
A Lindley-type equation arising from a carousel problem

Maria Vlasiou†

Ivo Adan†‡

Jaap Wessels†

May 14, 2004
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1 Introduction

In this paper we shall explore various methods to analyse a Lindley-type equation that emerges
from a model involving two carousels alternatingly served by a picker. This equation is identical
to the original Lindley equation apart from a plus sign that is changed into a minus sign. The
implications of this minor difference are rather far reaching, since in our situation there is an
explicit solution and the result is surprisingly simple, while Lindley’s equation has no simple
solution. Furthermore, numerical results show that in this carousel model the mean waiting
time is not very sensitive to the coefficient of variation of the pick time, which is in complete
contrast to Lindley’s equation.

Before getting into the details of the model, we describe the basic characteristics of carousels.
A carousel is an automated storage and retrieval system, which is widely used in modern ware-
houses. It consists of a number of shelves or drawers rotating in a closed loop and it is operated
by a picker that has a fixed position in front of the carousel. Carousels come in a huge variety
of configurations, sizes and types. They can be horizontal or vertical and rotate in either one or
both directions. This variety of configurations and characteristics makes carousels being used
in many different situations. One typical example is e-commerce companies that need to store
small items and manage small individual orders.

Carousel models have received much attention in the literature and still continue to impose
interesting problems. Jacobs et al. [9], for example, assumed a fixed number of orders and
proposed a heuristic defining how many pieces of each item should be stored to the carousel
in order to maximise the number of orders that can be retrieved without reloading. Usually
carousels are modelled as a circle. Stern [15] and Ghosh and Wells [7] considered a discrete
model, where the circle consists of a fixed number of locations. Bartholdi and Platzman [2]
and van den Berg [3] proposed a continuous version, where the circle has unit length and the
locations of the required items are represented as arbitrary points on the circle. In [2] they
were mainly concerned with sequencing batches of requests in a bidirectional carousel, while in
[3] multiple order pick sequencing is studied. Ha and Hwang [8] showed that performance is
improved when some assignments of items to the set of drawers are more likely than others.
Rouwenhorst et al. [13] gave stochastic upper bounds for the minimum travel time and studied
the distribution of the travel time, assuming that the carousel changes direction after collecting
at most one item. Litvak et al. [10, 11] assumed that the positions of the items are independent
and uniformly distributed and gave a detailed analysis of the nearest item heuristic, where the
next item to be picked is always the nearest one. More recent literature includes the work of
Wan and Wolff [18] that focused on minimising the travel time for clumpy orders and introduced
the nearest-end-point heuristic for which they have obtained conditions for it to be optimal.

While almost all work concerns one-carousel models, real life practices have triggered the
study of models involving more complicated systems. Emerson and Schmatz [5] studied in
the early ’80ies different storage schemes in a two-carousel setting by using simulation models.
Recently, Hassini and Vickson [6] have studied storage locations for items to minimise the
long-run expected travel time in a two-carousel setting, while Park et al. [12] have derived,
under specific assumptions for the pick times, the distribution of the waiting time of the picker
that alternates between two carousels. This allowed them to derive expressions for the system
throughput and the picker utilization. This paper is motivated by their work. We extend the
model by allowing for more general distributions for the pick times than those studied in [12]
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and we propose a different approach to the problem that leads to more explicit results.
In Section 2 we will introduce the model in detail and discuss various implications in analysis

of the different sign in the Lindley-type equation. In Section 3 we will first consider pick times
with an Erlang distribution and prove that the density of the waiting time of the picker can be
expressed as a sum of exponentials. In the next section we extend this result to pick times with
a phase-type distribution. In Section 5 we proceed with some numerical results demonstrating
that the throughput is fairly insensitive to the squared coefficient of variation of the pick times;
the dominant factor is just the mean. We conclude with a brief summary and further research
plans in Section 6.

2 The model

We consider a system consisting of two identical carousels and one picker. At each carousel
there is an infinite supply of pick orders needing to be processed. The picker alternates be-
tween the two carousels, picking one order at a time. An important performance characteristic
is the throughput, i.e. the number of orders processed per unit time. Park et al. [12] deter-
mine the throughput when the pick times are deterministic or exponentially distributed. We
consider pick times following a phase-type distribution and derive explicit expressions for the
throughput. Phase-type distributions may be used to approximate any pick-time distribution;
see Schassberger [14].

