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1 Introduction

Let X1, X2, . . . , Xn be a sample from a decreasing density f with corresponding concave
distribution function F . Suppose that f has bounded support, which then without loss of
generality may be taken to be the interval [0, 1]. Let F̂n be the least concave majorant of the
empirical distribution function Fn on [0, 1], by which we mean the smallest concave function
that lies above Fn. In this paper we study the difference between the processes F̂n and Fn.

Define the process

An(t) = n2/3
{

F̂n(t)− Fn(t)
}

, t ∈ [0, 1]. (1.1)

In Kiefer and Wolfowitz (1976), it was shown that (log n)−1 supt |An(t)| converges to zero
with probability one, but the precise rate of convergence or limiting distribution was not
given. Wang (1994) investigated the asymptotic behavior of An(t), for t being a fixed point
in (0, 1). The limiting distribution can be described in terms of the operator CMI that maps
a function h : IR → IR into the least concave majorant of h on the interval I ⊂ IR. If we
define the process

Z(t) = W (t)− t2, (1.2)

where W denotes standard two-sided Brownian motion originating from zero, then it is shown
in Wang (1994) that, for t ∈ (0, 1) fixed, An(t) converges in distribution to c1(t)ζ(0), where
c1(t) is some constant depending of f and t, and

ζ(t) = (CMIRZ) (t)− Z(t). (1.3)

Recently, Durot and Toquet (2002) obtained the same result in a regression setting. In
the present paper we will extend the pointwise result of Wang (1994) by proving that for
any t ∈ (0, 1) fixed, a properly scaled version ζnt(s) = c1(t)An(t + c2(t)sn−1/3) converges in
distribution to the process ζ(s) in the space D(IR) of cadlag functions on IR.

One of the main tools in proving process convergence is the continuous mapping theorem.
Observe that An is the image of Fn under the mapping h 7→ CMIh−h, which is a continuous
mapping from the space D(I) into itself. This is one of basic properties of concave majorants
that are described in Lemma 2.1. In Section 3, we use the Hungarian embedding and the
representation B(F (s)) = W (F (s))−W (1)F (s) for the Brownian bridge, to approximate the
empirical process by the process

s 7→ W
(
n1/3

(
F (t + n−1/3s)− F (t)

))
. (1.4)

As a consequence, a properly scaled version of the process Fn converges to Brownian motion
with parabolic drift. After establishing some preliminary results for this process in Section 3,
application of the continuous mapping theorem yields convergence of the process An. The
limit process is obtained in Section 4.

2 Basic properties of concave majorants

We start by giving a number of properties of the operator CM. By h′r and h′l, we will denote
the right- and left-derivative of a function h. The following lemma lists a number of general
basic properties of the operator CM.
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Lemma 2.1 Let g and h be functions on an interval B ⊂ IR. Then the following properties
hold.

1. [CMBg] (t) ≤ supB g, for all t ∈ B.

2. For any linear function l(t) = at + b on B, we have [CMB(g + l)] (t) = [CMBg] (t) + l(t)
for all t ∈ B.

3. For any interval A, such that A ⊂ B, we have [CMAg] (t) ≤ [CMBg] (t), for all t ∈ A.

4. If g ≤ h on B, then CMBg ≤ CMBh on B.

5. (CMBg) + infB h ≤ CMB(g + h) ≤ (CMBg) + supB h on B.

6. Let a, b, t ∈ B, such that a < t < b and suppose that

[CMBg]
′
r(a) > [CMBg]

′
l(t) ≥ [CMBg]

′
r(t) > [CMBg]

′
l(b).

Then [CMBg] (t) =
[
CM[a,b]g

]
(t).

7. Suppose [x− 1, x + 1] ⊂ B. Then

∣∣∣[CMBg]
′
(x)

∣∣∣ ≤ max
{

sup
B

g − g(x− 1), sup
B

g − g(x + 1)
}

.

