501[0,u., ﬁ}( )—5ra,5_1,qﬂ[0,ua,571}(“)} '

a=1p=1
(4.2.1)
with the convention sg =t, rq0 = rq and uqo = Sq, o € N.
Proof. By Taylor expansion, we have
X100 X t&
By ™ e [vr [ w0 ds
(4.2.2)

S (i f )

m=1 g=1

with sg = ¢. To compute the n-point correlation under the integral, we return to (2.2.5). By
substituting (2.2.3) into (2.2.5) and iterating the resulting equation, we obtain the expansion

00 l ug_1
H=> (]I /0 dug fdkﬁ
=1 ps=1

xexp [—p Y (ug 1 —up)P(kp) (4.2.3)
=1
[ P l
I1> |es Z [ Xig (ug) = Xogy (up—1)] ¢
y=1ry=1 B=1
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with ug = ¢t and rg = r. This expansion is convergent because the summand is bounded above
by (ytp)/I!. With the help of (4.2.3), we get

n p

X1, X
II-30,1...,0 ! H Zw(Xq(Sm)aSm)

m=1 q=1

= ﬁ i i g H H /um_ldua,ﬂ]{dka,ﬁ

m=1rm,m=11,=1 a=1p=1

n ol
cop |93 S s 1 — )Pl

a=1p=1
nore X1, X
I Y e (e iy Zk 5 [Xr s (va0) = Xry (wap-1)] ¢ ]
a=1vy=1lrs =1 a=1p=1
(4.2.4)
with rq 0 =rq and uq 9 = sq, @ = 1,...,n. To complete the proof it therefore suffices to show
that
X b |
Eol 5" | exp Z Z’f B [Xro s (Ua,g) = Xrg 5, (Ua,p-1)]
a=1p3=1
- eXp _KIZ/ dU QO Z Z k ;ﬂ { Ta Baq 0 U ﬂ}( ) - 51"&,5,1,(]]]'[0,141,5,1}(/”)}
a=13=1
(4.2.5)

By writing

Xra,ﬁ (uayﬁ) - Xra ,B—1 ua76 1 Z {5Ta Baq uayﬁ) - 51"0(,5,1,qu(“@,6—1)}

— Z/[] {5ra,ﬁ7q]l[0,ua,ﬂ](v) - 57‘0"5*1’(1]1[0’“04,(971](0)} qu(U)
q=1

(4.2.6)
and noting that the increments dX,(v), ¢ = 1,...,p, are independent, we see that (4.2.5) is a
special case of the relation

E,* (exp [i/otf(v)-qu(v)]> = exp [—m/ot @(f(v))dv] . qg=1,....p, (427

which holds for any f: RY — R that is piecewise continuous and has bounded jumps. To see
why (4.2.7) is true, we note that

By (explik- Xo(0)]) = > e*py(a, 1) (4.2.8)

r€Z4
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with p, the transition kernel associated with kA. It follows from (2.2.3) that

By * (exp ik - Xq(t)]) = exp[—rtB(k)] (4.2.9)

From this relation, together with the fact that the increments of the process X, over disjoint
time intervals are independent, we get (4.2.7). n

The expression in Proposition 4.2.1 is complicated, but the relevant point is that the right-
hand side is a linear combination with nonnegative coefficients of functions that are negative
exponentials in k. Such a quantity is log-convex in x, which tells us that A,(t) is convex in &
(recall (2.1.9)). Consequently, A\, = lim;_,o, Ap(%) is convex in £ too.

4.3 Small &

If kK =0, then Xy,..., X, stay at the origin and so we have from (2.1.9) and (2.2.1) that

1 t
Ap(t;0) = 1/’)/;/ w(0, s)ds. (4.3.1)
0
Since t — w/(0,t) is non-decreasing by Proposition 2.2.2, we have
Ap(0) = vyw(0) (4.3.2)

with @w(0) = limy_, o @w(0,¢) given by (2.2.20). This proves the second equality in (1.3.8) in
Theorem 1.3.4(ii). It follows from (3.1.3) and (4.3.1) that

Ap(0) = 2di < M) < Ap(0). (4.3.3)

Hence k — Ay(k) is continuous at 0 and is bounded on [0, 00). This proves the first equality
in (1.3.8) in Theorem 1.3.4(ii). Since k — Ap(k) is convex, as was shown in Section 4.2, it
must be continuous and non-increasing on [0, c0). Since it tends to zero like 1/ as kK — oo, as
stated in Theorems 1.3.5-1.3.6, which will be proved in Section 5, it must be strictly positive
and strictly decreasing on [0, 00). Thus we have proved Theorem 1.3.4(i).

By Proposition 2.2.2 and (4.3.2), A,(0) = oo when d > 3, py/p = rq. It therefore follows
from (4.3.3) that A,(k) = oo. Thus we have proved Theorem 1.3.3(ii). The proof of Theorem
1.3.3(i) was already achieved with Lemma 4.1.1.

5 Proof of Theorems 1.3.5-1.3.6

The proof is long and technical. In Section 5.1 we do an appropriate scaling in . In Section
5.2 we formulate seven key lemmas that are the main ingredients in the proof. In Section 5.3
we prove Theorems 1.3.5-1.3.6 subject to these lemmas. The proof of the lemmas is deferred
to Section 6-8.

5.1 Scaling
To exhibit the dependence on the parameters, we henceforth write

Ap(T) = Ap(T; 6,7, p,v), (5.1.1)
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where A (T') is defined in (1.2.1). Substituting (2.2.5) into (2.1.9), we find that

1 XP X0 9 P r r

Ap(T; K, y,p,v) = —TlogEO o | exp |vy Z ds dt
. v = /s .

mi=t (5.1.2)

P (X7 () = X (5), = 5) (1 + w(X[(s),5)) ] )

In this formula, XT,..., X7 are independent simple random walks on Z% with diffusion con-
stant « (i.e., step rate 2dk), the expectation is over these random walks starting at 0, p, is
the transition kernel associated with pA, and w denotes the solution of the Cauchy problem

ow _ pAw + vy (Z 5X;§(t)> (1+w), w(-,0) = 0. (5.1.3)

ot
k=1
In Sections 2-4 the upper index x was suppressed. We introduce it here because now we want
to remove the dependence of the random walks on k. Indeed, in (5.1.2) we perform a time
scaling t — t/k, to obtain that

AP(T;K/a’YHOa V) = K/AP(KT;L’Y/KHIO/Kay)' (514)
Hence
Ap(Ts 5,7, pyv) = kAL (KT K, 7, p,v), (5.1.5)
where
N 1 X100, X Y & T T
AL (T; kyy, p,v) = ﬁlOgEOi..,O P (exp [? Z i ds ) dt
Ri=t (5.1.6)
Po/r(Xi(t) — Xi(s),t = 5) (1 +w* (Xg(s), 5)) ] >,
Xi,...,X, are simple random walks on 7% with diffusion constant 1, w* solves
ot _p L (v . oy —
k=1
and satisfies w* > 0.
The Lyapunov exponents in Theorem 1.3.3 are (recall (1.2.2))
Ap = Mp(K,7,p,v) = lim Ap(T;K,7,p,v). (5.1.8)
T—o00
Because of (5.1.5), these are related to the rescaled Lyapunov exponents
Ap(#, 7, pyv) = lim Ay (T3 6,7, p,v) (5.1.9)
via
>‘P(’£777p7 V) = "<“’>‘;("<“'777p7 V)' (5110)
Note also that (5.1.4) leads to the scaling
Ap(&%ﬂa”) :KAP(L’Y/KHO/K’V)' (5111)

We will frequently suppress the parameters v, p, v from the notation and write A, (T’ k),
AL (T; k) and Ap(k), Ap(k)-
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5.2 Main ingredients in the proof

The assertion of Theorems 1.3.5-1.3.6 may now be restated as follows.

Theorem 5.2.1 Letd > 3, p € N and
Py

0<Z<r, (5.2.1)
p
(1) For d >4,
2

lim ©2\%(k) = = 2.2
i w7 (R) = — (5.2.2)

(1) For d =3,

2 vy? vy? V2

with P the constant defined in (1.3.11).

The proof of Theorem 5.2.1 is based on seven lemmas, which are stated below and which
provide lower and upper bounds for various parts contributing to (5.1.6). The guiding idea
behind these lemmas is that the expectation in (5.1.6) can be moved to the exponential in
the limit as k¥ — oo uniformly in T', except for the part that produces the constant P, which
needs a large deviation analysis. This idea, though simple, is technically rather involved.

In the statement of the lemmas below three auxiliary parameters appear:
0<a< oo, 0<e< K < oo. (5.2.4)

These parameters are needed to separate various time regimes. Four lemmas involve one
random walk (X), one lemma involves two random walks (X,Y), and two lemmas involve p
random walks (X7,...,X,). We use upper indices — and + for lim inf and lim sup, respectively.

5.2.1 Lower bound

The first lemma concerns the “diagonal term” (0 <t — s < ak®). Let

_ 1 \ V,.YZ T s+ak>
Adiag(T;a,n) = —Tlog]EO exp —F/O ds/ dt ppe(X(t) — X(s),t — s)

(5.2.5)
and
Adiag (@, K) = th_l)ngdiag(T; a, k). (5.2.6)
Lemma 5.2.2 (Lower bound for the diagonal term)
For d > 3,
lim inf 5?7 LA 5.2.7
im inf x diag(av”)—ﬁ <a < oo. (5.2.7)
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The second lemma concerns the “variational term” (ex® < t — s < Kx3), which involves p
random walks and which will turn out to be responsible for the second term in the right-hand
side of (5.2.3). Let

Avar (T; €, K, H)

s+ KK (5.2.8)
:—lo E}’ N o X | exp Z/ ds/ dt py/(Xi(t) — Xg(s),t — )
pT k=1 +ek3
and
Ao (6, K, k) = hmlanvar(T e, K k). (5.2.9)

Lemma 5.2.3 (Lower bound for the variational term)

For d =3,
hnrg%gfﬁ)\var(e,K, k) > Pple, K5, p,v) Vo<e< K < o0, (5.2.10)
where
,Pp(eaK;’Yapa V)
vy? 2 2y [ o] (5.2.11)
= sup |——p [ dz fi(z) | dy f(y) dt pa(z —y,t) — Vs fll2
fﬁﬁll(l&f’) P R3 R3 €
=

with pg(z,t) = (4nt) 3/ exp[—||z||?/4t] the Gaussian transition kernel associated with Ags.

