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Abstract

We study a system of several identical servers in parallel, where a routing decision must be made immedi-

ately on a job’s arrival. Jobs arrive according to a Poisson process, with their processing times following a

discrete distribution with finite support. The processing time of a job is known on arrival and may be used

in the routing decision. We propose a policy consisting of multi-layered round robin routing followed by

shortest remaining processing time scheduling at the servers. This policy is shown to have a heavy traffic

limit that is identical to one in which there is a single queue (no routing) and optimal scheduling. We then

quantify the difference between round robin and multi-layered round robin routing, which in turn yields

insights on the relative importance of routing versus (local) scheduling in such systems.
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1 Introduction

With the increasing presence of distributed server architectures in today’s telecommunications and computer

networks, the problem of routing and scheduling jobs in such systems has become of increasing interest. We

propose to look at a particular architecture, one in which arrivals must be immediately routed to one of

several identical servers. The application that we have in mind is a cluster of web servers, however such a

model should also be of more general interest.

There are two components that we will assume are free to design. The first is therouting policy, which

determines how jobs are assigned to servers. Examples of this are random routing (a job is assigned to a

particular server with probability1/c, wherec is the number of servers), round robin (RR) routing (theith

arriving job is assigned to the(i mod c)th server) and Join the Shortest Queue (JSQ), where each job is

assigned to the server with the least number of waiting jobs. Notice that a routing rule requires varying

degrees of information about the system state: random and round robin require none, while JSQ requires

the queue length information at each server. The second component that we are free to design is thelocal

scheduling policyused to schedule the order of processing at a server. Examples of this are First Come First

Served (FCFS), in which jobs are served in the order that they arrive and Shortest Remaining Processing

Time (SRPT), where priority is given to the job with the least processing time remaining. To implement

SRPT, one needs to know the processing time of a job. We will assume that this is the case in our system,

which could model, for example, static requests in a Web server system.

The first papers related to our model were for the case that the actual processing time of a job is only

known once it has been completed. Winston [19] showed that JSQ routing followed by FCFS scheduling

minimizes the mean waiting time for exponentially distributed interarrival and processing times. Weber

[16] extended this result by showing that JSQ routing followed by FCFS scheduling maximizes the num-

ber of jobs that have completed processing by a given time, where the arrival process is arbitrary and the

processing times have a non-decreasing hazard rate. Liu and Towsley [8] show that if the queue lengths are

not available on a job’s arrival and if the processing times have a non-decreasing hazard rate, RR routing

followed by FCFS scheduling minimizes a separable convex ordering of the waiting times. Whitt [18] then

provided several examples in which JSQ routing followed by FCFS scheduling does not minimize the mean

waiting time. These examples had processing times with large variance, in particular they did not have non-

decreasing hazard rates. That such examples could be constructed is not surprising in hindsight, given the

results in Righter, Shanthikumar and Yamazaki [10], who show that for a system with a single server, FCFS

actuallymaximizesthe mean waiting time in a system with non-increasing hazard rate. This does raise the

question: what is the relative value of routing versus scheduling?

We will attempt to provide some insight into this question in the context of the case when the processing

times are known on arrival. We are interested in minimizing the mean waiting time in the system for an

arriving job. For a single server system, Schrage [12] showed that for an arbitrary arrival process and

arbitrary processing time distribution, SRPT scheduling minimizes the completion time of thenth departing

job. So, for our model, no matter what the routing policy, it is optimal to use SRPT at each server. In

practice, the belief that long jobs can be starved (see Tanenbaum [13], amongst others) means that SRPT

is not often used. In that spirit, several recent works have suggested policies where the scheduling policy
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is constrained to be FCFS. Harchol-Balter, Crovella and Murta [5] have proposed a routing policy called

SITA-E (Size Interval Task Assignment with Equal Load) in which jobs within a particular size range are

assigned to the same server, with the size ranges chosen to equalize the loads across servers. They show

that under highly variable processing time distributions, SITA-E routing may significantly outperform JSQ

routing (with FCFS scheduling). Similar policies are suggested in the work of Ciardo, Riska and Smirni

[2] and Riska, Sun, Smirni and Ciardo [11]. An important issue with [5] and [2] is that one must know the

processing time distribution. The algorithm in [11] is an adaptive version of that in [2], so the processing

time distribution is not assumed to be known a priori.

In this paper, we would like to give an idea of the fundamental limits that can be achieved in such models.

Identifying policies which are optimal in some sense is useful even if there are difficulties in implementation.