Following Park et al. [12] we model a carousel as a circle of length 1 and assume it rotates in
one direction at unit speed. Each pick order requires exactly one item. The picking process may
be visualized as follows: When the picker is about to pick an item at one of the carousels, he
may have to wait until the item is rotated in front of him. In the meantime, the other carousel
rotates towards the position of the next item. After completion of the first pick the carousel
is instantaneously replenished and the picker turns to the other carousel, where he may have
to wait again, and so on. Let the random variables Pn, Rn and Wn (n > 1) denote the pick
time, rotation time and waiting time for the nth item. Clearly, the waiting times Wn satisfy the
recursion

Wn+1 = (Rn+1 − Pn −Wn)+, n = 0, 1, . . . ; P0 = W0
def= 0, (2.1)

where (x)+ = max{0, x}. Note the striking similarity to Lindley’s equation for the waiting times
in a single-server queue. The only difference is the sign of Wn. We assume that both {Pn, n > 1}
and {Rn, n > 1} are sequences of independent identically distributed random variables, also
independent of each other. The pick times Pn have a phase-type distribution G(·) and the
rotation times Rn are uniformly distributed on [0, 1) (which means that the items are randomly
located on the carousels). Then {Wn} is a Markov chain, with state space [0, 1). In [12] it is
shown that {Wn} is an aperiodic, recurrent Harris chain, which possesses a unique equilibrium
distribution. In equilibrium, equation (2.1) becomes

W
D= (R− P −W )+. (2.2)

Let π0 = P(W = 0) and f(·) denote the density of W on (0, 1). From (2.2) it readily follows
that (cf. equation (3) in Park et al. [12])

f(x) = π0G(1− x) +
∫ 1−x

0
G(1− x− z)f(z)dz, 0 6 x < 1, (2.3)
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and the normalisation equation

π0 +
∫ 1

0
f(x)dx = 1. (2.4)

Once the solution to equations (2.3) and (2.4) is known, we can compute E[W ] and thus also
the throughput τ from

τ =
1

E[W ] + E[P ]
. (2.5)

As pointed out before, equation (2.2) (with a plus sign instead of minus sign for W ) is precisely
Lindley’s equation for the stationary waiting time in a PH/U/1 queue. This equation has no
simple solution, but it will appear that the one for the waiting time of the picker can be solved
explicitly. Lindley’s equation is one of the most studied equations in queueing theory. For ex-
cellent textbook treatments we refer to Asmussen [1], Cohen [4] and the references therein. It is
interesting to investigate the impact to the analysis of such a slight modification to the original
Lindley’s equation.

In the following we shall explore various methods to solve the Lindley-type recursion (2.2),
or equivalently (2.3) and (2.4). Since equation (2.3) is a Fredholm type equation, a natural way
to proceed is by successive substitutions. This yields the formal solution

f(x) = π0

∞∑

j=1

Gj ∗(1− x), 0 6 x < 1, (2.6)

where

G1 ∗(1− x) def= G(1− x); Gn ∗(1− x) def=
∫ 1−x

0
G(1− x− z) G(n−1) ∗(1− z) dz, n > 2.

Since G(·) is a distribution, from the last relation we have for n > 1 that

G(n+2) ∗(x) 6
∫ x

0
G(n+1) ∗(1− z) dz 6

∫ x

0

∫ 1−z

0
Gn ∗(1− y) dydz =

∫ x

0

∫ 1

z
Gn ∗(y) dydz,

which implies that G3 ∗(x) 6 1/2. Now by induction it can be easily shown that for n > 1

G2(n+1) ∗(x) 6 G(2n+1) ∗(x) 6 1
2n

, 0 6 x < 1.