5.2.2 Upper bound

The third lemma is the counterpart of Lemma 5.2.2. Let

1 x V,YQ T s+ar?
A;Eag(T; a, k) = T log Ey | exp 7/0 ds/s dt ppe(X(t) — X(s),t — s) (5.2.12)

and

>\+

diag (T;a, k). (5.2.13)

(a,k) = limsup A

dia,
T—00 18

Lemma 5.2.4 (Upper bound for the diagonal term)

(i) For d > 4,
vy?
limsup s®\},_(a,k) < —— V0 <a < oo. (5.2.14)
K—»00 & rd
(11) For d =3,
vy?
limsuplimsup k?A% (a, k) < ——. (5.2.15)
al0 K—00 & T3
The fourth lemma, is the counterpart of Lemma 5.2.3. Let
Ao (6, K k) = limsup Avar (T 6, K, K). (5.2.16)

T—o00
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Lemma 5.2.5 (Upper bound for the variational term)

(i) For d > 4,
Jim KA (6, K k) =0 V0<e< K < oo. (5.2.17)
(1) For d =3,
limsup k2\{ (€, K, k) < Pple, K3, p,v) Vo<e< K < . (5.2.18)
K—00

Three more lemmas deal with the upper bound, all of which turn out to involve terms
that are negligible in the limit as k — oo. The fifth lemma concerns the “off-diagonal” term
(t—s > ar?). Let

2 T 00
Ao (T a, k) = %log EY (exp [% /0 ds /+ . dt po(X(t) — X(5),t — s)]) (5.2.19)
STakK

and
Mg (a, k) = limsup Aog (T'; a, k). (5.2.20)

T—00

Lemma 5.2.6 (Upper bound for the off-diagonal term)
(i) For d > 4,
lim k*\fg(a,5) =0 V0 <a< oo (5.2.21)

K—>00
(1) For d =3,
lim limsup &*\/¢(a, &) = 0. (5.2.22)

a—=00  k—00

The sixth lemma concerns the “mixed” term and involves two random walks. Let

1 Ny I/’)’2 T s+ar®
Anix(T;a, k) = T logEyy | exp ?/0 ds/ dt pp(Y () — X(s),t — s) (5.2.23)

with
)\-l-

mix

(a,k) = limsup Anix(T; a, k). (5.2.24)

T—00

Lemma 5.2.7 (Upper bound for the mixed term)

(i) For d > 4,
lim x*AT. (00, k) = 0. (5.2.25)
K—00
(1) For d =3,
lim &*\}. (a,k) =0 V0 < a < ag with ag small enough. (5.2.26)

K—00

The seventh lemma deals with a term that will be needed to handle the w*-remainder in
(5.1.6). Let

1 3 T
Arem (T k) = T log]E)g (exp [%/0 ds

(/:o dt (X (£) — X (s),t — s)> (/0 du py/(X () — X(u),s — u)> ])

25
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and
>\+

rem

(k) = limsup Avem (T’ £). (5.2.28)

T—00

(Note the extra factor /k in the exponent in the right-hand side of (5.2.27) compared to the
previous definitions.)

Lemma 5.2.8 (Upper bound for the w*-remainder)
For d > 3,
lim x*\%,, (k) = 0. (5.2.29)

K—00

The proof of Lemmas 5.2.2-5.2.8 is deferred to Section 6-8.

5.3 Proof of Theorem 5.2.1

Recall that the solution of (5.1.7) admits the (implicit) integral representation (compare with
(2.2.5))

w*(z, s) Z/ du e — Xi(u),s —u) (1 +w* (X (u),u)). (5.3.1)

Moreover, in the weakly catalytic regime given by (5.2.1), we have

~[

w*(z,s) <w(0) =C* = < 00 VeeZd s>0 (5.3.2)

Py
p

Td

(recall (2.2.1), (2.2.5) and (2.2.20)). Note that C* does not depend on k.
For d > 3 and a > 0, abbreviate

o0
Ga(0) = / dt p(0,1). (5.3.3)
a
We have G(0) = R(0) = 1/rq (recall (1.3.3)), and there exists a constant ¢4 > 0 such that
Cd

Ga(O) S W’ a > 0. (534)

5.3.1 Lower bound

Removing in (5.1.6) the terms with w*, ¢t > s + Kx?, and k # [ for t < s + ex?, we get
A3 (T; 5,7y, p,v) > p— log By 5" (exp[U + V = C) (5.3.5)

with

v 2 P T s+er3
—%2/ ds/ 0ty (Xi(t) — Xi(s),t — 5),
s+Kkr3
Z/ ds/ D,y (Xi(E) — Xi(s),t = 5),

k=1 +er?

(5.3.6)
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where C' > 0 is a constant that compensates for ¢ > 7" in (5.3.6). This constant may be chosen
independently of T', as follows easily from rough estimates. By a reverse version of Holder’s
inequality, we have

1geee 1yeee9Ap _1/4 1yeeyXp 1/0
By (explU + V) > (B3 L™ (exol—cUD) (Bolig™ (explov]))

(5.3.7)
0 1),{=——.
€ (0,1), ¢ = ——
Hence, recalling (5.2.5) and (5.2.8), we obtain
x L 1
AP(T; Ky 05 V) Z Z Adiag(T; € Ky, Py CV) + 5 AV&I“(T; € K’ Ky P, 9”) (538)

By letting T' — oo, recalling (5.1.9), letting x — oo, using Lemmas 5.2.2-5.2.3 for the corre-
sponding terms in the right-hand side, and afterwards letting 6 1 1, we arrive at

2

D 2y % vy .
llnrgg)lfﬁ Ap(K) > L ifd>4 (5.3.9)
(drop the last term in (5.3.8)) and
C 2y % V72 :
hﬁrgg)lfﬁ Ap(K) > o + Pple, K57, p,v) ifd=3 (5.3.10)

(keep the last term in (5.3.8)). In the latter, let € | 0 and K — oo, and use that

ELO}}?LOOPP(E?K;'Y?:O? V) :PP(77p7 V) (5311)
with
Pp(77p7 V)
v 2 o]
= sup [lp/ da f2($)/ dy fQ(y)/ dt pa(x —y,t) — Vs £13|,  B-312)
feHL(R3) Y R3 R3 0
[1£ll2=1
to obtain )
liminf k2X5(k) > 2 + Pp(y,p,v)  ifd=3. (5.3.13)
K—00 7"3

Finally, a straightforward scaling argument shows that

2 1/2
Pp(%p,l/)=<7p> P (5.3.14)

with P the constant defined in (1.3.11). This completes the proof of the lower bound in
Theorem 5.2.1.

The fact that (5.3.11) holds is an immediate consequence of the fact that (1.3.11), and
hence (5.3.12), has a maximizer f, as shown by Lieb [23]. Indeed, we have

0 S'Pp('y’p,y) _Pp(faK;vapay)
2

1% _ _
< p/ dwf2(w)/ dyf2(y)/ dt pe(z — 1),
p R3 R3 (0,ep)U(K p,00)

and the right-hand side tends to zero as € | 0 and K — oo because the full integral is finite.

(5.3.15)
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5.3.2 Upper bound

We begin by splitting the exponent in the right-hand side of (5.1.6) into various parts. The
splitting is done with the various lemmas in Section 5.2.2 in mind, and uses the parameters
in (5.2.4) witha=¢€eora=K.

Lemma 5.3.1 For any p € N,

p T T
3 /0 ds [ dt ppya(Xi(0) = Xilo),t = 9)(1 + 0" (Xe(5),9)

k=1

D€ DE * *
< <1+Kd_2> (I +IT+1IT)+ (1+ “+2(1+C )ﬁ> IW+(1+C )%V,

K4 Tdp
(5.3.16)
where C* is the constant in (5.3.2),

(14 C*)cayp
D, = T (5.3.17)

with cq the constant in (5.3.4), and

p T s+ex3
1= [Cas [ dtpyel6ud) - Xulo)t )
k=1 0 ]

P T s+Kk3
II = Z/ ds/ dt pyy(Xi(t) — Xi(s),t — s),
0 s

k=1 Fer?
p T 00
7= Z/ ds/ dt Doy (Xi() — Xi(s),1 — 5),
k=1 0 s+ Kk
4 T s+er?
w=> / ds/ dt p,y(Xi(t) — Xi(s),t — s),
k],cl;ézll 0 s
p T S [e'e)
v=> [ as ( [ drpo(Xis) = Xe(r),s - r>) ( [ (X - i), - s>)
k=170 s
(5.3.18)
Proof. For the term without w* we bound
p T T
> / ds/ dt pp(Xi(t) — Xi(s),t —s) < T+ IT+ ITT+1V. (5.3.19)
0 s

k=1

For the term with w* we bound, with the help of (5.3.1-5.3.2),

p T T
3 / ds [ dt pyyal(Xi(0) = Xlo).t = s)u” (Xi(s).5)

k=1

p T
§(1+C*)% 3 /0 ds

Jok,l=1

(/Os dr po/e(Xk(s) — Xj(r),s — r)) (/ST dt p,y(Xi(t) — Xi(s),t — S)) _
(5.3.20)
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By (5.3.4),

