Abstract: We prove asymptotic normality for L_k-functionals $\int |\hat{F}_n - F_n|^k \, g(t) \, dt$, where F_n is the empirical distribution function of a sample from a decreasing density and \hat{F}_n is the least concave majorant of F_n. From this we derive two test statistics for the null hypothesis that a probability density is monotone. These tests are compared with existing proposals such as the supremum distance between \hat{F}_n and F_n.