8. Let [a, b] ⊂ B ⊂ IR and suppose that [CM[a,b]g](x1) = [CMBg](x1) and [CM[a,b]g](x2) =
[CMBg](x2), for any x1 < x2 in [a, b]. Then [CM[a,b]g](t) = [CMBg](t), for all t ∈ [x1, x2].

Proof: The proofs of properties 1-6 are straightforward (see Kulikov (2003)). To prove
property 7, suppose [CMBg]′(x) > 0. Since [x− 1, x] ⊂ B, g(x− 1) is below the line through
the points (x, [CMBg](x)) and (x− 1, [CMBg](x− 1)). This means that the line through the
points (x, [CMBg](x)) and (x−1, g(x−1)) has a slope that is greater than [CMBg]′(x). Hence
by property 1 we find

0 < [CMBg]′(x) ≤ [CMBg](x)− g(x− 1)
x− (x− 1)

≤
(

sup
B

g

)
− g(x− 1).

Similarly, if [CMBg]′(x) ≤ 0,

0 ≥ [CMBg]′(x) ≥ [CMBg](x)− g(x + 1)
x− (x + 1)

≥ −
(

sup
B

g

)
+ g(x + 1).

To prove property 8, according to property 3 it suffices to show that [CM[a,b]g](t) ≥ [CMBg](t),
for all t ∈ [x1, x2]. Suppose that there exists a t ∈ (x1, x2), such that

[
CM[a,b]g

]
(t) <

[CMBg] (t). Let [τ1, τ2] ⊂ [x1, x2] be the segment of CM[a,b]g that contains t. Since CM[a,b]g =
CMBg at the endpoints of the interval [x1, x2], there must be a vertex τ0 of CMBg between τ1

and τ2, for which
[
CM[a,b]g

]
(τ0) < [CMBg] (τ0). But then g(τ0) = [CMBg](τ0) > [CM[a,b]](τ0),

which is in contradiction with CMBg ≥ g on B.

2



3 Brownian approximation

In this section we show that by means of a local scaling the empirical process can be approx-
imated by a Brownian motion, and we prove some preliminary results for Brownian motion
with drift. Let En denote the empirical process

√
n(Fn−F ) and let Bn be a Brownian bridge

constructed on the same probability space as the uniform empirical process En ◦F−1 via the
Hungarian embedding of Kómlos, Major and Tusnády (1975). Then

sup
t∈[0,1]

|En(t)−Bn(F (t))| = Op(n−1/2 log n). (3.1)

Let ξn be a N(0, 1) distributed random variable independent of Bn. Define versions Wn of
Brownian motion by

Wn(t) = Bn(t) + ξnt, t ∈ [0, 1]. (3.2)

For t ∈ (0, 1) fixed, define the process

Xnt(s) = n2/3
(
Fn(t + sn−1/3)− Fn(t)−

(
F (t + sn−1/3)− F (t)

))
. (3.3)

Let F have a continuously differentiable density f on [0, 1] that satisfies

(A) 0 < inf
t∈[0,1]

|f ′(t)| ≤ sup
t∈[0,1]

|f ′(t)| < ∞.

Then on compact sets the process Xnt converges to a time-scaled Brownian motion.

Lemma 3.1 Let F satisfy condition (A). Fix t ∈ (0, 1) and let Xnt be defined by (3.3). Then
the process {Xnt(s) : s ∈ IR} converges in distribution to the process {W (f(t)s) : s ∈ IR} in
D(IR), the space of cadlag functions on IR.

Proof: All trajectories of the limiting process belong to C(IR), the separable subset of
continuous functions on IR. This means that similar to Theorem V.23 in Pollard (1984),
it suffices to show that for any compact set I ⊂ IR the process {Xnt(s) : s ∈ I} converges
in distribution to the process {W (f(t)s) : s ∈ I} in D(I), the space of cadlag functions on
I. We will apply Theorem V.3 in Pollard (1984), which is stated for D[0, 1], but the same
result holds for D(I).