Y < e ith C, = cd
s U pp/n((),u) S /<(,d_3 wit e — W (5321)
Hence, by (2.2.4),
(s—er3)V0 s—er C
[ armete) = 0= 0 £ [ drpyelos =) < 55,
0 —00 K
T o c (5.3.22)
dt p,.(X;(t) — Xi(s),t —s S/ dt p,/.(0,t —s) < —=.
/(s+en3)/\T ol ( ( ) ( ) ) s+erd of ( ) ka3

Splitting the integrals in the two factors in the right-hand side of (5.3.20) into two parts
accordingly, and inserting (5.3.22), we find that

rhs (5.3.20)

p T s
< (1+C*)% > /0 ds </( OdT Pp/r(Xi(s) —Xj(T),S—T)>

e l=1 s—ex3)V

y (/(s-l—en AT 1 9 Ki(8) — Koot — S)) (5.3.23)

-DE p T T
Doy / ds / dt pyn(Xi(t) — Xp(s),t — 5),
0 s

K
k=1

with D, = 2(1 + C*)Ceyp. Indeed, the second term in the right-hand side of (5.3.23) is
obtained from the cross products by estimating, via (5.3.22),

i /OTdS </Osd7" Po/r(Xk(s) — Xj(r), s —r))

+

k=1
T
x (/ dt py(Xi(t) — Xp(s),t s)) (5.3.24)
(s+er3)AT
Ce p T s
<% Y [ ds [ arpye(ts) - X5 1)
jik=1""0 0
and
P T (s—er)V0
> [as(] 0y Xe(s) — X (1), 7)
jikei=1"0 0
T
x ( / dt pp/,i(Xl(t)—Xk(s),t—s)> (5.3.25)
Cp ~— [T [T
<GB Y [ds [ dtnnn - Xeo)e - ),
ki=1"0 s

and adding (5.3.24-5.3.25) after renaming indices j — k and k — [ in the former.

The second term in the right-hand side of (5.3.23) can be estimated with the help of
(5.3.19). For the first term, split the sum over the indices into j = k =1, j # k and k # [. For
k #1 (j # k) we estimate the first (second) inner integral by x/rgp. As a result, we obtain

D,
Ihs (5.3.20) < 5 ([ + 11+ I+ IV) +2(1 + C*):—i IV +(1+ C*)% V. (5.3.26)
d
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Combining (5.3.19) and (5.3.26), we arrive at the claim. |

Our next step is to apply Holder’s inequality to separate the various summands appearing
in (5.3.18), so that we can apply to them the lemmas in Section 5.2.2. We will separate all
summands except the ones in I, since the latter produces the variational problem in (5.2.11)
and requires a cooperation of the p random walks.

The total number of summands in (5.3.18) that are separated thus equals ¢ = p+1+p? +
p(p—1)+p = 2p? +p+ 1. Hence, substituting (5.3.18) into (5.3.16), substituting the resulting
formula into (5.1.6), and applying Holder’s inequality

B (ezzzlsr) < [E (6951)]1/9 f[ [E (eﬁsr)]l/c, 6 e (1,00), ¢ = %(q ~1), (5.3.27)

to the expectation in the right-hand side of (5.1.6) (with » = 1 reserved for IT), we find that

P D
pAL(T; 5,7y, p,v) < ¢ Adfing (T; € Ky Y Py <1 + de2> CV)

D
Avar (T§ & K, k,7v,p, <1 + d—€2> 0’/)
K

+ 5 D
p? D,
+ ? Aoff Ta K? Ky, 0, 1+ d—2 CU

-1 D,
+M Amix T; €, Ky Py 1+ — +2(1+C*)£ CV
¢ =2 rap

+§AMMﬂm%mu+CU@y

(5.3.28)
By letting T' — oo, recalling (5.1.9), letting k — oo, using Lemmas 5.2.4-5.2.8 for the cor-
responding terms in the right-hand side of (5.3.28), and afterwards letting 6 | 1, we arrive
at
2 vy’
limsup K“A (k) < —— if d > 4, (5.3.29)
K—00 rd
and, after estimating Py(e, K;v,p,v) < Pp(v,p,v), using (5.2.15) with ¢ = €, and letting

€l 0,
2

lim sup £2X5 () < % + Py, pv)  ifd=3. (5.3.30)
3

K—00

For the second term in the right-hand side of (5.3.30) we may use (5.3.14). This completes
the proof of the upper bound in Theorem 5.2.1.

6 Proof of Lemmas 5.2.2 and 5.2.4

As we saw in Section 5.3, the “diagonal” contributions to the lower and the upper bound in
the proof of Theorem 5.2.1 come from Lemmas 5.2.2 and 5.2.4, respectively. In this section
we prove these two lemmas. Let p(x,t) denote the transition kernel associated with A. Then

pp/n($7t) =p (33, %t)
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6.1 Proof of Lemma 5.2.2

Proof. Let a, A > 0 be arbitrary. Estimate

T s+ar®
/0 ds/ dt ppe(X () — X(s),t — s)

|_T/a |_T/a (6.1.1)
> / e / dt ppje(X(t) — X(s),t — ) VK > ko(a, A).

even

Note that the summands in each of the two sums are i.i.d. Hence, substituting (6.1.1) into
(5.2.5) and applying the Cauchy-Schwarz inequality, we find that

T/a
Agiag (T 0,K) > — L 2éTJ log B (exp [-2W (a, A, k)]) (6.1.2)
with I/’y2 a s+A
W(a, A, i) = 7/ ds/ dt pyye(X (1) — X (), — 5). (6.1.3)
0 s
Next, note that, by (2.2.4),
2 a A 2
vy vy k1
W(a, A, k) < ?/0 ds/s dt pp/(0,t —s) < ?a; o (6.1.4)

Since, for fixed a, the right-hand side tends to zero as Kk — oo, it follows that
EY (exp [—2W (a, A, k)]) < exp [-20E} (W (a, A, k))] Vo e (0,1), kK > rK1(0,a,A).

Moreover, since

ES (pow(X (1) = X(s),1 =) =E¥ (p (X() = X(5). 2t =) ) =p (0, (1+ 2) (t = 9)) ,

(6.1.6)
it follows from (6.1.3) that
EX (W (a, A ))—”72 " (0 (1 p) ) (6.1.7)
0 a, A, K —?ao u pl0, +Eu. 1.
Inserting (6.1.5) and (6.1.7) into (6.1.2), and letting T' — oo, we find that
2 1 r(a+2)A
— V’)’ p K
)\diag(a,ﬁ) >0 7 (1 + ;) /0 du p(0,u). (6.1.8)
Hence A
hﬁrgg)lfﬁ Adiag (@, ) > 6 1> /0 du p(0,u). (6.1.9)
Now let A — oo and 6 1 1, to get the claim in (5.2.7). |
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6.2 Proof of Lemma 5.2.4

The proof of Lemma 5.2.4 relies on Lemma 6.2.1 below. For a > 0, define
Define

1 2 ak® o]
Ao(y, p,v) = limsup — log B} (exp [%/ ds/ dt ppe(X () — X(s),t — s)]) .
K 0 s

k—oo OaK
(6.2.1)
Lemma 6.2.1 (a) If d > 4, then
vy?
Ao(y,p,v) < - V0 <a < oo. (6.2.2)
d
(b) If d = 3, then
A 1+ C’al/‘l% . 6.3
a ? ? S ? e
(v,0,v) 1— Cal/4(1 + Ca1/4)é vy ( )
provided a > 0 is so small that
Callt 14y 1
a’* (14 Ca )7"_ <1, (6.2.4)
d
where 1/2
2c310y2
C=C(y,p,v) = < > . (6.2.5)
NI
Before giving the proof of Lemma 6.2.1, we first prove Lemma 5.2.4.
Proof. Split the integral in the right-hand side of (5.2.12) as follows:
T s+ak>
/ ds/ dt ppje(X(t) — X(s),t — )
0 s
[T/ak®] [T/ar?] kard star? (6.2.6)
<| > + > / ds/ dt pp(X () — X(s),t — 5).
k=1 k=1 (k—1)ax3 s

even odd
Note that the summands in each of the two sums are i.i.d. Hence, substituting (6.2.6) into
(5.2.12) and applying the Cauchy-Schwarz inequality, we find that

A;;ag (T’ a’? K:)

a’/<.‘/3 y 2 ard s+ak3 6.2.7
< 7[T2T I log £ (exp [2 Z /0 ds/s dt (X () = X(s),t = 3)]> ’ ( )

K

Letting T" — oo, we arrive at

1 . 20y ak?® stax®
)\(‘Eag(a, F.‘,) < WIOgIEU exp 7/0 ds/ dt pp/n(X(t) _X(S)at_s)

(6.2.8)
Assertion (5.2.14) follows from (6.2.8) after extending the second integral to infinity and ap-
plying Lemma 6.2.1(a) with v replaced by 2v. Assertion (5.2.15) follows similarly by applying
Lemma 6.2.1(b). n
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6.3 Proof of Lemma 6.2.1

The proof of Lemma 6.2.1 is based on two further lemmas. Recall (5.3.3).

Lemma 6.3.1 For any a >0 and M €N,

(6.3.1)

where Zy(t) = X(%T +1), keNy, and yo = 0.