The optimal policy provides a benchmark for use in the study of other proposed schemes. In Section 2, we

look at the tightly coupled servers case, i.e. one in which there is a single queue for all of the servers. The

performance of such a system will be a lower bound on that of the system of interest (which we will call the

loosely coupled servers case). For the tightly coupled server system we can identify the optimal policy in the

strong sense of minimizing the completion time of thenth departing job from the system. In Section 3, we

study the loosely coupled servers case for a particular set of assumptions on the underlying interarrival and

processing times. In particular, we assume that the arrivals follow a Poisson process and the service times

follow a discrete distribution with finite support. We show that, in heavy traffic, a policy consisting of a

multi-layered round robin routing policy (an independent round robin policy for each point in the processing

time distribution) followed by SRPT scheduling leads to the same mean waiting time as the optimal policy

for the tightly coupled servers case and thus is optimal. This is done by showing that the heavy traffic limits

for the two systems are the same as those for particular priority policies and as such exhibit state space

collapse. Priority policies and state space collapse have been studied in Whitt [17] and Reiman [9] and we

will see that our analysis yields heavy traffic limits that are similar to those in [17] and [9]. In fact, we would

argue that our contribution is in identifying the optimal policy in the loosely coupled servers case, rather than

any methodological contribution. Under our assumptions on the processing time distribution, we are able to

easily modify existing methodologies. In Section 4, we examine the relative tradeoff between routing and

scheduling, by comparing the performance of naive (round robin) routing with that of the optimal policy. In

Section 5, we discuss how one may use the insight developed in the first part of the paper to design policies

that perform well for systems with general service time distributions. In particular, we perform simulations

for a system with a bounded Pareto processing time distribution. Section 6 provides some final thoughts.

2 Tightly coupled servers

Here we consider a system where there is a common queue for all servers. We make no assumptions on the

arrival process or processing time distribution. There arec identical servers. A job can be processed by at

most one server at any point in time. In the casec = 1, Schrage [12] has shown that the Shortest Remaining

Processing Time (SRPT) policy is optimal. The proof involves an interchange argument and also shows that

the number in system is minimized for each sample path, which of course is much stronger than the mean

number in the system being minimized.
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Now consider the case where there arec > 1 servers and a single queue. We define thec-SRPT policy

as one in which preemptive (resume) priority is given to the firstc jobs with the least remaining processing

times (if the system has less thanc jobs, every job receives service). LetCc-SRPT(n) be the completion time

of thenth departing job underc-SRPT andCπ(n) be the corresponding quantity under any other policyπ.

Theorem 2.1 For a tightly coupled server system,c-SRPT is optimal in the sense that

Cc-SRPT(n) ≤ Cπ(n)

for all n.

Proof. The proof of this is a straightforward extension of that for the single server in [12], so we will use

the same notation, with a slight change to reflect the fact that there is more than one server. If we letδi(n, t)
be the indicator that serveri is devoted to jobn at timet, A(n) be the arrival time of jobn, andP (n) be the

processing time of jobn, we have that the remaining processing time for jobn at timet, S(n, t), is given by

S(n, t) = P (n)−
c∑

i=1

∫ t

A(n)
δi(n, x)dx

and the corresponding completion time for jobn is

C(n) = min

{
x :

c∑
i=1

∫ x

t
δi(n, y)dy ≥ S(n, t)

}
.

Now, consider two jobs, labelledj andk, whereS(j, t) < S(k, t). Suppose that there exists some time

interval such that for policyπ, processing is devoted tok but notj. We will modify π only on this interval.

Note that we make no assumption on which server the processing is done and assume without loss of

generality that underπ, all servers are busy during the time period. So, we have

Cπ(k) + Cπ(j) = min[Cπ(k), Cπ(j)] + max[Cπ(k), Cπ(j)].

The termmax[Cπ(k), Cπ(j)] is unchanged, butmin[Cπ(k), Cπ(j)] is reduced if we processj instead ofk.

Call this new policyπ′. So, on the interval(min[Cπ′
(k), Cπ′

(j)],min[Cπ(k), Cπ(j)]), the number in the

system is one less under the modified policy and thusc-SRPT is optimal.

So, in a tightly coupled system,c-SRPT is optimal. Although a straightforward extension of [12], to our

knowledge this result has not appeared in the literature. For example, Ungureanu et al. [14] proposed that

non-preemptivec-SRPT be used (they called this Deferred Assignment Scheduling (DAS)) and showed its

effectiveness via simulation. Note that preemption is crucial in the optimality proof, the point here is that it

is surprising that the optimality ofc-SRPT was not used as motivation for DAS. We will use the optimality

of c-SRPT in what follows, however at this point we note that it may be of independent interest to use this

policy to provide a lower bound for the purposes of analyzing the performance of other policies.
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3 Loosely Coupled Servers

We now consider the case in which a dispatcher must make a routing decision at the time of a job’s arrival

(this decision is assumed to take zero time). The model that we consider is one in which arrivals occur

according to a Poisson process of rateλ. As in the tightly coupled servers case, there arec identical servers.