This means that the infinite sum (2.6) converges (uniformly) for 0 6 x < 1.
However, for a non-trivial distribution G(·), one cannot easily compute f(·) using (2.6). The

difficulty lies in the fact that Gn ∗(·) is not the n-fold convolution of the distribution function
G(·). Therefore we need a method that leads to more tractable results. For this reason we
continue by applying Laplace transforms to solve equation (2.3). Laplace transforms are a
standard approach for solving the original Lindley equation. This approach yields explicit and
computable expressions for the density f(·) and the throughput τ , involving roots of a certain
equation.

Another possibility is to obtain from (2.3) a solvable differential equation. This method
has been used to some extent in Park et al. [12]. In their work, they focused on deterministic
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and exponentially distributed pick times and they commented that “the approach of deriving a
differential equation for each pick-time distribution was rather ad hoc”. However, this method
can be generalised to include phase type distributions as well. For more details we refer to
Vlasiou et al. [17]. The advantage of Laplace transforms is that it leads to a more explicit
solution. Therefore we will present only this method in the following.

3 Erlang pick times

In this section we shall use Laplace transforms to solve (2.2) and we shall compare this method
to the work that has been previously done in [12]. Throughout this section we assume that the
pick times follow an Erlang distribution Erl(µ, n) with scale parameter µ and n stages, that is

G(x) = 1− e−µx
n−1∑

j=0

(µx)j

j!
, x > 0.

Let φ(·) denote the Laplace transform of f(·) over the interval (0, 1), which means

φ(s) =

1∫

0

e−sxf(x)dx.

We emphasise that for the Laplace transform over a bounded interval, the standard properties
are no longer valid in the sense that there are no standard results for calculating the inverse
transform over a bounded interval. Note that φ(·) is analytic in the whole complex plane. It is
convenient to replace x by (1− x) in (2.3), yielding

f(1− x) = π0G(x) +
∫ x

0
G(x− z)f(z)dz, 0 6 x < 1. (3.1)

By taking the Laplace transform of (3.1) and using (2.4) we get

e−sφ(−s) = π0


1− e−s

s
−

n−1∑

j=0

µj

(µ + s)j+1
+

n−1∑

j=0

j∑

i=0

µj

i!(µ + s)j+1−i
e−(µ+s)




− e−s

s
(1− π0) +

1
s
φ(s)−

n−1∑

j=0

µj

(µ + s)j+1
φ(s)

+ e−(µ+s)
n−1∑

j=0

j∑

i=0

i∑

`=0

(
i

`

)
µj

i!(µ + s)j+1−i
φ(`)(−µ),

which, by rearranging terms and using the identity

n−1∑

j=0

µj

(µ + s)j+1
=

(µ + s)n − µn

s(µ + s)n
,
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can be simplified to

e−sφ(−s)− µn

s(µ + s)n
φ(s) = π0


 µn

s(µ + s)n
+ e−(µ+s)

n−1∑

j=0

j∑

i=0

µj

i!(µ + s)j+1−i




− e−s

s
+ e−(µ+s)

n−1∑

j=0

j∑

i=0

i∑

`=0

(
i

`

)
µj

i!(µ + s)j+1−i
φ(`)(−µ). (3.2)

In the above expression, φ(`)(·) denotes the derivative of order ` of φ(·). Note that both φ(−s)
and φ(s) appear in (3.2). To obtain an additional equation we replace s by −s in (3.2) and form
a system from which φ(s) can be solved, yielding:

Theorem 1. For all s, the transform φ(s) satisfies

φ(s)R(s) = −e−ss(µ + s)nA(−s)− µnA(s), (3.3)

where

R(s) = s2(µ2 − s2)n + µ2n,

A(s) = π0


µn + e−(µ+s)

n−1∑

j=0

j∑

i=0

sµj(µ + s)n−j−1+i

i!


− e−s(µ + s)n

+e−(µ+s)
n−1∑

j=0

j∑

i=0

i∑

`=0

(
i

`

)
sµj(µ + s)n−j−1+i

i!
φ(`)(−µ).

In (3.3) we still need to determine the n + 1 unknowns π0 and φ(`)(−µ) for ` = 0, . . . , n− 1.
Note that for any zero of the polynomial R(·), the left-hand side of (3.3) vanishes (since φ(·) is
analytic everywhere). This implies that the right-hand side should also vanish. Hence, the zeros
of R(·) provide the equations necessary to determine the unknowns.