Lemma 6.3.2 Let d > 3. Foranya >0, M €N, k € Ny and v, ..,y € Z,

ko oo aSF G r,(0)
l 1=0 Y 2L
EY (exp [a E / dt p,, <X(t) +yl,—T+t> ) < exp M ,
=Jo T M 1 —a Yy G o (0)

(6.3.2)
provided that o is so small that
k
aZGi_&l(o) <1. (6.3.3)
Before giving the proof of Lemmas 6.3.1-6.3.2, we first prove Lemma 6.2.1.
Proof. Let M € N be arbitrary and abbreviate
ko 3
Zp(t) =X ik +t], ke Ny, (6.3.4)
which is the same as below (6.3.1) with 7' = ax®. Then
(eXp [ / / dt ppe(X X(s),t —s) )
(6.3.5)

v

ar® M 00
’Y M
=& e |70 / dsS / 0t Dyl Zi 1(8) = Z 1(5), 1 — 5)
k=175

After applying Jensen’s inequality, we get

rhs (6.3.5) < 3:3 /OM ds EX <exp ["7 ar” Z/ dt py(Z—1(t) _Zk—l(s),t_s)]>
ak <L [
=E} <6XP [V’Y2M kz::l/o dt p/e(Zk-1(t) — Zkl(o)at)]> -

(6.3.6)
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To the espression in the right-hand side we may first apply Lemma 6.3.1 and then Lemma
6.3.2, both with a = vy%(arx/M) and T = ax®. As a result, we obtain from (6.3.5) that

ilog]E)g <exp[ / / dt pp/e(X X(s ),t—s)])

1 M V’)’“L]\/[Ii 1_0 Gp le(o) vy EZMUIG ax? ( )
< am 2
ak =1

20K k—1 < 2akK
- V’Y =0 Gp%l(o) ]‘ - vy M l 0 G an (0)
provided that

(6.3.7)

’

M
Z : (6.3.8)

M 1=0
(a) Let d > 4. Then, by (5.3.4),
M-1 M—1
; G e (0) < Go(0) + (; é@%) Go(0) < (1 +a %) % (6.3.9)
for some ¢g > 0 and all M € N, provided that p(ax?/M) > 1. Now choose
M = M(x) = |*?]. (6.3.10)

Then, substituting (6.3.9) into (6.3.7) and letting x — oo, we arrive at (6.2.2).

(b) Let d = 3. Then, by (5.3.4),

M—-1 M-1

2cg M\ 1
G ux2,(0) < Go(0) + Z_ ) Go(0) < (1 + %?) - (6.3.11)
1=0 =1 y/p%l VP d
for all M € N. Now choose
1/2
M = M(k) = KW f) Iﬁ:‘ . (6.3.12)
203
Then
lim 28 M) _ o, (6.3.13)
K—00 pa K
and
: 2 _ 1/4
Hll)rgoyfy M) Ca (6.3.14)

where C' is given by (6.2.5). Substituting (6.3.11) into (6.3.7) and assumption (6.3.8), letting
Kk — 00, and taking into account (6.3.14-6.3.13), we arrive at (6.2.3) under assumption (6.2.4).
|
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6.4 Proof of Lemmas 6.3.1-6.3.2

The proof of Lemma 6.3.1 goes as follows.
Proof. We show that the function defined by

r k=1 .00
l
E(r) = EY dt X(t — T+t
(r) Igyhr{}gf_l 0 (exp [a;/o pp/n< (B + 37T+ )

Z1yeenyZr

X max ]E)é (exp

M—-r .50
o [t pyulZis ) = Zia 00,1 (6.4.1)
k=1 "0

r 00 l
+aZ/ dt p,)s (X(t)+zl,MT+t> )
=170

for r = 0,...,M — 1 is non-decreasing in r. Then E(0) < E(M — 1), which is the desired
inequality. (Note that for » = M —1 the first term in the right-hand side of (6.4.1) corresponds
to k=1,...,M — 1 in the right-hand side of (6.3.1), the second term to &k = M, [ = 0, and
the third term to k =M, =1,...,M — 1.)

Fix r arbitrarily. We want to show that F(r) < E(r 4+ 1). To this end, fix also z1,..., 2,
arbitrarily. Separately handling the summand for k£ = 1, splitting the integral over (0, c0)
into integrals over (0,7/M) and (T'/M,o0), shifting time by T//M for the latter, and using
the Markov property of X at time T'/M, we obtain

M—-r .o
EY (exp [a > / dt pp(Ze-1(t) — Zp-1(0),1)
k=1 "0
r o0 l
+a12;/0 dt pyys (X(t)—i—zl,MT—i—t) )

< T/M [e%9) 1
=E} | exp a/o dt pp(X(1),1) +a/0 dt pp/ <Z1(t),MT+t>

M—(r+1

) oo
+ « ; /0 dt py/e(Zk(t) — Zx(0),1)

l
dt p,)s <X(t) 21, 37T+ t>

r+1

o0 l
—i—aZ/ dt p,yn <Z1(t) +zl_1,MT+t>
1=2 70

)
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and
rhs (6.4.2)

r T/M I
;/0 dt P,y (X(t) + 21,37+ t)

. /M
<Ejp | exp a/o dt p,/(X(1),t) +

o0 1
X
dt X(t T+1
XIIL%XEO (exp [a/o pp/n< ()+ZO’M + )

M—(r+1

) oo
+a Y / dt pp/w(Ze—1(t) — Zk-1(0),1)
k=1 70

r+1 o I
+ad [ dtpy X(t) + 20 +21-1, 3,7 +1
1=2 70

(6.4.3)

In the last line we maximize over Z;(0) = X (T'/M) after using the Markov property of X at
time T'/M. Hence

M—-r .50
Z{I’la‘ﬁr E)(g <exp [CM Z A dt pp/n(Zkfl(t) - Zkfl(o)at)
k=1
r 00 l
+ a;/o dt s (X(t) 21, 77T+ t>

r 00
!
aZ/O dt Py (X(t) —i—yl,MT—l—t)
=0

< max E} |exp
Y1iyeensYr

M—(r+1) .
x max E} (exp [a / dt pp(Z-1(t) — Z1—1(0),1)
0
o l
+ a;/() dt s (X(t) + 2, MT—i—t) :
that E(r) < E(r + 1), as desired. |
The proof of Lemma 6.3.2 goes as follows.
Proof. A Taylor expansion of the exponential function yields

Z1yeeZr41 b1
Here, we extend the first two integrals in the right-hand side of (6.4.3) from 7'/M to infinity,
X * S !
E} | exp a/o dtlz_;pp/,i (X(t)—i—yl,MT—i-t)

) (6.4.4)
r+l1
use that yo = 0, replace zg by z1 and 2y + 2,1 by z;. Substituting (6.4.4) into (6.4.1), we get
00 m 00 k I
=Y amEY H/ ;> Pon (X(tj) + 1, MTHJ-)
m=0 j=1 tj—1 =0

(6.4.5)
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with £y = 0. A successive application of the Markov property at times #,, 1,...,%; yields

EX H/ dtjzpp/ﬁ< +yl,AZT+tj>
=E} H/

tj—1

> !
x/ dt,, Zp( tm—1) + Y1, — P (MT—th) +tm —tm1> (6.4.6)

tm—1

m—1 k
[
<8t (11 S (v wgr ) ) (S0 0)
j=1 - l

k m
< (Z G;’,\EZ(O)> :
=0

In the first inequality we use that p(z,t) < p(0,t) and that ¢ — p(0,¢) is non-increasing.
Substituting (6.4.6) into (6.4.5), summing the geometric series and using the inequality 1+xz <
e’, x € R, we arrive at (6.3.2). n

[
dt; pr/n( (t) +yl,MT+tj>

7 Proof of Lemmas 5.2.3 and 5.2.5

As we saw in Section 5.3, the “variational” contributions to the lower and the upper bound
in the proof of Theorem 5.2.1 come from Lemmas 5.2.3 and 5.2.5, respectively. In this section
we prove these two lemmas.

The proof of Lemma 5.2.5(i), which applies to d > 4, is easy. Indeed, in the right-hand
side of (5.2.8) separate the p? summands with the help of Holder’s inequality (as in (5.3.28)).
The terms with k = [ are negligible for kK — oo by Lemma 5.2.6(i) with a = ¢, while the same
is true for the terms with & # [ by Lemma 5.2.7(i). Lemmas 5.2.6-5.2.7 are proved in Section
8.

Thus, we may henceforth restrict to d = 3.

7.1 Space-time scaling

We begin with a space-time scaling of the random walks. Let Z2 = x~'Z3, and define

XIEK)(t) = K’_IX/C(HQt)a tZOa k= ]-7"'7p7 (71 1)
pE)(z,t) = Kp(kz,K%t), = €Z3, t>0.
Each X ,(f") lives on Z2, has generator
QW@ = Y [fy) - f@)] @i (7.1.2)
yELY
ly=ell=x="
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and has transition kernel whose density is p®) w.r.t. the discrete Lebesgue measure on Z3
where each site carries weight £™3. As k — oo, each X ,EK) converges weakly to Brownian
motion, which has as generator the continuous Laplacian Ags, and p{*) converges weakly to
pa, the density of the transition kernel associated with Brownian motion w.r.t. the continuous
Lebesgue measure on R?. The last convergence is uniform on compacts, i.e., for every compact

C C R x (0,00) and every 6 € (0,1) there exists g = g (C,6) such that

1
Opa(z,t) < p(“)(x,t) < ap(;(x,t) V(z,t) € C, k > Kg. (7.1.3)
Further note that
3/2
min pa (2, us) = pa(0,u2) = (ﬂ> Vug > uy. (7.1.4)
2eR3 pa(z,u1)  pa(0,ur) Uy

7.2 Proof of Lemma 5.2.3

Fix 0 < e < K <00, d >0 small, and 6 € (0,1). Abbreviate

L = L(e = [e/d],
M = M(@6,K) = |KJ/§, (7.2.1)
N = N(T;6,k) = |T/6k3].