A job has processing times that are chosen from a discrete distribution with finite support, i.e. ifX is a

generic processing time,

P{X = xk} = αk, k = 1, . . . ,K,

whereK > 1,
∑K

k=1 αk = 1 and we order the possible processing times in the orderx1 < x2 < · · · < xK

(note that ifK = 1 the problem is trivial). Also, without loss of generality, we assume thatαk > 0, for all

k = 1, . . . ,K. We will call jobs with processing timesxk typek jobs. A job is indivisible, i.e. only one

server can work on it at any given time. The processing times of jobs are known upon arrival, i.e. they may

be used in designing the policy. We use insight from the previous section to suggest a policy and prove that

in heavy traffic the policy is optimal (as a reminder, by optimal we mean minimizing the mean waiting time).

The policy we will study is a multi-levelled round robin policy for routing followed by SRPT scheduling

at each server. By multi-levelled round robin, we mean that the dispatcher uses independent round robin

policies for each type of job. We will call this overall policy RRK-SRPT.

The intuition for why this should be a reasonable policy is given by examining howc-SRPT operates. If

we would like to mimic how that policy works, we see that we must try to spread around jobs of similar size

to the greatest extent possible. Forc-SRPT, if there are only typek or higher jobs in the system, the type

k jobs are each assigned to a different server. A similar routing policy has been suggested by Ungureanu

et al. [15] called Class Dependent Assignment (CDA), in which “short” jobs are assigned in a round robin

manner and “long” jobs are deferred until servers become idle. However, processing at a server is FCFS.

In what follows below we wish to compare RRK-SRPT andc-SRPT. We will compare them in heavy

traffic and use the now familiar tool of heavy traffic limits. To do this we need to introduce some notation

and we also find that it is easier to look at the two policies in turn and save the comparison to the end.

3.1 RRK-SRPT

As we are interested in the mean waiting time in the system and this is the same for all queues, we focus

our attention on one server. For that server, suppose that we separate theK different types into different

arrival streams. For each typek, denote by{uk
i , i ≥ 1}, {vk

i , i ≥ 1} as the interarrival and processing

time sequences, respectively. Fork = 1, . . . ,K, the multi-layered round robin policy gives the following

values for the rates and variances associated with the interarrival and processing time sequences (at a single

server):
λk = (E[uk

1])
−1 = αkλ/c,

ak = V ar(uk
1) = c

α2
kλ2 ,

µk = (E[vk
1 ])−1 = 1

xk
,

sk = V ar(vk
1 ) = 0.
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We assume that we have a sequence of systems where the quantities above are indexed by(n) and

λk(n) −→ λk,

ak(n) −→ ak,

µk(n) −→ µk,

sk(n) = 0,

asn →∞. We also require

sup
n≥1

E[(uk
1(n))2+ε] < ∞ for someε > 0 and (3.1)

sup
n≥1

E[(vk
1 (n))2+ε] < ∞ for someε > 0 (3.2)

but these are both automatically satisfied for our system, asuk
1(n) is exponentially distributed andvk

1 (n) is

deterministic. We defineQk(t) to be the number of typek jobs at a single server at timet. We are interested

in the following scaled process:

Q̂
(n)
k (t) = n−1/2Q

(n)
k (nt).

To state our main result, we also need to define

di(n) =
√

n

 i∑
j=1

ρj(n)− 1


whereρi(n) is the load due to jobs of typei, i.e.ρi(n) = λi(n)/µi(n), 1 ≤ i ≤ K. We assumeρi(n) < 1,

1 ≤ i ≤ K.

We make the following assumptions

di(n) −→ −∞ asn →∞, 1 ≤ i ≤ K − 1,

di(K) −→ dK asn →∞,−∞ < dK < 0,

ρi(n) −→ ρi asn →∞, 0 ≤ ρi < 1.

This set of conditions we will call theheavy trafficconditions.

We then have the following result, where RBM(a, b) denotes a reflected Brownian motion with drifta

and varianceb. Also,=⇒ denotes weak convergence in the metric spaceD consisting of all right continuous

functions with left limits.

Theorem 3.1 For a single queue in a loosely coupled server system operating under RRK-SRPT, under

heavy traffic conditions,

Q̂
(n)
k =⇒ 0, 1 ≤ k ≤ K − 1, (3.3)

Q̂
(n)
K =⇒ 1

xK
RBM

(
dK ,

K∑
k=1

αkλx2
k

c2

)
. (3.4)
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Proof. Whitt [17] and Reiman [9] show that (3.3) and (3.4) hold if typei is given preemptive priority over

typej, i < j. It is intuitively clear that this is also true for SRPT, as italmosthas the same priority structure.

The only difference is that when a typei job arrives when no other typei jobs are in the system, it may

have an additional wait due to the effect of at most one job of typej > i, if there is one with a remaining

processing time of less than or equal toxi. However, the effect of this additional job disappears in the limit.

We make this insight precise in the remainder of the proof.

