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1 Introduction

In many nonparametric statistical models the parameter of interest is some unknown function
on the real line. This function may, for instance, be a distribution function, a probability
density, a regression function or a failure rate. Often qualitative assumptions such as con-
cavity, monotonicity or unimodality are plausible, and a natural question is how to test such
assumptions.

For testing unimodality of a probability density there exist several proposals. Silverman

(1981) proposed a test based on the critical bandwidth of a kernel density estimate. Hartigan

and Hartigan (1985) and Müller and Sawitzki (1991) based a test on the DIP or excess
mass functional. Further results concerning these functionals can be found in Mammen,

Maron and Fisher (1992) and Cheng and Hall (1997). In the context of regression there
is an extensive literature on testing monotonicity. Schlee (1982) proposed a test based on
an estimate of the derivative of the regression function. Bowman, Jones and Gijbels (1998)

extended Silverman’s (1981) test. Hall and Heckman (2000) proposed a test based on
running gradients, which is related to the DIP/excess mass method in the density context.
Ghosal, Sen and van der Vaart (2000) discuss a locally weighted version of Kendall’s
tau. Durot (2003) investigates a test statistic based on the supremum distance between
the empirical distribution function and its concave majorant. For testing a constant failure
rate against a monotone increasing failure rate, Robertson, Wright and Dijkstra (1988)

(Chapter 5) mention several references. Cohen and Sackrowitz (1993) compare several
methods for testing an increasing intensity of a Poisson process and Dümbgen and Spokoiny

(2001) study several qualitative hypotheses in the white noise model.
The literature on testing monotonicity in the context of probability densities seems to be

limited. Woodroofe and Sun (1999) propose two test statistics for testing the simple null
hypothesis of f being uniform on [0, 1] against the alternative that it is nonincreasing on [0, 1].
The first one is a likelihood ratio test statistic based on the penalized maximum likelihood
estimator for f . The second one compares the corresponding cumulative distribution function
with the uniform distribution function by means of the supremum distance.

In this paper we address the problem of testing the composite hypothesis that f is non-
increasing against the alternative it is not. We will discuss a number of test statistics based
on the difference between the empirical distribution function Fn and its least concave ma-
jorant F̂n, by which we mean the smallest concave function that lies above Fn. This differ-
ence has been of interest to several authors. Kiefer and Wolfowitz (1976) showed that
(log n)−1n2/3 sup |F̂n − Fn| converges to zero with probability one, but the precise rate of
convergence or limiting distribution was not given. Wang (1994) obtained the limit distribu-
tion of n2/3(F̂n(t) − Fn(t)), for t being a fixed point in (0, 1). This was extended to process
convergence by Kulikov and Lopuhaä (2003). Pointwise convergence was also obtained in a
regression setting by Durot and Toquet (2002).

The test statistic based on sup |F̂n−Fn| would be a direct extension of Durot (2003) and
is similar in spirit to the second proposal of Woodroofe and Sun (1999). Similar to their
results we show that for this test statistic the uniform density is least favorable among all
non-increasing densities on [0, 1], and we determine its limit distribution under uniformity.
This enables us to determine critical values and compute probabilities of committing a type I
error. However, if f satisfies additional smoothness conditions, then the results of Kiefer and

Wolfowitz (1976) imply that sup |F̂n−Fn| is of smaller order, which causes the probability of
committing a type I error tend to zero. This calls for a more detailed description of the limit
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distribution under smooth f , but this is still unknown. Computer simulations demonstrate
that sup |F̂n − Fn| is not so powerful at increasing alternatives that are close to the uniform
density.

We propose to construct a test statistic based on the Lk-distance between F̂n and Fn.
We investigate two possibilities, for which we determine the limiting distribution under uni-
formity. To investigate their behavior under additional smoothness assumptions, we show
that for smooth f , the Lk-distance between F̂n and Fn is asymptotically normal. This re-
sult is established in Section 2 and is similar to the one in Durot and Toquet (2002) who,
independently of our efforts, obtained a similar result in the regression setting. One of the
main differences between the regression setting and our setup is the embedding of the em-
pirical process. In the regression setting the empirical process can be embedded directly into
Brownian motion itself, whereas in our setup it can only be embedded in the process

s 7→ W
(
n1/3

(
F (t + n−1/3s)− F (t)

))
. (1.1)

This introduces an additional difficulty of approximating the value of the concave majorant
of the process at zero by the corresponding value of the process s 7→ W

(
f(t)s

)
. Although the

maximum difference between the two processes is too large, the key observation that makes
things work is that the values of the concave majorants at zero are sufficiently close.