Fix a large open cube Q C R?, centered at the origin. Later we will take limits in the following
order:
T — 00, k—00,0010,011,Q71R. (7.2.2)

Let Cg be the event
Co = Co(N, M, 5,r) = {X,E”)(t) €QVO<t< (N+Mor, k= 1,...,p} . (1.23)

Then from (5.2.8), (7.1.1) and the lower bound in (7.1.3) we get

(%) (%)
Avar(T3 6, K, ) > p— log By 5" (exp[U] 1cy, ) (7.2.4)
with 2
T/k s+Kk
U= / / ar ) (X 6) = x(7(), 2t - 5))
+ek
m= (7.2.5)
T/K? s+Kk o
> / ds / dt Ope (X{2(1) ~ X{(), 2t - 9))
k=1 Tek w
for k > ko(C,0) with C = 2Q x [ep, Kp] (with Q the closure of Q). Moreover,
rhs (7.2.5)
p N nok (n—1)6k+Kk
V_ By xv® oy Py _
> 1 ZZ/ ds/ dt 0 pe (Xl () = X7 (), E e s))
ki=1n=1 (n—1)dk nik+ek
p N (n+m)dk
K K p
> dt Ope (X)) — X% (s), Lt — ) .
ZZmL-H/nI /n—l—ml)(S <l() k()ﬁ( ))
(7.2.6)
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Next, note that (m — 1)dp < £2(t — s) < (m +1)dp for all s, in the domain of integration
corresponding to n, m, and use (7.1.4), to obtain

(%) (%)
Avar (T 6, K, 1) > p— logEyl 5" (exp[V]1e,) (7.2.7)

nék (n+m)dk
/ ds / dt
(n—1)dk (n+m—1)dk

<0 (15 )3/2 pe (X0~ X0 (5). (m ~ 1)3p)

with
M

v-rtyy
K

P —1
k,l=1n=1m=L+1

(7.2.8)
L+2

In this last expression, the time coordinate of the kernel is fixed for each m. Therefore, if we
introduce the normalized occupation time measures

[1]

( 1 roK (r) 3
)4y = — ds]lA(Xk (s)), k=1,....,p,r=1,...,N+ M, A C R® Borel,
’ (r—1)dk

0K
(7.2.9)
then we may write
I 3/2 ny p N M-1
V=6 <L—+2> LI
k=1n=1m=L+1 (7.2.10)

<. Eé’?%(d@ . =5t 0 ity .= 1)

This representation brings us into a position where we can do a large deviation analysis, as
follows.

For ;1 € M1(Q), the set of probability measures on @, let Ug () C Mi(Q) denote any
weak open neighborhood of p such that

v,V € Ug (1) :/m (dx) /VZ(d?/) pc(y —z,(m —1)dp)

> / (d) / (dy) pely — . (m — 1)dp) (7.2.11)
Vm=1L M,
and let Cg , be the event
Cop = {E,(:r cUg(p) Vh=1,....p,r=1,...,N + M}. (7.2.12)
Then, for any p € M1(Q), we may bound, via (7.2.7) and (7.2.10),
(r) (k)
Avar (T €, K, ) > p— log By’ " (exp[V] ey, ley,,)
3/2
s L (LT ey
pT L+2
M1 (7.2.13)
<os [ utdo) [ udy) Y 00 paty— . (m - 1)3p)
Q Q m=L+1

1 X" x ()
+ oT log Py o777 (CoNCou)-
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By again appealing to (7.1.4), the sum in the first term in the right-hand side of (7.2.13) can
be estimated as follows:

M-1 I \3/2 (M-2)5p
Z ép pc(y — z,(m — 1)dp) > (ﬁ) / du pg (y — z,u) . (7.2.14)
m=L+1 + (L—1)dp

As to the second term in the right-hand side of (7.2.13), by using the independence of the p
random walks and using the Markov property at times réx for r = 1,..., N + M, we may
estimate (with X(®) = XY"), =" = EY”))

,\r

X{”),...,XIE“)(

IP)0,...,0 CQ N CQ,;L)

- :Ip)g(“) (X(“)(t) €QV0<t<(N+Mok W €UUp()Vr=1,...,N + M)]p

r

> :nv{f“) (XW (1) € Q YO0 <t < (N + M)dk,

7.2.15
E,(F)EUQ(;L) andX(”)(r5f$)E%QVT:l,...,N—i—M)r ( )

Vv

min PX® (X(“) (t) € Q VO < t < dk,
L2ez3niQ

1 (N+M)
=) € Ug(p) and X (0k) € EQ)F .

The dependence on N is now pulled out of both terms in the right-hand side of (7.2.13),
and so we can take the limit 7" — oo, to obtain from (5.2.9), (7.2.1) and (7.2.13-7.2.15) that

) ) I’ 3 V72 (M—2)ép
K N6, K, k) > 0 (ﬁ) —p/ u(dx)/ u(dy)/ du pg(y — ,u)
+ P Q Q (L—1)dp

1 ) (%) 1
—1 PX (x k) (¢ V0 <t <ok, =W d X®(sk) € =
+ nge%%Q > ( (1) € QY0 <t <0k, € Ug(p) an (dr) € 262)

(7.2.16)
for k > Kko(C,0). The final step in the argument is the following large deviation bound:

Lemma 7.2.1 For each p € M1(Q),

liminfi log min IP);(N) (X(“) () eQV0<t<dr BX e Uo(p) and X" (5k) € %Q)

1
K00 K T€ELINSQ

> =Sq(1)
(7.2.17)
with Sg: Mi(Q) — [0, 00] given by
Son) = 4 VeS8 if p < dw and \J & = f(2) with | € H}(Q), (7.2.18)
00 otherwise,

where H}(Q) is the completion of C2°(Q) (the space of C™-functions f: Q — R with compact
support) w.r.t. the H -norm || fl|gr = || fll2 + IV f]|2.

The proof of Lemma 7.2.1 is deferred to Section 7.4. Letting k — oo in (7.2.16) using
(7.2.17), letting 0 | 0, recalling (7.2.1), letting # 1 1, and afterwards taking the supremum
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over p € M(Q), we arrive at

hﬁrgg)lfﬁ Avar (6, K, K)
vy? Kp 7.2.19
> sup [lp/ o f?(s) [ dy ) | dupa(y—z,u)—HvRsfH%]- (7.2.19)
renl@ L P Q Q ep
I l2=1

Finally, let Q T R? and use a standard approximation argument to show that the variational
expression in the right-hand side of (7.2.19) converges to

vy? 2 2 Ko 2
sup | ——p [ dzf(z) | dyf-(y) du pa(y — z,u) — Ve fll3] - (7.2.20)
fﬁﬁlff) p R3 R3 €ep

The latter is precisely Py(e, K;, p,v) defined in (5.2.11), so we have completed the proof of
Lemma 5.2.3.

7.3 Proof of Lemma 5.2.5

At the beginning of Section 7 we already dealt with Lemma 5.2.5(i). Thus, we need only prove
Lemma 5.2.5(ii).

Part of the argument runs parallel to Section 7.2. Fix €, K, 0,0 as before. Retain (7.2.1),
but with [-] and |-| interchanged. Let Q C R? be a large closed cube, centered at the origin.
Later we will again take limits in the order (7.2.2).

Let 1(Q) and [(Q(®)) denote the side length of Q, respectively, Q") = Q N Z3. Let

X]E;H,Q)(t)’ tZO’k:]"""p’

7.3.1
p@(z,t), z€Q,t>0, (7.3.1)

denote the Q-periodization of (7.1.1), i.e
X“’Q’( 1) =X"(t) mod@®),

ZP <x+—l Q™ )),t>. (7.3.2)

keZ3

Similarly, let
PP (w,t), TeQ, t>0, (7.3.3)

denote the @)-periodization of the Gaussian kernel, i.e.,

=Y palz +k1Q),1). (7.3.4)

From (5.2.8), (7.3.2) and the upper bound in (7.1.3) (which carries over to the Q-periodized

kernels) we get
XQ) (@)
Aar (T 6, K, k) < — log]E e (explU]), (7.3.5)
pT
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with

T/k? s+Kk
_n ds dt p= 9 (XD (1) = XD (s), L(t — 5)
ot l k K
m= e e (7.3.6)
K S K,
K, K, 1Y
<y / s [ e ol (X0 - X0, 2 )
k=1 ter

for k > ko = Kko(C, 0) with C' = 2Q X [ep, K p]. Moreover,
rhs (7.3.6)

92 P N nik nok+Kk
1% 1 K K,
Y ds/( at 5P (X)) - XV06), 2t - 5)

n—1)dk+ek

(n+m)dk 1
L@ (0@ x (5@ Py
W@A at 5ol (X(0) - x{95), 2t - 5)

ki=1n=1m=L" ("—1 ntm—1)dx
(7.3.7)
This is the analogue of (7.2.5-7.2.6).
Next, use (7.1.4) to obtain
X("‘v Q)’ ’XI()MQ)
Avar(T; 6, K, k) < p_ logEy' o (exp[V]), (7.3.8)
with
I/’)’ p n+m)dk
K ]c,lzanlmZL/ —1)6k /+ —1)d
1 (L+1\%?
xg( - ) P (X5 (1) - XD (s), (m + 1)p)
(7.3.9)

1 (L+1\*?v PN X
-5(i) Srr Ly
/E /E 2ndy 5p P (y — &, (m + 1)3p),
which is the analogue of (7.2.8) and (7.2.10). Here,

@y L[ (.Q) _ _
B (A) = — dsliy (X, (s)), k=1,....,p,r=1,...,N+M+1, AC @ Borel.
’ ( )oK

0K
(7.3.10)
is the analogue of (7.2.9).

For p € Mi(Q), let Ug(n) C Mi(Q) be any weak neighborhood of p such that for
M1, 42 S Ml(Q)a

vi € Ug(m), vo € Ug(p2) = /QVl(dl“)/QVz(dy) P(GQ)(Z/ — 7, u)
1
< 5/ Ml(d$)/ pa(dy) p(GQ)(y —z,u) (7.3.11)
Q Q
Vu € [ep, Kp + 20p],
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which is the analogue of (7.2.11), and

inf  So(u) 2080(n)  VueMi(Q), (7.3.12)
w €U (1)
where §Q is the rate function defined in (7.3.21) below. The latter inequality can be achieved
because p — Sg(u) is lower semi-continuous.