An inductive argument will show that fork = 1, . . . ,K−1, Q(n)
k (t) < ∞ a.s. from which (3.3) follows.

Fork = 1, att = 0 there areQ(n)
1 (0) type 1 jobs in the system, with at most one additional job of type` > 1

that has higher priority, due to a remaining processing time that is less thanx1. So, fromt = 0, Q
(n)
1 (t)

operates as an M/G/1 queue with loadρ1(n) < 1 until emptying of type 1 jobs, and thus the first emptying

time of type 1 jobs is almost surely finite. A similar situation occurs when a type 1 job arrives to a system

that is empty of type 1 jobs. From this point,Q
(n)
1 (t) operates as an M/G/1 queue with loadρ1(n) < 1 and

initial condition one type 1 job and at most one other job and thus the emptying time of type 1 jobs is almost

surely finite. Thus it follows thatQ(n)
1 (t) < ∞ a.s.

Now, assume thatQ(n)
j (t) < ∞ a.s. for all1 ≤ j ≤ k < K − 1. From above, this is true fork = 1. Let

us examine if this impliesQ(n)
j (t) < ∞ almost surely for all1 ≤ j ≤ k +1 ≤ K−1. To do this, we simply

need to show thatQ(n)
k+1(t) < ∞ almost surely. As above, the initial time untilQ

(n)
k+1(t) = 0 is almost surely

finite, as until this time,
∑k+1

j=1 Q
(n)
j (t) operates as an M/G/1 queue with load

∑k+1
j=1 ρj(n) < 1 and initial

queue lengthsQ(n)
j (0), j = 1, . . . , k + 1 and at most one extra job from class` > k + 1. As such the initial

emptying time of typek + 1 jobs is almost surely finite. Now at the arrival of a typek + 1 job to a system

empty of typek +1 jobs, by induction the numbers of jobs of types1, . . . , k are almost surely finite, there is

one job of typek + 1 (the arrival) and at most one job of type` > k + 1 which has higher priority than type

k + 1. So, the emptying time of typek + 1 jobs is almost surely finite and we conclude thatQ
(n)
k (t) < ∞

a.s. for1 ≤ k ≤ K − 1, so on division by
√

n,

Q̂
(n)
k (t) =⇒ 0, 1 ≤ k ≤ K − 1,

which is (3.3).

The relation (3.3) shows that there is the state space collapse phenomenon that is observed for priority

systems in [9]. Now, to show (3.4), we need to define the workload process,U = {U(t), t ≥ 0}. If we let

N(t) be the number of arrivals to the queue at timet, andvi be the processing time of theith job (note that

these two quantities are for jobs independent of type), then if we letL(t) =
∑N(t)

i=1 vi andV (t) = L(t)− t,

the workload (sum of the remaining processing times for jobs still in the system at timet) process is defined

by

U(t) = V (t)−
[

inf
0≤s≤t

{V (s)} ∧ 0
]

.

If we defineÛ (n)(t) = n−1/2U (n)(nt), then we have convergence to a limit

Û (n) =⇒ RBM

dK ,
K∑

j=1

αkλx2
k

c2


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that is independent of the scheduling policy. (This is shown in, for example, Theorem 3.1 of [9]. Note also

that this is where (3.1) and (3.2) are used.) Combining this with the state space collapse, in the limit, the

workload is all contained in the typeK. As the service within a type is FCFS, and the processing times of

typeK customers are constant and equal toxK , (3.4) follows directly.

3.2 c-SRPT

To differentiate between quantities for the RRK-SRPT system, we will use a * superscript to denote that we

are using quantities for the optimal policy for the tightly coupled server system. In this case, we need to look

at the system as a whole (rather than just one server). The definitions of the underlying quantities are very

similar to the previous section, however it is useful to include them all explicitly at this point, even if there

is some repetition. Once again we separate theK different types into different arrival streams. Denote by

{uk,∗
i , i ≥ 1}, {vk,∗

i , i ≥ 1} the interarrival and processing time sequences, respectively. Then we have the

following values for the rates and variances associated with the interarrival and processing time sequences:

λ∗k = (E[uk,∗
1 ])−1 = αkλ,

a∗k = V ar(uk,∗
1 ) = 1

α2
kλ2 ,

µ∗k = (E[vk,∗
1 ])−1 = 1

xk
,

s∗k = V ar(vk,∗
1 ) = 0.

We assume that we have a sequence of systems where the quantities above are indexed by(n) and related to

the sequence of networks considered in the previous section in the following manner:

λ∗k(n) −→ cλk,

a∗k(n) −→ ak/c,

µ∗k(n) −→ µk,

s∗k(n) = 0,

asn →∞. As before, we require

sup
n≥1

E[(uk,∗
1 (n))2+ε] < ∞ for someε > 0 and

sup
n≥1

E[(vk,∗
1 (n))2+ε] < ∞ for someε > 0

which are again both automatically satisfied for our system. We defineQ∗
k(t) to be the number of typek

jobs in the system at timet. We form the scaled process

Q̂
∗,(n)
k (t) = n−1/2Q

∗,(n)
k (nt).