By estimating the normalizing constants in the limit theorem for the Lk distance we derive
two possible test statistics for the null hypothesis that f is strictly increasing. In Section 3
we investigate their limit behavior, as well as that of the supremum distance between F̂n and
Fn. In Section 4 we discuss the results of a small simulation study in which we compare our
test statistic with other proposals from Woodroofe and Sun (1999) and Durot (2003) at
several underlying densities including the uniform. The tests based on Lk distances appear
to be superior against convex alternatives. All proofs are put in an Appendix at the end of
the paper.

2 Convergence of Lk-functionals

Let X1, X2, . . . , Xn be a sample from a decreasing density f and denote F as the corresponding
distribution function. Suppose that f has bounded support, which then without loss of
generality may be taken to be the interval [0, 1]. Let F̂n be the least concave majorant of the
empirical distribution function Fn on [0, 1]. Consider the process

An(t) = n2/3
(
F̂n(t)− Fn(t)

)
, t ∈ [0, 1]. (2.1)

The limiting distribution of An, can be described in terms of the operator CMI that maps a
function h : IR → IR into the least concave majorant of h on the interval I ⊂ IR. If we define
the process

Z(t) = W (t)− t2, (2.2)

where W denotes standard two-sided Brownian motion originating from zero, then it is shown
in Wang (1994) that, for t ∈ (0, 1) fixed, An(t) converges in distribution to c1(t)ζ(0), where
c1(t) is defined in (2.5), and

ζ(t) = [CMIRZ] (t)− Z(t). (2.3)
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This result was extended to process convergence by Kulikov and Lopuhaä (2003), where it
is proved that, for t ∈ (0, 1) fixed, the process

ζnt(s) =

{
c1(t)An(t + c2(t)sn−1/3) for t + c2(t)sn−1/3 ∈ (0, 1),
0 otherwise,

(2.4)

converges in distribution to the process ζ in the space D(IR) of cadlag functions on IR, where

c1(t) =
( |f ′(t)|

2f2(t)

)1/3

and c2(t) =
(

4f(t)
|f ′(t)|2

)1/3

. (2.5)

In the remainder of this section we will prove asymptotic normality of Lk-functionals of the
type

∫ 1
0 An(t)kg(t) dt, where g is continuous. Let us very briefly outline the line of reasoning

how we establish this result.
First observe that, up to constants, An is the image of Fn under the operator DI , that

maps a function h : IR → IR into the difference between the least concave majorant of h on
the interval I and h itself:

DIh = CMIh− h.

We can therefore write An = n2/3[D[0,1]Fn]. We will approximate Fn by means of a Brownian
motion version and use its image under D[0,1] to approximate An. To this end, let En denote
the empirical process

√
n(Fn −F ) and let Bn be a Brownian bridge constructed on the same

probability space as the uniform empirical process En ◦ F−1 via the Hungarian embedding
of Kómlos, Major and Tusnády (1975). Let ξn be a N(0, 1) distributed random variable
independent of Bn and define versions Wn of Brownian motion by

Wn(t) = Bn(t) + ξnt, t ∈ [0, 1]. (2.6)

Write FE
n = Fn and let FW

n be its Brownian approximation defined by

FW
n (t) = F (t) + n−1/2Wn

(
F (t)

)
, t ∈ [0, 1], (2.7)

where Wn is defined in (2.6), and let

AW
n (t) = n2/3[D[0,1]F

W
n ](t). (2.8)

We impose the following conditions on f :

(A1) f is a twice continuous differentiable decreasing density with support on [0, 1];

(A2) 0 < f(1) ≤ f(t) ≤ f(s) ≤ f(0) < ∞ for 0 ≤ s ≤ t ≤ 1;

(A3) inf
t∈[0,1]

|f ′(t)| > 0.