By applying (3.1), we can write

Xnt(s) = n1/6
{

En(t + sn−1/3)− En(t)
}

= n1/6
{

Bn(F (t + sn−1/3))−Bn(F (t))
}

+Op(n−1/3 log n)

= n1/6
{

Wn(F (t + sn−1/3))−Wn(F (t))
}

+Op(n−1/6 log n),

where the big O-term is uniform for s ∈ I. By using Brownian scaling, a simple Taylor
expansion, and the uniform continuity of Brownian motion on compacta, we find that

Xnt(s)
d= W (f(t)s) + Rn(s),

where sups∈I |Rn(s)| → 0 in probability. From this representation it follows immediately that
the process {Xnt(s) : s ∈ I} satisfies the conditions of Theorem V.3 in Pollard (1984). This
proves the lemma.
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Let DI be the operator that maps a function h : IR → IR into the difference between the
least concave majorant of h on the interval I and h itself

DIh = CMIh− h.

Then the process An can be written as a functional of Fn only: An = n2/3[D[0,1]Fn]. This
means that in order to obtain the limiting behaviour of An we must investigate the limiting
behaviour of Fn itself. Note that

n2/3
(
F (t + sn−1/3)− F (t)

)
≈ n1/3f(t)s +

1
2
f ′(t)s2.

By property 2 of Lemma 2.1 the operator D[0,1] will be invariant under addition of linear
functions. Hence the term n1/3f(t)s will have no effect on the limiting behaviour of An.
In view of Lemma 3.1 this means that limiting behaviour of An will be determined by the
concave majorant of Brownian motion with a parabolic drift.

The following two lemmas are concerned with the tail behaviour of Brownian motion with
polynomial drift. The first lemma ensures that the probability that the process W (t)−K|t|α
is still positive for |t| > a, decreases exponentially as a →∞. The second lemma states that
the distribution function of supt∈IR(W (t)−K|t|α) has exponential tails.

Lemma 3.2 For all K > 0, α ≥ 1 and a ≥ 0,

P

{
sup
|t|>a

(
W (t)−K|t|α

)
≥ 0

}
≤ 2 exp

(−K2a2α−1/2
)
.

Proof: Using that {tW (1/t) : t > 0} has the same distribution as standard Brownian motion,
we have

P

{
sup
|t|>a

(
W (t)−K|t|α

)
≥ 0

}
≤ 2P

{
sup
t>a

(
W (t)/t

) ≥ Kaα−1

}

= 2P

{
sup

t∈(0,1)

(
tW (a/t)/a

) ≥ Kaα−1

}

≤ 2P

{
sup

t∈[0,1]
W (t) ≥ Kaα−1/2

}
.

Finally, note that

P

{
sup

t∈[0,1]
W (t) ≥ Kaα−1/2

}
≤ 2P

{
W (1) ≥ Kaα−1/2

}
, (3.4)

and
2P{W (1) ≥ x} ≤ 2e−x2/2

∫ ∞

0
φ(u) du = e−x2/2

which proves the lemma.

Lemma 3.3 For all K > 0, α ≥ 1, and x ≥ 0,

P

{
sup
IR

(
W (t)−K|t|α

)
> x

}
≤ 4 exp

(
−K1/αx2−1/α/2

)
.
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Proof: We can bound the tail probability on the left hand side by

P

{
sup

|t|≤(x/K)1/α

W (t) > x

}
+ P

{
sup

|t|>(x/K)1/α

(
W (t)−K|t|α

)
> 0

}
.

Similar to (3.4) the first probability is bounded by

P

{
sup

|t|≤(x/K)1/α

W (t) > x

}
≤ 2 exp

(
−K1/αx2−1/α/2

)
.

From Lemma 3.2, we find the same bound for the second probability.

With suitable standardization, the limiting Brownian motion with parabolic drift can be
transformed to the process Z defined in (1.2). We will be dealing with the concave majorants
of this process on large bounded intervals and on the whole real line. Property 8 of Lemma 2.1
guarantees that both concave majorants are the same on an interval as soon as their values
coincide on the boundary of the interval. The next lemma states that for large intervals this
happens with large probability. For d > 0, consider the event

N(d) =
{

[CMIRZ] (s) =
[
CM[−d,d]Z

]
(s), for s = ±d/2

}
(3.5)

Lemma 3.4 There exist constants C1 > 0 and C2 > 0, such that for all d ≥ 0

P (N(d)c) ≤ C1(1 + d1/2) exp
(
−C2d

3/2
)

.