As before, we also need to define

d∗i (n) =
√

n

 i∑
j=1

ρ∗j (n)− 1


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whereρ∗i (n) is the load due to jobs of typei, i.e. ρ∗i (n) = λ∗i (n)/(cµ∗i (n)), 1 ≤ i ≤ K andρ∗i (n) < 1,

1 ≤ i ≤ K.

We make the same assumptions ond∗i (n) andρ∗i (n) as fordi(n) andρi(n), which result in the heavy

traffic conditions,

d∗i (n) −→ −∞ asn →∞, 1 ≤ i ≤ K − 1,

d∗K(n) −→ dK asn →∞,−∞ < dK < 0,

ρ∗i (n) −→ ρi asn →∞, 0 ≤ ρi ≤ 1.

We then have the following result.

Theorem 3.2 For a tightly coupled server system operating underc-SRPT, under heavy traffic conditions

Q̂
∗,(n)
k =⇒ 0, 1 ≤ k ≤ K − 1, (3.5)

Q̂
∗,(n)
K =⇒ c

xK
RBM

(
dK ,

K∑
k=1

αkλx2
k

c2

)
. (3.6)

Proof. The relation (3.5) follows in a similar manner to (3.3). In the interest of space, we give the argument

for k = 1, the inductive argument is similar to that in Theorem 3.1 and is omitted. Fork = 1, at t = 0
there areQ∗,(n)

1 (0) type 1 jobs in the system, with at mostc additional jobs of typè > 1 that have higher

priority, due to remaining processing times that are less thanx1. So, fromt = 0, Q
∗,(n)
1 (t) operates as an

M/G/c queue with loadρ∗1(n) < 1 until emptying of type 1 jobs, and thus the emptying time of type 1 jobs

is almost surely finite. A similar situation occurs when a type 1 job arrives to a system that is empty of type

1 jobs. From this point,Q∗,(n)
1 (t) operates as an M/G/c queue with loadρ1(n) < 1 and initial condition one

type 1 job and at mostc other jobs and thus the emptying time of type 1 jobs is almost surely finite. Thus,

it follows thatQ∗,(n)
1 (t) < ∞ a.s. So, in the end we haveQ∗,(n)

k (t) < ∞ a.s. for1 ≤ k ≤ K − 1 and (3.5)

follows on division by
√

n.

Now, we can follow the methodology of Iglehart and Whitt [6, 7] to show that the workload process has

a heavy traffic limit

Û∗,(n) =⇒ cRBM(dK ,

K∑
k=1

αkλx2
k

c2
). (3.7)

Note that [6, 7] shows this for multiple servers operating under FCFS, but a close examination shows that

for the workload process, the limit (3.7) is independent of the scheduling policy (here one could also make

a direct appeal to Theorem 3.5 of [9]). It may be useful to note that this is the workload process for a G/G/1

system with processing times divided by the number of servers,c. FCFS scheduling is used in [6, 7] to get

related limits for the waiting time process.

Finally, as the service within a type is FCFS and the processing times of typek jobs are equal toxK ,

(3.6) follows immediately.

Combining Theorems 3.1 and 3.2, we get the main result of the paper.

Theorem 3.3 If mean waiting time is the performance measure of interest, then under heavy traffic condi-

tions, RRK-SRPT is optimal.
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Proof. Let Q̄k
RRK-SRPT and Q̄k

c-SRPT be the mean queue length seen by an arriving job in a stationary

system (in the heavy traffic limit) for the RRK-SRPT andc-SRPT systems, respectively (note that for

RRK-SRPT this is the mean queue length for a single queue but forc-SRPT it is the total number in the

system). From (3.3), (3.4), (3.5), (3.6),

Q̄k
RRK-SRPT = 0, 1 ≤ k ≤ K − 1,

Q̄k
c-SRPT = 0, 1 ≤ k ≤ K − 1,

Q̄K
RRK-SRPT =

1
2xK

1
|dK |

K∑
k=1

αkλx2
k

c2
,

Q̄K
c-SRPT =

c

2xK

1
|dK |

K∑
k=1

αkλx2
k

c2
.

Now, the associated mean waiting timesW̄ k
RRK-SRPTandW̄ k

c-SRPTare, by Little’s Law:

W̄ k
RRK-SRPT =

c

αKλ
Q̄k

RRK-SRPT

W̄ k
c-SRPT =

1
αKλ

Q̄k
c-SRPT.

Substituting the expressions for the mean queue lengths, the result follows.