Lemma 1. The polynomial R(·) has exactly 2n+2 simple zeros r1, . . . , r2n+2 satisfying r2n+3−i =
−ri for i = 1, . . . , n + 1.

Proof: Since R(s) is a polynomial of degree n + 1 of s2, it follows that R(s) has exactly 2n + 2
zeros, with the property that each zero s has a companion zero −s. Furthermore, it is easily
verified that gcd[R(s), R′(s)] = 1. This means that the polynomials R(s) and R′(s) have no
common factor of degree greater than zero or that R(s) has only simple zeros. ¤

In the following lemma we prove that the 2n + 2 zeros of R(·) produce n + 1 independent
linear equations for the unknowns.

Lemma 2. The probability π0 and the quantities φ(`)(−µ) for ` = 0, . . . , n − 1 are the unique
solution to the n + 1 linear equations,

e−riri(µ + ri)nA(−ri) + µnA(ri) = 0, i = 1, . . . , n + 1.
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Proof: For any zero of R(·) the right-hand side of (3.3) should vanish. Hence, for two companion
zeros ri and r2n+3−i = −ri, i = 1, . . . , n + 1, we get

e−riri(µ + ri)nA(−ri) + µnA(ri) = 0, (3.4)
−eriri(µ− ri)nA(ri) + µnA(−ri) = 0. (3.5)

The determinant of (3.4) and (3.5), treated as equations for A(−ri) and A(ri), is equal to
R(ri) = 0. Hence, (3.4) and (3.5) are dependent, so we may omit one of them. This leaves a
system of n + 1 linear equations for the unknowns π0 and φ(`)(−µ) for ` = 0, . . . , n − 1. The
uniqueness of the solution follows from the general theory of Markov chains that implies that
there is a unique equilibrium distribution and thus also a unique solution to (3.2). ¤

Once π0 and φ(`)(−µ) for ` = 0, . . . , n − 1 are determined, the transform φ(·) is known. It
remains to invert the transform. By collecting the terms that include e−s we can rewrite (3.3)
in the form

φ(s) =
P (s)
R(s)

+ e−s Q(s)
R(s)

, (3.6)

where P (s) and Q(s) are polynomials of degree 2n + 1 and n + 1, respectively. Note that,
without the last term, the transform is rational so the inverse would be straightforward in case
we had Laplace transforms on (0,∞). Now we must proceed more carefully. Since deg[R] is
greater than deg[P ] and deg[Q], expression (3.6) can be decomposed into distinctive irreducible
fractions. This leads to

φ(s) =
c1

s− r1
+ · · ·+ c2n+2

s− r2n+2
+ e−s

[
ĉ1

s− r1
+ · · ·+ ĉ2n+2

s− r2n+2

]
,

where the coefficients ci and ĉi are given by

ci = lim
s→ri

P (s)
R(s)

(s− ri) =
P (ri)
R′(ri)

, ĉi = lim
s→ri

Q(s)
R(s)

(s− ri) =
Q(ri)
R′(ri)

. (3.7)

Note that the derivative R′(ri) is non-zero, since ri is a simple zero. Since the numerator of the
right-hand side of (3.6) vanishes at all points ri, we have

P (ri) = −e−riQ(ri), i = 1, . . . , 2n + 2.

Hence, from (3.7) it follows that
ci = −e−ri ĉi, (3.8)

and thus

φ(s) =
2n+2∑

i=1

ci

s− ri

[
1− eri−s

]
,

which is the transform (over a bounded interval) of a mixture of 2n + 2 exponentials. Now the
density is known, equation (2.4) can be used to derive a simple explicit expression for π0. These
findings are summarised in the following theorem.
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Theorem 2. The density of W on (0, 1) is given by

f(x) =
2n+2∑

i=1

cie
rix, 0 < x < 1, (3.9)

and

π0 = P(W = 0) = 1 +
2n+2∑

i=1

ci

ri
(1− eri). (3.10)

Corollary 1. The throughput τ satisfies

τ−1 = E[P ] + E[W ] =
n

µ
+

2n+2∑

i=1

ci

r2
i

[1 + (ri − 1)eri ].