Proof: Let Z̄ be the process
Z̄(s) = Z(s + d/2).

Then, by symmetry and property 3 of Lemma 2.1, we have

P {N(d)c} ≤ 2P
{
[CMIRZ] (d/2) >

[
CM[−d,d]Z

]
(d/2)

}

= 2P
{[

CMIRZ̄
]
(0) >

[
CM[−d/2,3d/2]Z̄

]
(0)

}

≤ 2P
{[

CMIRZ̄
]
(0) >

[
CM[−d/2,d/2]Z̄

]
(0)

}
.

Note that
Z̄(s) = W (s + d/2)− (s + d/2)2 d= Z(s) + W (d/2)− d2/4− sd.

Hence by property 2 of Lemma 2.1, we find that

P {N(d)c} ≤ 2P
{[

DIRZ̄
]
(0) >

[
D[−d/2,d/2]Z̄

]
(0)

}

= 2P
{
[DIRZ] (0) >

[
D[−d/2,d/2]Z

]
(0)

}

= 2P
{
[CMIRZ] (0) >

[
CM[−d/2,d/2]Z

]
(0)

}
.

Distinguish between

1. Z(s) ≤ −1
2s2, for all |s| > d/2,

2. Z(s) > −1
2s2, for some |s| > d/2.
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Consider the first case. Let [τ1, τ2] ⊂ [−d/2, d/2] be the segment of CM[−d/2,d/2] that contains
zero. If [CMIRZ] (0) >

[
CM[−d/2,d/2]Z

]
(0), then the line through the points (τ1, Z(τ1)) and

(τ2, Z(τ2)) must intersect the process Z outside the interval [−d/2, d/2]. In case 1, this can
only happen if this line intersects the parabola p(s) = −1

2s2 outside the interval [−d/2, d/2].
This is only possible if the slope of this line is greater than the tangent of p(s) in the point
s = −d/2 or smaller than the tangent of p(s) in the point s = d/2:

∣∣∣∣
[
CM[−d/2,d/2]Z

]′
(0)

∣∣∣∣ ≥ d/2.

We find that

P {N(d)c} ≤ 2P

{
sup
|s|>d/2

(
Z(s) + 1

2s2

)
> 0

}
+ 2P

{∣∣∣∣
[
CM[−d/2,d/2]Z

]′
(0)

∣∣∣∣ ≥ d/2
}

. (3.6)

By Lemma 3.2, the first term on the right hand side of (3.6) is equal to

2P

{
sup
|s|>d/2

(
W (s)− 1

2s2

)
> 0

}
≤ 4e−d3/64.

By property 7 of Lemma 2.1 the second term on the right hand side of (3.6) is bounded by

2P

{
sup
s∈IR

(
W (s)− s2

)
+ 1−min{W (1),W (−1)} ≥ d/2

}

≤ 2P

{
sup
s∈IR

(
W (s)− s2

) ≥ d/4
}

+ 2P {1−min{W (1), W (−1)} ≥ d/4}

According to Lemma 3.3, the first term is bounded by 8e−d3/2/16. Property (3.4) implies that
the second term on the right hand side is bounded by

2P {W (1) ≤ 1− d/4}+ 2P {W (−1) ≤ 1− d/4} ≤ e−
1
2
(1−d/4)2 .

This proves the lemma.