So, multi-layered round robin routing followed by SRPT scheduling is optimal under heavy traffic con-

ditions. Thus, one would suspect that this policy would work well under high loads. It is very attractive in

the sense that given the processing time distribution is discrete with finite support, none of the underlying

parameters of the system need to be known to implement the policy. The support of the distribution could

be learned in real-time. However, several natural questions do arise. The first is, how much worse would

the performance be if the routing were to be simplified? (This is not to say the routing is particularly com-

plicated, onlyK counters need to be kept and the size of the job determined upon arrival.) This would also

give insight into the relative importance of making good routing decisions versus good scheduling decisions.

This question is the topic of the next section. The second question is, what can one do if the assumptions on

the processing time distribution are relaxed, in particular if the processing times have a density? A complete

answer is not available at this time, but some initial thoughts are given in Section 5.

4 Round robin routing

Suppose we now use round robin routing followed by SRPT scheduling. We will call this policy RR-SRPT.

In heavy traffic, the only differences between this and RRK-SRPT are the parameters of the arrival process,

i.e. if we focus our attention on one server, we have

λk = αkλ/c,

ak =
c2

α2
kλ

2
+

c(1− c)
αkλ2

,

µk =
1
xk

,

sk = 0.
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Only the derivation ofak requires explanation. IfY is the random variable that denotes the time between

arrivals of typek jobs to a particular server andX is a geometric random variable with probability of success

αk, thenY =
∑cX

i=1 ui, whereui are i.i.d. exponential random variables with parameterλ. The value ofak

is found by computingV ar(Y ) = E[V ar(Y |X)] + V ar(E[Y |X]). We can then compute the heavy traffic

limit exactly as Theorem 3.1.

Theorem 4.1 For a single queue in a loosely coupled server system operating under RR-SRPT, under heavy

traffic conditions,

Q̂
(n)
k =⇒ 0, 1 ≤ k ≤ K − 1,

Q̂
(n)
K =⇒ 1

xK
RBM

(
dK ,

K∑
k=1

(
αkλx2

k

c
+

α2
kλ(1− c)x2

k

c2

))
. (4.1)

The following is a corollary of Theorems 3.1 and 4.1. Note that as in heavy traffic, the RRK-SRPT

policy is optimal, this gives a bound on how far round robin routing followed by SRPT scheduling is from

optimal.

Corollary 4.2 In heavy traffic, the mean waiting time for typeK jobs in an RRK-SRPT system,̄WK
RRK-SRPT

and that in RR-SRPT,̄WK
RR-SRPTare related by

W̄K
RR-SRPT

W̄K
RRK-SRPT

=
∑K

k=1(c + αk(1− c))αkx
2
k∑K

k=1 αkx
2
k

(4.2)

≤ c.

Proof. The equality follows from (3.4), (4.1) and Little’s Law. The inequality follows from the fact that

1− c ≤ 0.

Corollary 4.2 suggests that even using round robin routing, performance may still be reasonable, as long

as the number of servers is not too large. The value given in (4.2) is an exact value, but we will see below

that if the load on the system is even slightly less than one, the bound may be very conservative. This is in

contrast to the optimality result for RRK-SRPT which seems to still be reasonable at high loads. The upper

bound for RR-SRPT is independent of the variance of the processing time distribution, which is a useful

result. To improve this bound for use in high load situations would require another approach than that taken

here, explicitly taking the load into account.

To illustrate the performance, we include here a couple of simulation results. We have performed more

extensive simulation studies, but the following should illustrate the main concepts. We consider a system

with eight servers and a two-point processing time distribution. The mean processing time is chosen to

be three and the arrival rateλ chosen to be such that the overall load is 0.95. Table 1 gives 90 percent

confidence intervals for the expected queue length, where for each case we ran 30 replications, with each

replication consisting of1 × 105 arrivals. The fifth column gives the value of the upper bound (4.2) for

the two RR-SRPT cases and are blank otherwise. Note that as we are looking at ratios, (4.2) is also valid

for the appropriate mean queue lengths. We see here that the results are consistent with Theorem 3.3 and

Corollary 4.2, with (4.2) proving to be somewhat conservative for this value of load.
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Policy x1 x2 CI for mean queue length(4.2)

RR-SRPT 1 4 (25.236, 25.499) 3.404
RR2-SRPT 1 4 (15.583, 15.799) −

8-SRPT 1 4 (15.020, 15.171) −
RR-SRPT 1 10000 (20.369, 23.286) 8.000
RR2-SRPT 1 10000 (11.711, 13.694) −

8-SRPT 1 10000 (11.385, 13.326) −

Table 1: Comparison of RR-SRPT, RRK-SRPT andc-SRPT

Finally, note that RR-SRPT may be implemented for any processing time distribution, in particular one

with a density. That similar performance may be expected in such a case is suggested in Down and Wu

[3]. In that paper, simulation results are given that suggest that RR-SRPT can outperform several policies

that use FCFS scheduling, including SITA-E. This is not a direct criticism of policies such as SITA-E. It is

simply an observation that if one is completely free to choose the routing and scheduling policies, the choice

of scheduling policies appears to have greater impact. We will have more to say on this topic in Section 6.