Under these conditions, for J = E,W , we first approximate the process s 7→ F J
n (t + n−1/3s)

by the process Ynt(s) + LJ
nt(s), where

Ynt(s) = Wn

(
n1/3

(
F (t + n−1/3s)− F (t)

))
+

1
2
f ′(t)s2,

and LJ
nt denotes a linear drift (see Lemma 5.1). Since the operator DI is invariant under

addition of linear terms, the moments of AJ
n(t) can be approximated by the moments of
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[DIYnt](0) (see Lemma 5.5). By uniform continuity of Brownian motion on compacta, the
process Ynt(s) is close to the process Wn(f(t)s) + 1

2f ′(t)s2. This leads to the following key
result:

EAJ
n(t)k =

(
2f(t)2

|f ′(t)|
)k/3

Eζ(0)k + o(n−1/6),

where ζ is defined in (2.3) (see Lemma 5.7). A direct consequence is that the difference
between the processes An(t)k and AW

n (t)k is of smaller order than n−1/6 (see Lemma 5.8).
In view of Theorem 2.1, this means that it suffices to prove asymptotic normality for Lk-
functionals

n1/6

∫ 1

0

(
AW

n (t)k −EAW
n (t)k

)
g(t) dt.

The fact that Brownian motion has independent increments will ensure that the process AW
n is

mixing (see Lemma 5.9). This allows us to approximate the integral by a sum of independent
integral terms, which then leads to the following theorem.

Theorem 2.1 Suppose that f satisfies conditions (A1)-(A3). Let g be a continuous function
on [0, 1] and let An be defined by (2.1). Then for all k ≥ 1, with

µ = E
[
ζ(0)k

] ∫ 1

0

2k/3f(t)2k/3

|f ′(t)|k/3
g(t) dt,

n1/6
(∫ 1

0 An(t)kg(t) dt− µ
)

converges in distribution to a normal random variable with mean
zero and variance

σ2 =
∫ 1

0

2(2k+5)/3f(t)(4k+1)/3

|f ′(t)|(2k+2)/3
g(t)2 dt

∫ ∞

0
cov(ζ(0)k, ζ(s)k) ds,

where ζ is defined in (2.3).

Remark 2.1 The condition (A1) on f in Theorem 2.1 can be relaxed somewhat. At the
cost of additional technicalities, the theorem remains true if we require |f ′(x) − f ′(y)| ≤
C|x− y|1/2+ε, for some ε > 0 and C > 0 not depending on f .

3 Testing monotonicity of the underlying density

To test the composite null hypothesis that the underlying density f is non-increasing, various
approaches may be transferred from the regression setting, where this problem has been
studied intensively for regression curves. The most applicable one seems to be the DIP-
type test based on the supremum distance between the empirical distribution function and
its concave majorant. Durot (2003) has used this approach for testing the composite
null hypothesis that the regression curve is non-increasing. The limiting distribution of the
supremum distance was obtained under the hypothesis of constant regression curves, which
were shown to be least favorable. Woodroofe and Sun (1999) investigated a similar test
statistic in the setting of density estimation to test the simple null hypothesis of uniformity,
and obtained the limiting distribution under the null hypothesis. In both cases the test
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statistic is easy to calculate and it appears to be powerful at increasing alternatives. This
suggests

Sn =
√

n sup
t∈[0,1]

(
F̂n(t)− Fn(t)

)
, (3.9)

as a test statistic for the composite null hypothesis that the underlying density f is non-
increasing. Similar to Durot (2003), the uniform distribution is least favorable among all
non-increasing densities on [0, 1]. The limit distribution of Sn under uniformity is given in
the following theorem.

Theorem 3.1 Let f be non-increasing on [0, 1] and Sn be defined as in (3.9).

1. For a sample X1, X2, . . . , Xn from f and U1, U2, . . . , Un defined by Ui = F (Xi), it holds
that Sn(X1, . . . , Xn) ≤ Sn(U1, . . . , Un).

2. If f = 1, then Sn converges in distribution to supt∈[0,1]

(
Ŵ (t)−W (t)

)
, where Ŵ denotes

the least concave majorant of W on [0, 1].

Note that if f satisfies additional smoothness conditions, then Sn is of smaller order. This
follows immediately from Kiefer and Wolfowitz (1976), who showed that, if f is twice
continuously differentiable, (log n)−1n1/6Sn tends to zero with probability one. The exact
limit behavior of Sn for smooth f is still unknown. Computer simulations demonstrate that
Sn is powerful at increasing alternatives similar to the ones considered in Woodroofe and
Sun (1999). However, these simulations also demonstrate that Sn is not so powerful at
increasing alternatives that are closer to the uniform density.

An alternative approach is to construct a test statistic on the basis of
∫ 1

0

(
F̂n(t)− Fn(t)

)k
dt.

Its limiting distribution under uniformity can be obtained, but we cannot prove that the
uniform distribution is least favorable. Nevertheless, one could consider the following slight
modification

Rn = nk/2

∫ 1

0

(
F̂n(t)− Fn(t)

)k
dFn(t). (3.10)

For Rn the uniform distribution is least favorable among all non-increasing densities on [0, 1],
and its limit distribution under uniformity is given in the following theorem.