Likewise we will have to deal with the difference between concave majorants of Fn on
intervals [t− dn−1/3, t + dn−1/3] and on [0, 1], as well as with the difference between concave
majorants of the Brownian approximation of Fn. To this end define FE

n = Fn and let FW
n be

its Brownian approximation defined by

FW
n (t) = F (t) + n−1/2Wn(F (t)), t ∈ [0, 1], (3.7)

where Wn is defined in (3.2). For t ∈ [0, 1] and d > 0 let Int(d) = [t− dn−1/3, t+ dn−1/3], and
for J = E, W define the event

NJ
nt(d) =

{
[CM[0,1]F

J
n ](t + sn−1/3) = [CMInt(d)F

J
n ](t + sn−1/3), for s = ±d/2

}
. (3.8)

The following lemma ensures that the value of the two concave majorants of F J
n coincide at

t± 1
2dn−1/3 with high probability.
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Lemma 3.5 Let t ∈ (0, 1) and d > 0 be such that 0 < t−n−1/3d < t+n−1/3d < 1. Moreover,
suppose that for εn = 1

4 inf |f ′|n−1/3d,

f(1) < f(t + n−1/3d)− εn < f(t− n−1/3d) + εn < f(0).

Then, for any distribution function F satisfying condition (A), there exist a constant C2 > 0,
such that

P
{
NJ

nt(d)c
} ≤ 8 exp

(−C2d
3
)
,

where C2 does not depend on d, t and n.

Proof: For J = E, W define f̂J
n as the left-derivative of CM[0,1]F

J
n . Define

UJ
n (a) = argmax

t∈[0,1]

{
F J

n (t)− at
}

and V J
n (a) = n1/3

(
UJ

n (a)− g(a)
)
,

where g denotes the inverse of f . The process UJ
n is related to f̂J

n by the relation

f̂J
n (t) ≤ a ⇐⇒ UJ

n (a) ≤ t with probability one. (3.9)

Suppose that the concave majorants of F J
n on the intervals [0, 1] and [t− dn−1/3, t + dn−1/3]

differ at t−dn−1/3/2. A simple picture shows that in that case there cannot be point of jump of
f̂J

n between t−dn−1/3 and t−dn−1/3/2, which implies that f̂J
n (t−dn−1/3) ≤ f̂J

n (t−dn−1/3/2).
Similarly, if the concave majorants of F J

n on the intervals [0, 1] and [t − dn−1/3, t + dn−1/3]
differ at t + dn−1/3/2, then f̂J

n (t + dn−1/3) ≤ f̂J
n (t + dn−1/3/2). Hence

P
{
NJ

nt(d)c
} ≤ P

{
f̂J

n (t− n−1/3d) ≤ f̂J
n (t− n−1/3d/2)

}
(3.10)

+P
{

f̂J
n (t + n−1/3d) ≥ f̂J

n (t + n−1/3d/2)
}

.

Consider the first probability on the right hand side of (3.10). Then with s = t− n−1/3d and
x = d/2, we have

P
{

f̂J
n (t− n−1/3d) ≤ f̂J

n (t− n−1/3d/2)
}

= P
{

f̂J
n (s + n−1/3x) ≥ f̂J

n (s)
}

= P
{(

f̂J
n (s + n−1/3x)− f(s + n−1/3x)

)
−

(
f̂J

n (s)− f(s)
)
≥ f(s)− f(s + n−1/3x)

}

≤ P
{(

f̂J
n (s + n−1/3x)− f(s + n−1/3x)

)
−

(
f̂J

n (s)− f(s)
)
≥ n−1/3x inf |f ′|

}

≤ P
{

f̂J
n (s + n−1/3x)− f(s + n−1/3x) ≥ εn

}
+ P

{
f̂J

n (s)− f(s) ≤ −εn

}
. (3.11)

By using (3.9), the first probability on the right hand side of (3.11) is equal to

P
{

UJ
n

(
f(s + xn−1/3) + εn

)
≥ s + n−1/3x

}

= P
{

V J
n

(
f(s + xn−1/3) + εn

)
≥ n1/3

(
s + n−1/3x− g(f(s + xn−1/3) + εn)