We now move on to some thoughts of what more can be said in the case of general processing time

distributions.

5 General processing time distribution

Clearly, one cannot directly implement RRK-SRPT in the case when the processing time distributions have

a density. So, whilec-SRPT would still be optimal in the tightly coupled servers case, it is not clear if we can

construct a policy which is optimal in some asymptotic sense for the loosely coupled servers case. However,

one possibility is to map a range of job sizes to a “type” and implement RRK-SRPT. To do this, suppose that

the processing time distribution has a densityg(x). Then we could partition the support ofg into K intervals

such that a typek job is one whose processing time lies in thekth interval. We could then implement RRK-

SRPT using this partition. How many intervals to choose and how to choose their endpoints to achieve good

performance is not a trivial task, and we intend this to be a topic for future research. For now, we present the

following simulation results. Once again, we have performed more extensive simulations, but this set nicely

summarizes our findings. We assume the processing times follow the bounded Pareto distribution used in

[5], i.e.

g(x) =

{
αkα

1−(k/p)α x−α−1 0 < k ≤ x ≤ p

0 otherwise

where we setα = 1.2, k = 512, p = 1010, which gives a mean processing time of 2965. The system has

eight servers and the arrival rate is chosen such that the system load was 0.95. We compare seven different

policies.

1. 8-SRPT

2. RR-SRPT
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3. Choose two intervals such that the probability a job is of type 1 is 0.85. In other words, type 1 jobs

have processing times in[512, 2488) and type 2 jobs have processing times in[2488, 1010]. Then use

RR2-SRPT.

4. The same as 3, but change the probability to 0.95, so the intervals for the two types are[512, 6220)
and[6220, 1010].

5. Four types, where intervals are chosen according to those for SITA-E, i.e. the intervals for the four

types are[512, 2036.6), [2036.6, 13806.2), [13806.2, 318975), [318975, 1010). Then use RR4-SRPT.

6. The same as 5, however the intervals are[512, 1958), [1958, 3489), [3489, 13360), [13360, 1010].

7. Eight types, intervals chosen according to SITA-E. (In the interest of space, we will not explicitly give

the intervals.) Use RR8-SRPT.

Table 2 gives the 90 percent confidence intervals for the mean number in system for the seven policies. For

each we ran 30 replications of1 × 106 arrivals each. The results lead to a few observations. First, for any

Policy CI for mean queue length

1 (10.512, 10.601)
2 (16.152, 16.912)
3 (15.520, 16.160)
4 (15.280, 15.952)
5 (14.464, 15.176)
6 (15.216, 15.880)
7 (14.672, 15.464)

Table 2: Approximating RRK-SRPT

of the choices, the results are closer to RR-SRPT than the optimal (8-SRPT), so perhaps RR-SRPT is a

reasonable choice in general. There is no clear rule as to how to divide the intervals. As long as one makes

a reasonable division between “small” and “large” jobs, one sees some improvement. The main conclusion,

however, appears to be that if the optimal scheduling policy is used locally, it does not matter too much what

is chosen for the routing policy.

6 Discussion

We have presented results that identify a policy that minimizes the mean waiting time (in heavy traffic) for a

system of identical servers in parallel, where a routing decision must be made immediately on a job’s arrival.

We have assumed that the processing time distribution is discrete with finite support. The policy consists

of independent round robin policies, one for each possible job size. The policy is scalable and requires no

knowledge of underlying distributional parameters. It also uses no system state information for routing.
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The first thing to note is that if we were to focus our attention on another performance measure, the

results will no longer hold. In particular, if we were to look at a measure that involved some notion of

fairness, our results may change. However, there is some work that suggests that SRPT scheduling may not

be that unfair, see Bansal and Harchol-Balter [1]. Friedman and Henderson [4] have suggested a scheduling

policy called Fair Scheduling Protocol (FSP) that tries to combine the strengths of SRPT with the fairness

inherent in the Processor Sharing scheduling policy. A study (along the lines of that undertaken in this

paper) of a protocol such as FSP would be of interest.