Since M1(Q) is compact, there exist finitely many pq,...,ur € M1(Q) (with I not de-
pending on T, k) such that

T
c | Uo(m). (7.3.13)
i=1
Let
J={J: {1,....p} x{1,..., N+ M +1} = {1,...,I}}. (7.3.14)
For J € J, let Cg, ; be the event
Co.s = {H,(” Ve Uy (1rgop) YE=1,....p, rzl,...,N+M+1}. (7.3.15)
Then, because of (7.3.13), we may bound
1 X x (@) 1
Aar (T 6, K, k) < T log max IE o-.0 P (exp[V] e, ,) + oT log || (7.3.16)

On Cq,; we have, via (7.3.9) and (7.3.11),
1 (L+1 I/’)’
Vs <L — 1) on Z Z Z
k,=1n=1m=L (7_3_17)
xéwmmumémmmmw»@d?w—am+n@»

Moreover, similarly as in (7.2.15),
X xe SR X0 (=(0,0)
Pyl (Ca) < H H max PY"Y (269 €Uy (uyen)) . (7:318)
i TEZINQ
Combining (7.3.16-7.3.18), it follows that
1 1 (L+1 y'y
Mar(TicKor) < o [ (75 1) =Y 3

k,il=1n=1

M
xan§jA;ummumﬂyuwwmuw6pﬁ®@—xmm+4wm
m=L
p N+M+1

3 > tog max PYY (209 € Uy (uyp)) |
k=1 r=1

TEZ3NQ

1
— 1
+pT og |TJ]|

for k > Kko(C,0).

Below we will need the following upper large deviation bound (with (%) = Eg,l’
which is the reverse of Lemma 7.2.1.
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Lemma 7.3.1 For eachi € {1,...,I},

]. Ky =~
li’ririscgpg log xer%%ﬁcg IP))I(( @ (E(”’Q) € L{Q(,ui)> < —0 So(wi) (7.3.20)

with §Q the Q-periodization of Sq, i.e., §Q: M1(Q) — [0,00] given by

o) = 4 IVee S5 if p < dwand \JE = f(w) with | € Hpe,(Q), (7.3.21)
00 otherwise,

where H}, (Q) is the space of functions in H'(Q) with periodic boundary conditions.

per

The proof of Lemma 7.3.1 is deferred to Section 7.4.
Next, define

ug7s:pJ(k,r) fork=1,...,p,r=1,.... N+ M+1, (r—1)dk < s < rik. (7.3.22)

The measure-valued paths s — ,ui , are piecewise constant and take values in {y1,...,pur}.
Using once again (7.1.4), we may revert back time from sums to integrals, to obtain

N M
LD /Q 17 (e (d) /Q 11 tnsm)(@y) 6p P (y — , (m + 1)6p)
m=L

n=1
M (n+m)dk
> / dt

3/2 N nik
<P (ﬂ) 3 / s
Kk \L+1 n—1’/ (=10 7 J(ntm-1)ik

< [ ko) [ st o (3=, 0t =)+ 200)

3/2 ,Nir s+(M+1)dk

. (L—i— 1) / ds/ " (7.3.23)

k\L-1 0 s+(L—1)dk

< [ [ i) o (5= . 20t~ 5) + 200)
Q Q k
L+1 3/2 p(N+M+1)dk (N+M+1)dk

<? (ﬁ> / dS/ dt Ny —1)sk<t—s<(M+1)ok}

K — 0 0

X / i s () / iy (dy) pis” (y — 2,80t —5)+ 25p)
Q Q K

and, according to Lemma 7.3.1,
N+M+1

log max PX*? (E(”’Q) € U, )
7;1 gIEZiﬁQ T Q(MJ(k,r))

(N+M+1)dk 1
_ 4 X(Q) ((—(k,Q) J (7.3.24)
/0 ds + logxenzlgggQPx (~ EUQ(uk,s))

(N+M+1)dk R
<[ ds Sq(ui.,)
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for k > k1(C,0) > ko(C,0). Inserting (7.3.23-7.3.24) into (7.3.19), we arrive at

Avar(T; €, K, H)

1 1 L+1 3 V,YQ p (N+M+1)5Ii (N+M+1)5Ii
<o 9E3 [ﬁ (7)) T2 g B

k=1

< [ o) [ utnl (v =2 20— 5) +200)

) p (N+M+1)dk R S
—y /0 ds 8ol
k=1

1
— 1
+pT og |J|

(7.3.25)
for k > k1(C, 6).

At this point we can do a time-diagonalization:

Lemma 7.3.2 For every A > 0 and pj s € M1 (Q) withk=1,...,p,0<s < (N+M+1)dx,

A (N+M+1)dk (N+M+1)dk

;/ ds/ dt Ly —1)sm<t—s<(M+1)dr}
P p
Z / fiks (d) /uz,t(dy) P (v .2t = ) +20p)
k=

p (N+M+1)ok R
> ds Sqljun,s)
k=170

<p(N+M+1)ok
A (M+1)0k =R
X sup —p/ V(d(L‘)/ v(dy) / du p(GQ) (y -z, £u+2(5,0> - So(v)| .
veMi(Q) | B JQ Q (L—1)8k K
(7.3.26)

The proof is given below. Inserting (7.3.26) with A = 6~ 4(£t1)314? into (7.3.25), inserting
(7.2.18), letting T' — oo and recalling (5.2.16), we obtain

W20 (e 2 1 (L+1> _2 2 2
Nl Kow) <0 sup [94 1) o [ [t

feHzl)er(Q)
I flla=1
(M+1)dp (7.3.27)
X / du p{%?) (y—m,u+2ap>—||vRsf||%]
(L—1)dp
+ i log I
6/‘? g b)

where we note that log|J| = p(N + M + 1)log I and recall the last line of (7.2.1). Now let
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Kk — 00, § | 0 (yielding L — oo, (L —1)6 — € and (M + 1)0 — K) and 6 1 1, to obtain

lim sup k?\3 (€, K, k)
K—00
vy’ 2 2 ke Q) 2
< sup |—p [ dzfi(z) | dyfi(y) dupg’(y —z,u) — Ve fll2|  (7.3.28)
feH}er@ L P Q Q p
I£ll2=1

=P (e, K37, p,v).
Finally, let Q 1 R? and use the following.
Lemma 7.3.3 Let P,(e, K;,p,v) be as defined in (5.2.11). Then

hmsupP(Q)(e K;v,p,v) < Pyle, K;v,p,v). (7.3.29)
QIR3

The proof of Lemma 7.3.3 is deferred to Section 7.4. Combining (7.3.28-7.3.29), we have
completed the proof of Lemma, 5.2.5.

We close this section by proving Lemma 7.3.2.
Proof. Abbreviate

I/\
I/\

p
vy = % > ks €MIQ), 0 (N + M + 1)dk. (7.3.30)

Since p +— §Q(,u) is convex, we have
pr A [(NEME1)s (N+M+1)5
lhs (7.3.26) < ) —/ ds/ dt L1 1)sr<|t—s|<(M+1)6k}
k-Jo 0
X /Qus(dx) /Q vi(dy) pg’?) (y -z, £|t — 5|+ 26/)) (7.3.31)

(N+M+1)ok
—p/ ds Sq(vs),
0

where we symmetrize the integrals w.r.t. s and t. Let B > 0 be the size of Q, i.e., Q =
[-B, B)3. Then p(GQ) admits the Fourier representation

p(GQ)( _ 5y Z ~(n/B)|a*ty—i(r/B)g-w reQ, t>0. (7.3.32)
q€Z3
Let
20) = [ ), ge T (7.3.33)
Q

Then we may rewrite

)oK (N+M+1)4
I'hs (7 3 31) 2 /'f, 0 dSA dt ]l{(L_l)‘SK/S“—S‘S(M-Fl)ﬁK,}
(r/ B g (2 t—s|+267) (N
QB 2B Z ! ” vs(q) i(q) —p/o ds Sq(vs).

(7.3.34)
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Since this expression is real-valued and

Re (7:(0) (@) < 5 7u(@)* + 5 7(0) . (7.3.35)

we find, after inserting (7.3.35) into (7.3.34) and undoing the symmetrization w.r.t. s and ¢
afterwards, that

h py < o A [T st (n/ BY1alP (£ (t=5)+250) 2
3.34) <p? = - R
rhs (7.3.34) < p K/O ds/H(L_l)M UGBy e [Vs(q)]
q€Z?

(N+M+1)dk =R
—p/ ds Sq(vs).
0

Again using (7.3.32-7.3.33), we see that

(N+M+1)dk
rhs (7.3.36) :p/ ds
0

A (M+1)dk R
X (—p/ ys(dx)/ vs(dy) / du p(GQ) (y —z, Pu+ 26/)) — SQ(US)>
Q Q (

K L-1)0k ;
(7.3.37)

(7.3.36)

Clearly, this expression does not exceed the right-hand side of (7.3.26).

7.4 Proof of Lemmas 7.2.1, 7.3.1 and 7.3.3

The proof of Lemma 7.2.1 runs as follows.

Proof. Let X(®) be the scaled random walk on Z3 (as in (7.1.1)), let 7() be the first time
X ) exits @, and let (%) be the normalized occupation time measure of X% (as in (7.2.9)).
Define the conditional probability measures

Q;(f)(') — Pim) (E(n) € - ‘ (7)) S 0K, X(ﬁ)((m) € %Q) . (7.4.1)

Let (o denote the principal eigenvalue of the Laplacian Ag with Dirichlet boundary condition
in L2(Q). We will prove the following:

(a)
lim — log PX <T<“> > 6k, X®)(5k) € 1@) = (o (7.4.2)
K—>00 K 2

uniformly in x € %Q

(b) The family (Q;(f") )0 satisfies the full large deviation principle on M;(Q), uniformly in
z € $Q, with rate dx and with rate function Sg + (o (recall (7.2.18)).