)}

≥ P
{

V J
n

(
f(s + xn−1/3) + εn

)
≥ n1/3εn inf |g′|

}

= P

{
V J

n

(
f(s + xn−1/3) + εn

)
≥ inf |f ′|d

4 sup |f ′|
}

.
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Since f(s + xn−1/3) + εn = f(t− dn−1/3/2) + εn ∈ [f(1), f(0)], it follows from Theorems 2.1
and 3.1 in Groeneboom, Hooghiemstra and Lopuhaä (1999) that

P

{
V J

n

(
f(s + xn−1/3) + εn

)
≥ inf |f ′|d

4 sup |f ′|
}
≤ 2e−C2d3

, (3.12)

for some constant C2 > 0, not depending on n, t and d. The second probability on the right
hand side of (3.11) can be bounded similarly,

P
{

f̂J
n (s)− f(s) ≤ −εn

}
≤ 2e−C2d3

.

Together with (3.12) we conclude that the probability of the first event on the right hand side
of (3.10) can be bounded as follows

P
{

f̂J
n (t− n−1/3d) ≥ f̂J

n (t− n−1/3d/2)
}
≤ 4e−C2d3

.

The probability of the second event on the right hand side of (3.10) can be bounded similarly,
by taking s = t + n−1/3d/2 and x = d/2 and using the same argument as above. This proves
the lemma.

4 Process convergence

For t ∈ (0, 1) fixed and t + c2(t)sn−1/3 ∈ (0, 1), define

ζnt(s) = c1(t)An(t + c2(t)sn−1/3), (4.1)

where

c1(t) =
( |f ′(t)|

2f2(t)

)1/3

and c2(t) =
(

4f(t)
|f ′(t)|2

)1/3

. (4.2)

Define ζnt(s) = 0 for t + c2(t)sn−1/3 /∈ (0, 1). The following theorem states that the process
ζnt converges to the process ζ on D(IR).

Theorem 4.1 Let f be decreasing with support on [0, 1]. Suppose that f is continuous
differentiable on [0, 1] and satisfies

(A) 0 < inf
t∈[0,1]

|f ′(t)| < sup
t∈[0,1]

|f ′(t)| < ∞.

Let the processes ζ and ζnt be defined as in (1.3) and (4.1). Then the process {ζnt(s) : s ∈ IR}
converges in distribution to the process {ζ(s) : s ∈ IR} in D(IR), the space of cadlag functions
of IR.

Proof: Similar to the proof of Theorem 3.1 it is enough to show that for any compact set
K ⊂ IR, the process {ζnt(s) : s ∈ K} converges in distribution to the process {ζ(s) : s ∈ K}
on D(K). Note that for this, it suffices to show that the process {An(t + sn−1/3) : s ∈ K}
converges in distribution to the process {[DIRZt](s) : s ∈ K}, where

Zt(s) = W (f(t)s) +
1
2
f
′
(t)s2. (4.3)
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This follows from the fact that by Brownian scaling c1(t)Zt(c2(t)s)
d= Z(s) = W (s)− s2.

Let t ∈ (0, 1) fixed, and let Int = [−tn1/3, (1− t)n1/3]. Write Ent(s) = n2/3Fn(t+ sn−1/3),
for s ∈ Int. Then by definition

An(t + sn−1/3) = [DIntEnt] (s) for s ∈ Int.

Now take K fixed. For the processes {[DIntEnt](s) : s ∈ K} and {[DIRZt](s) : s ∈ K}, we
must show that for any g : D(K) → IR bounded and continuous:

|Eg (DIntEnt)− Eg (DIRZt)| → 0.

Let ε > 0 and let I = [−d, d] be an interval, where according to Lemmas 3.4 and 3.5, d > 0
is chosen sufficiently large such that K ⊂ [−d/2, d/2], and such that

P (N(d)c) < ε and P (NE
nt(d)c) < ε, (4.4)

where N(d) and NE
nt(d) are defined in (3.5) and (3.8). Let n be sufficiently large, such that

K ⊂ [−d/2, d/2] ⊂ I ⊂ Int. For g : D(K) → IR bounded and continuous, and processes
{[DIntEnt](s) : s ∈ K}, {[DIRZt](s) : s ∈ K}, and {[DIZt](s) : s ∈ K}, we have

|Eg (DIntEnt)−Eg (DIRZt)| ≤ |Eg (DIntEnt)−Eg (DIEnt)| (4.5)
+ |Eg (DIEnt)−Eg (DIZt)|

+ |Eg (DIZt)− Eg (DIRZt)| .