Although the roots ri and coefficients ci may be complex, the expressions (3.9) and (3.10) will
be positive. This follows from the fact that the equilibrium equations (2.3) and the normalisation
equation (2.4) have a unique solution. Of course, it is also clear that each root ri and coefficient
ci have a companion conjugate root and conjugate coefficient, which implies that the imaginary
parts in (3.9) and (3.10) cancel.

As mentioned before, an alternative method is to derive from (2.3) a differential equation.
Then the coefficients ci, for i = 1, . . . , 2n + 2, represent the unique solution of an equal number
of initial conditions. This approach, although it can be easily formalised, does not make evident
the relations (3.8) that tie these coefficients together. Using Laplace transforms we can derive
explicit expressions for the coefficients that appear in the transform (and thus in the solution).
In particular, (3.7) explains how the coefficients ci and ĉi are obtained from the polynomials
appearing in the transform (3.6). Furthermore, (3.8) shows the relation between ci and ĉi.

4 Phase-Type pick times

Let us now assume that the pick times follow an Erl(µ, n) with probability αn, n = 1, . . . , N , in
other words,

G(x) =
N∑

n=1

αn


1− e−µx

n−1∑

j=0

(µx)j

j!


 , x > 0. (4.1)

The class of the phase-type distributions of the above form is dense in the space of distribution
functions defined on [0,∞). This means that for any such distribution function F (·), there is a
sequence Fn(·) of phase-type distributions of this class that converges weakly to F (·) as n goes
to infinity; for details see Schassberger [14]. Below we give the result for pick time distributions
of the form (4.1).

The analysis proceeds along the same lines as in Section 3. The formulas in the intermediate
steps are simply linear combinations of the ones that appear for Erlang pick times. This leads
to the following result.
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Theorem 3. For all s, the transform φ(s) satisfies

φ(s)R̃(s) = −e−ss(µ + s)N Ã(−s)−
N∑

n=1

αnµn(µ− s)N−nÃ(s), (4.2)

where

R̃(s) = s2(µ2 − s2)N +
N∑

n=1

N∑

m=1

αnαmµnµm(µ− s)N−n(µ + s)N−m,

Ã(s) = π0

N∑

n=1

αn


µn(µ + s)N−n + e−(µ+s)

n−1∑

j=0

j∑

i=0

sµj(µ + s)N−j−1+i

i!




+
N∑

n=1

αn


−e−s(µ + s)N + e−(µ+s)

n−1∑

j=0

j∑

i=0

i∑

`=0

(
i

`

)
sµj(µ + s)N−j−1+i

i!
φ(`)(−µ)


 .

The unknowns π0 and φ(`)(−µ) for ` = 0, . . . , n− 1 can be determined in the same way as in
Section 3. The polynomial R̃(·) has exactly 2N +2 zeros, with the property that each zero s has
a companion zero −s. We assume that all zeros are simple and label them r̃1, . . . , r̃2N+2 such
that r̃2N+3−i = −r̃i for i = 1, . . . , N + 1. Then the following lemma can be readily established.

Lemma 3. The probability π0 and the quantities φ(`)(−µ) for ` = 0, . . . , n − 1 are the unique
solution to the N + 1 linear equations,

e−r̃i r̃i(µ + r̃i)N Ã(−r̃i) +
N∑

n=1

αnµn(µ− r̃i)N−nÃ(r̃i) = 0, i = 1, . . . , N + 1. (4.3)

Given π0 and φ(`)(−µ) for ` = 0, . . . , n− 1, the transform φ(·) is completely known. Partial
fraction decomposition of the transform yields

φ(s) =
2N+2∑

i=1

c̃i

s− r̃i

[
1− er̃i−s

]
,

from which we conclude that the density of the waiting time is a mixture of 2N +2 exponentials.
Hence, as it was the case for Erlang pick times, the density is given by

f(x) =
2N+2∑

i=1

c̃ie
r̃ix.