As a consequence of (a) and (b), the family (@(f )) x>0 of sub-probability measures defined by

@(;)(.) — I[Df(m <5(n) €., 75 S 0K, X(H)((SK/) = %Q) (7.4.3)
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satisfies the full large deviation principle on M;j(@Q), uniformly in x € %Q, with rate dx and
with rate function Sg. The latter in turn implies Lemma 7.2.1.

The proof of assertions (a) and (b) goes as follows. Given a potential V' € C°(Q), let
¢o(V) denote the principal eigenvalue of Ag + V with Dirichlet boundary condition in L?(Q).
It is well known that V' +— (p(V) is Gateaux differentiable and that Sg has the following
representation as a Legendre transform:

so) = sw | [ vau-am)|.  wecE@r, (1.4
vece (@) L/Q

with C2°(Q)* the algebraic dual of C2°(Q) equipped with the weak™ topology ((7.4.4) is dual

to the Rayleigh-Ritz formula for (o(V')). We may therefore apply a uniform (w.r.t. the starting

point) version of Dawson and Gértner [9], Theorem 3.4, to see that in order to prove (a) and

(b) it is enough to show that

.1 ) on 1
lim — log EX (exp [/ V(X(”)(s))ds] 11{7'(“) > 0k, X(”)((M) € 5Q}> = ¢o(V)
0

Kk—00 0K
(7.4.5)
uniformly in z € $Q for all V € C°(Q). (A similar argument as in [9], Section 3.5, shows
that So(p) < oo, p € C°(Q)* implies p € M;(Q), which is needed for the application of [9],
Theorem 3.4.) Note that assertion (a) coincides with (7.4.5) for V = 0.

Fix V € C°(Q). Abbreviate
t
s"(t) = log inf X" (exp [/ V(X(“)(s))ds] ﬂ{TW >t XW(t) e %Q}) (7.4.6)

Fix T > 0. For ¢ = 0k split the integral in the right-hand side of (7.4.6) into the sum of
|6r/T| integrals of length T), = dx/|6x/T|. Then, using the Markov property of X(%) at the
splitting points, we get

s (5k) > |68/T] " (T). (7.4.7)
Hence
() 5
lim inf == (9r) > 1 liminfs(_n)(T,i)
K—00 0K K—00
1 r 1
= —log inf EY <eXp [/ V(W(s))ds] 11{7 >T, W(T) € —Q}) :
T IE%Q 0 2
(7.4.8)

where W is Brownian motion on R?, with generator Ags, and 7 denotes the first time W exits
Q. To derive the last line of (7.4.8) we use a uniform version of Donsker’s invariance principle.
It is well known that the right-hand side of (7.4.8) tends to (y(V) as T' — oo. Therefore we
arrive at the lower bound

(k) )
lim inf 2= 5; DS o). (7.4.9)

K—00

To get the corresponding upper bound, abbreviate

t
s () = log sup EX <exp [ /0 V(X(“)(s))ds] n{TW > t}) . (7.4.10)
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Then, in analogy with the above considerations, we obtain through a superadditivity argument
that

(%) 5
lim sup £ < 1), (7.4.11)
K—00 0K
Combine (7.4.9) and (7.4.11) to get (7.4.5). n

The proof of Lemma 7.3.1 runs as follows.
Proof. Let X(®) denote the random walk on QK =Q NZ3 obtained by wrapping X (5) around
Q). Let

0K
2 (4) = i/o dsly (X)(s)), A CR Borel, (7.4.12)

and R R
QA () = X" (E(“) € ) . (7.4.13)
Then the analogue of (b) reads:

(b’) The family (@(f ) )r>o satisfies the full large deviation principle on M;(Q), uniformly in
z € Q, with rate dx and with rate function Sg (recall (7.3.21)).

The proof of assertion (b’) goes along the same lines as the proof of assertions (a) and (b),
and is in fact even simpler. It implies Lemma 7.3.1. |

The proof of Lemma 7.3.3 runs as follows.
Proof. Let Q = Qp = [-B, B)3. Write Qp(q) = Qp +¢q, ¢ € R3. Let

;{)\(QB)($,1§) — Z pa(z + 2Bk, t) (7.4.14)
kez3

denote the (Jp-periodization of the Gaussian transition kernel pg. Recall that Hz}er(QB)
denotes the space of functions in H'(Qpg) with periodic boundary conditions.

Fix B> 1 and f € H},,(Qp) with ||f]2 =1. Put A= B — VB. Let f be the Qg-periodic
extension of f to R?. Then

1 ~ |Q 4l
— d de f2(z) = 25, 7.4.15
051 oy ¥y 70 = (419)

and hence there exists ¢ € Qp (depending on B, f) such that

/ dz f2(z) > 1@l (7.4.16)
Qal) Q5

Let hg: R® — R be a smooth function (depending on B, q) satisfying
0<hp<1, hg=10nQalg), hp=0onR\Qgz(q). (7.4.17)
We may assume that
D = ||A(hg(1 — hp)) +2|Vhp*|| < o0 (7.4.18)
with D not dependent on B, gq, f. Define

~

hpf

LTS

(7.4.19)
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Then fp € H'(R?) and ||fg||2 = 1. Moreover, by (7.4.16-7.4.17) we have

|QA|

Q| = Ihn] fl3 <1 (7.4.20)

Hence HthHg — 1 as B — oo.
Next, observe that

|z =y + 2Bkllso > 2B(|kllos — 1) +2(B = A), =,y € Qalqg), k € Z*\ {0}.  (7.4.21)
Because
palz,t) = (4nt) 3/ exp[—|lz|| /48] < (4mt) =% exp[—||z]|2, /48], (7.4.22)

it follows from (7.4.21) that there exists dp (not depending on ¢, f), satisfying g — 0 as
B — o0, such that

Kp

Kp
/ ﬁéQB)(ﬂf —y,t)dt < / pg(z —y,t)dt +0p, T,y € Qalq). (7.4.23)
€p €p

Moreover, from this it also follows that there exists a constant C' < oo (not depending on
B > 1,q, f) such that

Kp
/ P @ -y dt <O, x,y € Qala). (7.4.24)
€p
With the above estimates in place, we next derive an upper bound for
Kp N N
[ oo [y [ a5 @ - ) P20 70, (7.4.25)
QB QB €p

Since fis Q p-periodic, we may replace the domain of integration Qp x Qp by Q5(q) X Q5(q)-
]

After that we may split the integral into two parts: Qa(q) x Qa(q) and [Qp(q) X @p(q)] \
[QA( ) X QA(q)]- The latter coincides with the union of [Qp(q)\ Q4(q)] X @p(q) and Qp(q) X
[@B(q) \ Qa(q)]. Therefore, using (7.4.16) and (7.4.23-7.4.24), we obtain
Kp N R
/ d:v/ dy/ dt PP (@ — y,t) 2 () F 2 (y)
QB QB €p
Kp N N R
s/ dx/ dy/ dt pa(w — y,8) F2(2) F 2(y) + 0+ 2C dz F(a)
Qalq Qalq €p Qs(9\Qal(q)
Kp
/ dz/ dy/ 0t pole — y,0) F3(e) F3(y) + 0 + 20 192124l
Qalq Qalg €p |QB|
Kp
< 19l / dx/ dy/ 0t pals — y,1) F2(@)2(y) + 05 + 30 192\ Qal,
|QB| Qalq Qalg €p |QB|
~ (7.4.26)
where in the second inequality we use that f 2 = (th) ||th||%fé < f% on Q4(q).
Next, we derive a lower bound for ||V f||% in terms of fp. First estimate
IViB= [ do |V(haf)+ V(1 - ) PP
@5(9) (7.4.27)

~

> / dz |V (hgf)]* + 2/ dz V(hpf) - V(L= hp)f).
(03:10)) Qp(9)
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But

V(hsf) V(1= hp)f) > (FV(he(1 - hp))) - V] - |Vhp|*f 2, (7.4.28)
and integration by parts shows that
/ dz (fV(hg(l = hp)))-Vf = —%/ dz F2A(hp(l - hp)). (7.4.29)
B(q) B(q)

Hence, recalling the definition of fp and taking into account (7.4.16), (7.4.18) and (7.4.20),
we obtain

IVAIE > s 21V 5l - / o )dw 72 [V(hn(1 - hp)) + 2Vhs|?]
A

(7.4.30)
“ Qs 1Rl
Combining (7.4.26) and (7.4.30), and abbreviating o = (vy%/p)p, we arrive at
Kp
of o[ ay [t Foto - .0) P 0) - VA1
@ JQr  Jep (7.4.31)
< 1915 | sy + (300 + D)y 9B\ Qal,
|QB| @Bl
Since C, D and dp do not depend on f, we conclude that (recall (7.3.28))
73( B)(e, K;v, p,v) < 1@ Pple, K37, p,v) + adp + (3aC + D) M. (7.4.32)
Q5] (o]
Now let B — oo and use that dp — 0 and |Q4|/|@B| — 1, to get the claim in (7.3.29). n

8 Proof of Lemmas 5.2.6-5.2.8

In this section we prove Lemmas 5.2.6-5.2.8, which handle the terms that are asymptotically
negligible as Kk — oo.

8.1 Proof of Lemma 5.2.6
Proof. Using the rough bound
_ p
Poj(X (1) = X(5).t = 5) < ppyu(0,t =) =p (0. 2t = 9)) (8.1.1)

we conclude from (5.2.19-5.2.20) that

2 vy? >
KX (a, k) < —h‘,/ dtp(0,1). (8.1.2)
p

P ak?