For the first term on the right hand side of (4.5) we have that

|Eg (DIntEnt)−Eg (DIEnt)|
≤ 2 sup |g| · P {DIntEnt 6= DIEnt on [−d/2, d/2]}
≤ 2 sup |g| · P {[DIntEnt](s) 6= [DIEnt](s) for s = −d/2 or s = d/2}
= 2 sup |g| · P {[CMIntEnt](s) 6= [CMIEnt](s) for s = −d/2 or s = d/2} .

Suppose that [CMIntEnt](s) 6= [CMIEnt](s). This means that the concave majorants of Fn

itself on the intervals [0, 1] and Int(d) = [t − dn−1/3, t + dn−1/3] differ at t + sn−1/3. Hence
the probability on the right hand side above can be bounded as follows:

P {[CMIntEnt](s) 6= [CMIEnt](s) for s = −d/2 or s = d/2} ≤ P (NE
nt(d)c).

According to (4.4), this yields

|Eg (DIntEnt)− Eg (DIEnt)| ≤ 2 sup |g| · ε. (4.6)

Similarly, application of property 8 of Lemma 2.1 gives

|Eg (DIZt)− Eg (DIRZt)| ≤ 2 sup |g| · P {DIZt 6= DIRZt on K}
≤ 2 sup |g| · P {DIZt 6= DIRZt on [−d/2, d/2]}
≤ 2 sup |g| · P (N(d)c).

Once more (4.4) yields

|Eg (DIZt)−Eg (DIRZt)| ≤ 2 sup |g| · ε. (4.7)
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In order to bound the second term on the right hand side of (4.5) define

Znt(s) = n2/3
(
Fn(t + sn−1/3)− Fn(t)−

(
F (t + sn−1/3)− F (t)

))
+

1
2
f
′
(t)s2.

It follows from Lemma 3.1, that the process {Znt(s) : s ∈ I} converges in distribution to
the process {Zt(s) : s ∈ I}. Because according to property 5 of Lemma 2.1, the mapping
DI : D(I) → D(I) is continuous, this means that

|Eh (DIZnt)− Eh (DIZt)| → 0,

for any h : D(I) → IR bounded and continuous. Note that we can also write

Ent(s) = Znt(s) + n2/3Fn(t) + f(t)sn1/3 + Rnt(s),

where

Rnt(s) = n2/3

[
F (t + sn−1/3)− F (t)− f(t)sn−1/3 − 1

2
f ′(t)s2n−2/3

]
.

Note that for some |θ − t| ≤ n−1/3|s|, with s ∈ I, we have

Rnt(s) =
1
2
|f ′(θ)− f ′(t)|s2 → 0,

uniformly for s ∈ I, using that f ′ is continuous. By continuity of the mapping DI together
with property 2 of Lemma 2.1, it then follows that on I:

DIZnt = DI (Ent −Rnt) = DIEnt + o(1),

where the o(1)-term is uniform for s ∈ I. We conclude that for any h : D(I) → IR bounded
and continuous, and processes {[DIntEnt](s) : s ∈ I} and {[DIZt](s) : s ∈ I},

|Eh (DIEnt)− Eh (DIZt)| → 0. (4.8)

Now let πK : D(I) → D(K) be defined as the restriction of an element of D(I) to the set
K. Since for any g : D(K) → IR bounded and continuous the composition h = g ◦ πK is also
bounded and continuous, (4.8) implies that for g : D(K) → IR bounded and continuous, and
processes {[DIntEnt](s) : s ∈ K} and {[DIZt](s) : s ∈ K},

|Eg (DIEnt)− Eg (DIZt)| → 0. (4.9)

Putting together (4.6), (4.7), (4.9) and (4.5) proves the theorem.
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