Theorem 3.2 Let f be non-increasing on [0, 1] and Rn be defined as in (3.10).

1. For a sample X1, X2, . . . , Xn from f and U1, U2, . . . , Un defined by Ui = F (Xi), it holds
that Rn(X1, . . . , Xn) ≤ Rn(U1, . . . , Un).

2. If f = 1, then both nk/2
∫ 1
0

(
F̂n(t) − Fn(t)

)k
dt and Rn converge in distribution to∫ 1

0

(
Ŵ (t) − W (t)

)k
dt, for all k = 1, 2, . . ., where Ŵ denotes the least concave majo-

rant of W on [0, 1].

Quantiles of the limiting distributions of Rn and Sn, as given in Theorems 3.1 and 3.2, can
be obtained by means of computer simulations. They are given in Table 1. The test based on
Sn is similar to the one proposed in Durot and Toquet (2002), and has the same limiting
distribution. For this reason the quantiles for Sn are taken from that paper. Similar to Sn, the
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Table 1: Simulated (1− α)-quantiles of the limiting distributions of Rn and Sn.

α Rn Sn

0.99 0.812 1.696
0.95 0.655 1.461
0.90 0.581 1.320

limiting behavior of Rn will be different for smooth f . Undoubtedly, it can be deduced from
Theorem 2.1 that n1/6(nk/6Rn − µ) = n1/6

( ∫ 1
0 An(t)k dFn(t) − µ

)
is asymptotically normal

with mean zero and variance σ2, where µ and σ2 are as in Theorem 2.1 with g = f .
Theorem 2.1 can be used to approximate the distribution of a test statistic based on

the Lk-distance. The quantities depending on the process ζ can be obtained by simulation.
However, the terms depending on the underlying density must be estimated. This requires
estimation of f and of its derivative f ′. Note that when f has almost flat parts, estimation of
the terms with f ′ appearing in the denominator of µ and σ2 causes difficulties. To this end
we take g = |f ′|(k+1)/3 in Theorem 2.1. A possible test statistic then is

Tn =
n1/6

σ̂n

(∫ 1

0
An(t)k|f̂ ′n(t)|(k+1)/3 dt− µ̂n

)
, (3.11)

with

µ̂n = E[ζ(0)k]
∫ 1

0
2k/3f̂n(t)2k/3|f̂ ′n(t)|1/3 dt, (3.12)

σ̂2
n =

∫ ∞

0
cov(ζ(0)k, ζ(s)k) ds

∫ 1

0
2(2k+5)/3f̂n(t)(4k+1)/3 dt, (3.13)

where f̂n and f̂ ′n are estimates for f and its derivative. Because An(t) = Op(1) (see Lemma 5.7),
it follows that if f̂n converges to f and f̂ ′n to f ′ at a fast enough rate, then asymptotic nor-
mality from Theorem 2.1 carries over to Tn.

Theorem 3.3 Suppose that f satisfies conditions (A1)-(A3). Let An by defined by (2.1) and
Tn by (3.11). Define µ̂n and σ̂n as in (3.12) and (3.13). Suppose that for i = 0, 1,

(i) supt∈[0,1] |f̂ (i)
n (t)| = Op(1) and 1/ inft∈[0,1] |f̂ (i)

n (t)| = Op(1),

(ii) for some q ≥ 1,
∫ 1
0 |f̂

(i)
n (t)− f (i)(t)|q dt = op(n−q/6).

Then for all k ≥ 1,

Tn =
n1/6

σ̂n

(∫ 1

0
An(t)k|f̂ ′n(t)|(k+1)/3 dt− µ̂n

)
,

converges in distribution to a standard normal random variable.

One possibility is to estimate f and f ′ by kernel estimators. Let K : IR → IR be a kernel
function satisfying
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(K1) K is a continuously differentiable symmetric probability density,
(K2) K(u) = 0 for |u| ≥ 1,
(K3) K ′(u) and uK ′(u) are of bounded variation.