Because of (5.3.3-5.3.4), the expression in the right-hand side is bounded above by a constant
times o (4-2)/25-(@=3) From this the claims in (5.2.21-5.2.22) follow. n
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8.2 Proof of Lemma 5.2.7

For the proof of Lemma 5.2.7 we need two more lemmas. Let G denote the Green operator
acting on functions V: Z9 — [0, 00) as

GV)(z)=> Gly-=)V(y), zeZ (8.2.1)
yezZd

with G(z) = [;° dtp(z,t). Let || - || denote the supremum norm.
Lemma 8.2.1 For any V: Z% — [0,00) and = € ZY,
X > 1
5 (o | [T at vexen] ) < a-1ovin (8.2

provided that
1GV |0 < 1. (8.2.3)

Lemma 8.2.2 For any o, >0 and a > 0,

T s+ar®
]E)[i’é/ exp a/ ds/ dt pg(Y(t) — X(s),t —s)
0 s
s (8.2.4)
< EF |exp a/ ds/ dt pg(X(s),t —s)| | .
0 s
Before giving the proof of Lemmas 8.2.1-8.2.2, we first prove Lemma 5.2.7.
Proof. Using Lemma 8.2.2, we get from (5.2.23) that
1 I/’y2 T s+ar®
Anix(T5a, k) < ?logE)g exp ?/ ds/ dt pp(X(s),t — s)
0 s (8.2.5)
1 o0
< —logE} <exp [/ ds VaK(X(s))]> ,
T 0 ’
where ) )
pak
Van(z) = 2L / dt p(z,t), z €z (8.2.6)
pPE - Jo
It follows from (5.3.3-5.3.4) that, as Kk — oo,
V,.YZ pak? 00
1GVaklloo = —/ dt / ds p(0, s) (8.2.7)
Pk Jo ¢

tends to zero for d > 4 and 0 < a < oo and tends to a constant times a'/2 for d = 3. Hence,
by Lemma 8.2.1, for large x the expectation in the right-hand side of (8.2.5) is finite for
0 < a < ap with ayp = oo for d > 4 and ag > 0 small enough for d = 3. Thus, by letting
T — oo in (8.2.5), we conclude that

>\+

mix

(a,k) =0 V0 <a<ap, k> kKo(a). (8.2.8)

52



This yields (5.2.26). To prove (5.2.25), simply note that for all 0 < a < oo,

I/’)’2 00
Aunin (T 50, 1) < Ammin (T, 1) + 22 / dt p(0, 1) (8.2.9)
PEJpar?
and hence
5 V,.YZ 00
KA. (00, k) < —h‘,/ dt p(0,1) V0 <a<ag, k> ko(a). (8.2.10)
P pak?
Now proceed as with (8.1.2) to get the claim. n

8.3 Proof of Lemmas 8.2.1-8.2.2

The proof of Lemma 8.2.1 goes as follows.

Proof. A Taylor expansion of the exponential function yields

X (exp [/OOO dt V(X(t))])

= nz:o/o dty /t1 dtg -+ /tn_1 dt, ]E)i (V(X(t1)V(X(t2)) X -+ - x V(X (tp))) -
But

/oodtl /OodtQ---/oo dt, EX (V(X(t1))V(X (t2)) x --- x V(X (tn)))

0 t1 tn—1

= ylEZZd/O dt, p(y1 — m,t1)V(y1)y2€ZZd /t1 dty p(ya — y1,t2 — 1)V (y2)

Xoree X Z /oo dt,, p(yn — Yn—1,tn — tnfl)v(yn) (832)
ynezd” tn—1
=) Gy —2)V(n) Y Glya—y)V(ya) x - x > GYn = yn-1)V (yn)
y1 €24 Y2 €724 Yn€ZY

< NGVII%-

Substituting this into (8.3.1) and summing the geometric series, we arrive at the claim in
(8.2.2). n

The proof of Lemma 8.2.2 goes as follows.

Proof. Using the Fourier representation of the transition kernel (recall (2.2.3))

pp(x,t) = }I{dk ¢~ Ptok) g —ik-a (8.3.3)
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and expanding the exponential function in a Taylor series, we find that

T s+ak3
]E)g”é/ (exp [a/ ds/ dt pg(Y(t) — X(s),t — s)])
0 ]
00 T T T
:Zan/ dsl/ dsz---/ dsp,
n—0 0 51 Sn—1
s1+ak3 sa+tak3 Sntar3 n
/ dt1/ dtQ---/ dt,, }[dkl ]{de---}z{dkn exp [—B Y (t; — s;)B(kj)

S1 S92 S j:l

n n
xEY |exp | =i ) k- Y(t;)| | EY |exp [i ¥ k- X(s))
j=1 j=1

3.4)
Here, to factorize the two expectations we have used that the random walks X and Y are
independent. By symmetry of X and Y, these two expectations are real-valued. An explicit
computation shows that the second expectation is strictly positive. (Use that the s; are ordered
and that X has independent increments, so that the expectation factors into a product.) The
first expectation clearly is < 1. Hence, the above expression can be bounded from above by
the same expression with Y replaced by 0. This in turn yields (8.2.4). |

8.4 Proof of Lemma 5.2.8

We begin by noting two facts. First, define

Atat(T; ) = %logE)é (exp [”ﬁ—f /OT ds /:o dt (X (£) = X (5), ¢ — S)D (8.4.1)

and
Ady (k) = limsup Agy (T K). (8.4.2)
T—o0
By splitting the second integral in the right-hand side of (8.4.1) into a diagonal, a variational
and an off-diagonal part (in accordance with Lemmas 5.2.4-5.2.6), applying Holder’s inequality
to separate the parts (similarly as in (5.3.28)), and applying Lemmas 5.2.4-5.2.6, we find that

2

limsup 2 \f, (k) < - ifd > 4, (8.4.3)
K—»00 rd
while
2 2 1/2
limsup K2\, (k) < —/ + <—> P ifd=3. (8.4.4)
K—00 T3 1Y
Second, note that Lemma 6.3.2 for k£ = 0 yields the bound
o0
X aGy(0) 20
]EO <6Xp |:0[/0 dt pp/h‘,(X(t)at):|> S exp [m S exp E , (84:5)
provided that
0<a< T—; (8.4.6)



The proof of Lemma 5.2.8 goes as follows.
Proof. Using the rough bound (8.1.1), we have

[ ([ i@ = x99 ([ w69 - x5 -0)

_ /OTdS </+/ dt p,e(X (1) —X(s),t—s)) (// du p,y(X(s) —X(u),s—u))

00 T 00
+2 </ du pp/n(O,u)>/ ds/ dt poye(X (1) — X (), — 5).
K3/2 0 s
(8.4.7)
Substituting this into (5.2.27) and applying the Cauchy-Schwarz inequality, we find that

Avem (T ) < Meh(T5 5) + Ah (T ), (8.4.8)

where

1 2wy [T
AD (T3 k) = ﬁlogE)g (exp [ 3 /0 ds

s+n3/2 s
(/ dt pp/n(X(t) - X(S),t - S)) </ 3/ du pp/n(X(S) - X(u)vs - u))]
(8.4

1 vy?
b = e (om |

9)
and

K
(8.4.10)
4,_)/ 00 T o0
(—/ du pp/H(O,u)> / ds/ dt pp/n(X(t) - X(s),t — s)] )
K Jg3/2 0 s
To prove Lemma 5.2.8, it will be enough to show that
lim &% limsup Al (T;k) =0, i=1,2. (8.4.11)
k=00 T—00
Since for d > 3,
4y [
— du py(0,u) =0 as k — oo, (8.4.12)
K Jg3/2

(8.4.11) for 7 = 2 follows from (8.4.1-8.4.4) with v replaced by v times the integral in (8.4.12).
To prove (8.4.11) for 7 = 1, we split the integral in the right-hand side of (8.4.9) as follows:

[T/263/2]  [T/2K3/2] k2k3/2

T
ds = + / ds. (8.4.13)
even odd

Note that the summands in each of the two sums are i.i.d. Hence, substituting (8.4.13) into
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(8.4.9) and applying the Cauchy-Schwarz inequality, we find that
A (T )

3/2
|'T/2K3/2‘| X 4’/73 /ZK
< ———logk d
< g losEQ | exp | =5 | s

</:+n3/2 dt pyy(X(t) — X (s),t — s)) (/:Hm du p,(X(s) — X (u),s — u)) D
(8.4.

14)

Letting T' — oo and applying Jensen’s inequality, we arrive at

lim sup A{), (T k)

T—o0 L
dt pp/n(X(t)vt)> (/0 du pp/n(Y(u)vu)>]> )

< g 8 ol (exp [72“/ :
(8.4.15)

where we use that the increments of X over the time intervals [s, s + £%/?] and [s — /2, 5]
are independent in order to replace the expectation over the single random walk X by an
expectation over the two independent random walks X,Y. Since for d > 3,

3/2

4uy3 e Sy [°
_3253/2/0 du py(Y(u),u) < 3/ /0 du p,/(0,u) =

K

83
rapr!/?

—0 ask — o0,

(8.4.16)
we may apply (8.4.5-8.4.6) with « equal to the left-hand side of (8.4.16) to see that, for large

K,y

hs (8.4.15) < — log EY 2 8y’ (% Y 8.4.17
I'S(--)_SH—?,/QOgoeXP 'f'_dwo Upp/n( (u),u)| ) - (8.4.17)

Now we may apply (8.4.5-8.4.6) once more, this time with o = 1603 /r4x3/2, to obtain that,
for large k,

) 1 2 [16vy® 4uy3

1 AL (T k) < = = : 8.4.18

ljrfl_?ol:)p rern( ”{) = 83/2 Ty ’f‘dlﬂi?’/Z 7«[2[,{3 ( )
This implies (8.4.11) for ¢ = 1. n
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