We have suggested that in general an intelligent choice of scheduling policy is more important than an

intelligent choice in routing. One must be careful in interpreting this statement. First, suppose we relax

the assumption of heavy traffic. This means that each server spends some period of time idle. One may

want to exploit this idleness by using more sophisticated routing schemes. Note that this would probably

require more state information than is used in the policy we suggest. Second, suppose that the processing

times are not known upon a job’s arrival. Then the question of the relative importance of routing versus

scheduling is much more complicated. In particular, we cannot expect that state independent routing can

approach optimality. Reiman [9] examines heavy traffic limits for JSQ routing followed by FCFS scheduling

versus RR routing followed by FCFS scheduling and shows that there can be a significant gap between the

two, even in the exponentially distributed case. For the exponentially distributed case, it is known that JSQ

routing followed by FCFS scheduling is optimal [19] under knowledge of full state information and RR

routing followed by FCFS scheduling is optimal under the assumption that the routing policy uses no state

information [8], so there remains a gap between the two optimal policies in heavy traffic. Additional insight

into such questions may be to look at the case of processing times with non-increasing hazard rates. Little

seems to be done here beyond the single server case, for which the optimal policy is known [10].

More should be done on the case when processing times have a density. In particular, the problem

of quantifying performance for the policy suggested in Section 5 would be of interest. This is of both

theoretical as well as of applied interest, as it would require identifying heavy traffic limits for servers under

SRPT scheduling for processing times that have a density. For discrete processing time distributions, we

were able to leverage the fact that SRPT closely resembles a static priority policy and use existing results.

7 Acknowledgements

This work is supported by the Natural Sciences and Engineering Research Council of Canada. We would

like to thank Ward Whitt for his useful comments on heavy traffic limits for multiple server systems. The

bulk of this paper was completed at EURANDOM (Eindhoven, The Netherlands), where the first author

spent six months and the second author one month, both during 2004. Both authors wish to thank the people

at EURANDOM for their hospitality.

References

[1] N. Bansal and M. Harchol-Balter. Analysis of SRPT scheduling: Investigating unfairness.Proceedings

of ACM Sigmetrics ’01, 2001.



Multi-layered Round Robin Routing – D.G. Down and R. Wu 14

[2] G. Ciardo, A. Riska and E. Smirni. EquiLoad: a load balancing policy for clustered Web servers.

Performance Evaluation, 46:101-124, 2001.

[3] D.G. Down and R. Wu. Scheduling distributed server systems with highly variable processing

times. Proceedings of the 2003 International Symposium on Performance Evaluation of Computer

and Telecommunications Systems (SPECTS ’03), Montreal, 2003.

[4] E.J. Friedman and S.G. Henderson. Fairness and efficiency in web server protocols.Proceedings of

ACM Sigmetrics ’03, 2003.

[5] M. Harchol-Balter, M.E. Crovella and C.D. Murta. On choosing a task assignment policy for a dis-

tributed server system.Journal of Parallel and Distributed Computing, 59:204-228, 1999.

[6] D.L. Iglehart and W. Whitt. Multiple channel queues in heavy traffic. I.Advances in Applied Proba-

bility, 2:150-177, 1970.

[7] D.L. Iglehart and W. Whitt. Multiple channel queues in heavy traffic. II: Sequences, networks, and

batches.Advances in Applied Probability, 2:355-369, 1970.

[8] Z. Liu and D. Towsley. Optimality of the round robin routing policy.Journal of Applied Probability,

31:466-475, 1994.

[9] M.I. Reiman. Some diffusion approximations with state space collapse. In Lecture Notes in Controls

and Information Sciences, volume 60, pages 209-240, Springer, Berlin-New York, 1984.

[10] R. Righter, J.G. Shanthikumar, and G. Yamazaki. On extremal service disciplines in single-stage

queueing systems.Journal of Applied Probability, 27:409-416, 1990.

[11] A. Riska, W. Sun, E. Smirni and G. Ciardo. AdaptLoad: effective balancing in clustered Web servers

under transient load conditions.Proceedings of 22nd International Conference on Distributed Com-

puting Systems (ICDCS ’02), 2002.

[12] L. Schrage. A proof of the optimality of the shortest remaining processing time discipline.Operations

Research, 16:687-690, 1968.

[13] A. Tanenbaum.Modern Operating Systems, Prentice Hall, 1992.

[14] V. Ungureanu, P.G. Bradford, M. Katehakis and B. Melamed. Deferred assignment scheduling in

clustered Web servers. Technical Report DIMACS TR: 2002-41, Rutgers University, 2002.

[15] V. Ungureanu, B. Melamed, P.G. Bradford and M. Katehakis. Class-dependent assignment in cluster-

based servers.Proceedings of the 19th ACM Symposium on Applied Computing, Nicosia, Cyprus,

2004.

[16] R.R. Weber. On the optimal assignment of customers to parallel servers.Journal of Applied Probabil-

ity, 15:406-413, 1978.



Multi-layered Round Robin Routing – D.G. Down and R. Wu 15

[17] W. Whitt. Weak convergence theorems for priority queues: preemptive-resume discipline.Journal of

Applied Probability, 8:74-94, 1971.

[18] W. Whitt. Deciding which queue to join: some counter examples.Operations Research, 34:226-244,

1986.

[19] W. Winston. Optimality of the shortest line discipline.Journal of Applied Probability, 14:181-189,

1977.