Remark 1. When R(·) has multiple zeros, the analysis proceeds essentially in the same way. For
example, if r̃1 = r̃2 (so r̃1 and thus also r̃2N+2 are double zeros), then equation (4.3) for i = 1 is
identical to the one for i = 2. Nonetheless an additional equation can be obtained by requiring
that also the derivative of the right-hand side of (4.2) at s = r1 should vanish. The partial
fraction decomposition of φ(·) now becomes

φ(s) =
c̃1

(s− r̃1)2
[
1− er̃1−s − (s− r̃1)er̃1−s

]
+

2N+1∑

i=2

c̃i

s− r̃i

[
1− er̃i−s

]

+
c̃2N+2

(s− r̃2N+2)2
[
1− er̃2N+2−s − (s− r̃2N+2)er̃2N+2−s

]
,
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the inverse of which is given by

f(x) = c̃1xer̃1x +
2N+1∑

i=2

c̃ie
r̃ix + c̃2N+2xer̃2N+2x.

5 Numerical results

This section is devoted to some numerical results. For various values of the mean pick time E[P ]
we show in Figure 1 the throughput τ versus the squared coefficient of variation of the pick time,
c2
P . The mean pick time is chosen comparable to the mean rotation time, which is 1/2. For each

setting we fitted a mixed Erlang or hyperexponential distribution to E[P ] and c2
P , depending

on whether the squared coefficient of variation is less or greater than 1 (see, for example, Tijms
[16]).

Hyperexponential distributions form another useful class of phase-type distributions. They
may be used to model pick times with squared coefficient of variation greater than 1; hyperex-
ponential distributions are always unimodular (which is not the case for mixed Erlang distribu-
tions). The analysis for hyperexponential pick times is very similar to the one presented in the
previous section.

So, if 1/n 6 c2
P 6 1/(n− 1) for some n = 2, 3, . . ., then the mean and squared coefficient of

variation of the mixed Erlang distribution

G(x) = p


1− e−µx

n−2∑

j=0

(µx)j

j!


 + (1− p)


1− e−µx

n−1∑

j=0

(µx)j

j!


 , x > 0,

matches with E[P ] and c2
P , provided the parameters p and µ are chosen as

p =
1

1 + c2
P

[nc2
P − {n(1 + c2

P )− n2c2
P }1/2], µ =

n− p

E[P ]
.

On the other hand, if c2
P > 1, then the mean and squared coefficient of variation of the hyper-

exponential distribution

G(x) = p1(1− e−µ1x) + p2(1− e−µ2x), x > 0,

match with E[P ] and c2
P provided the parameters µ1, µ2, p1 and p2 are chosen as

p1 =
1
2

(
1 +

√
c2
P − 1

c2
P + 1

)
, p2 = 1− p1,

µ1 =
2p1

E[P ]
and µ2 =

2p2

E[P ]
.

For single-server queuing models it is well-known that the mean waiting time depends (approx-
imately linearly) on the squared coefficient of variation of the inter-arrival (and service) time.
The results in Figure 1, however, show that for the carousel model, the mean waiting time is
not very sensitive to the squared coefficient of variation of the pick time and thus neither is the
throughput τ ; it indeed decreases as c2

P increases, but very slowly. This phenomenon may be
explained by the fact that the waiting time of the picker is bounded by 1, i.e. the time needed
for a full rotation of the carousel.
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Figure 1: Plot of throughput vs. the squared coefficient of variation of the pick time.

6 Concluding remarks and further research

In this paper we have considered a system with two carousels operated by one picker. Using
Laplace transforms over a bounded interval, we have obtained an explicit solution for the density
of the waiting time of the picker. We have shown that if we let the pick time follow a phase-type
distribution, then the density is a mixture of exponentials. Numerical results show that the
squared coefficient of variation of the pick time does not influence the throughput significantly.

We have solved the Lindley-type recursion (2.1) under specific assumptions for the random
variables Rn and Pn. In particular, we assumed that Rn is uniformly distributed on [0, 1) and Pn

follows a phase-type distribution, for every n. This makes sense if one has a carousel application
in mind. Nonetheless, it is mathematically interesting to try and solve this recursion under less
restrictive assumptions. In further research we shall try to solve (2.1) allowing Rn and Pn to
follow a more general distribution.
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