Define

f̂n,h(t) =
1
h

∫
K

(
t− x

h

)
dFn(x), (3.14)

f̂ ′n,h(t) =
1
h2

∫
K ′

(
t− x

h

)
dFn(x). (3.15)

If f is twice continuously differentiable, then under assumptions (K1)-(K3), the MISE optimal
choice for h is C1(f)C2(K)n−1/5 for estimating f by f̂n,h (see for instance Prakasa Rao
(1983)). The constant C1(f) can be estimated by several techniques, such as the method of
cross validation or by using a reference family. If f is twice continuously differentiable, K
satisfies (K1)-(K3), and h = O(n−1/5), then the conditions (i)-(ii) of Theorem 3.3 are satisfied
by the kernel estimators defined in (3.14) and (3.15). See Lemmas 5.13 and 5.14.

One may wish to account for the inconsistency of f̂n,h at the boundaries of the support of
f . A simple family of boundary kernels that modifies K at the left boundary is the following
linear multiple of K:

KL
α (u) =

ν2,α(K)− ν1,α(K)u
ν0,α(K)ν2,α(K)− ν1,α(K)2

K(u)1(−1,α)(u),

where ν`,α(K) =
∫ α
−1 u`K(u) du and 0 ≤ α = t/h < 1. Using KL

α instead of K in (3.14) leads
to bias of the order O(h2) uniformly for t = αh close to the left boundary (see for instance
Wand and Jones (1995)). For the right boundary we use

KR
β (u) =

ν2,β(K) + ν1,β(K)u
ν0,β(K)ν2,β(K)− ν1,β(K)2

K(u)1(−β,1)(u),

where 0 ≤ β = (1− t)/h < 1. Now define

Kt(u) =





KL
t/h(u) , 0 ≤ t < h

K(u) , h ≤ t ≤ 1− h

KR
(1−t)/h(u) , 1− h < t ≤ 1.

(3.16)

Then the bias of the corresponding kernel estimator

f̂B,n,h(t) =
1
h

∫
Kt

(
t− x

h

)
dFn(x), (3.17)

is of the order O(h2) everywhere. Let K ′
t(u) = dKt(u)/du and define the corresponding kernel

estimator for f ′ by

f̂ ′B,n,h(t) =
1
h2

∫
K ′

t

(
t− x

h

)
dFn(x)− 1

h
Kt

(
t

h

)
f̂B,n,h(0)− 1

h
Kt

(
t− 1

h

)
f̂B,n,h(1). (3.18)

The last two terms are subtracted in order to keep the bias of the order O(h). Using standard
arguments from the theory of kernel estimators, it can be shown that if we take f̂n = f̂B,n,h

and f̂ ′n = f̂ ′B,n,h as defined in (3.16), (3.17) and (3.18), where K satisfies (K1)-(K3) and
h = O(n−1/5), then the conditions (i)-(ii) of Theorem 3.3 are satisfied. See Lemmas 5.13
and 5.14.
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Remark 3.1 To show that the kernel estimators, as described above, satisfy conditions (i)-
(ii) of Theorem 3.3, the condition (A1) on f can be relaxed somewhat. At the cost of some
additional technicalities, conditions (i)-(ii) can be shown to hold if we require |f ′(x)−f ′(y)| ≤
C|x− y|3/4+ε, for some ε > 0 and C > 0 not depending on f .

Theorem 3.3 suggests that in order to test the null hypothesis that f is non-increasing at
level α, we reject if Tn > z1−α, where z1−α is the (1 − α)-quantile of the standard normal
distribution. It is easy to see that this test is not a test of level α. The probability of
committing a type I error under the uniform distribution may only be bounded asymptotically
by α when f ′ is estimated at rate n1/2, which is far too restrictive. In that case rejection
criteria must be corrected. This is also the case for underlying densities that are strictly
decreasing, but nearly flat. However, this deficiency of Tn is completely made up by its high
power on increasing alternatives very close to the uniform distribution. In order to have a
test of level α one can use statistics Rn or Sn. They have smaller power close to the uniform,
but the probability of committing a type I error does not exceed level α. A comparison of Tn

with Rn and Sn can be found in Section 4. The use of Tn is advisable when the price of a false
alarm is not high compared to the price of overlooking violation of f being non-increasing.
This may be the case, for example, when testing the null hypothesis of a monotone intensity of
a Poisson process describing disease cases or fallouts. Although the Poisson model is different
from the one considered here, testing for a monotone intensity is equivalent to testing for a
monotone density (see also Woodroofe and Sun (1999)).

4 A simulation study

We have done a small simulation study in order to compare the different test statistics and to
illustrate their advantages and disadvantages. For the underlying distribution we have chosen
a family of exponential distributions restricted to the interval [0, 1] with densities

fθ(x) =
θeθx

eθ − 1
for x ∈ [0, 1], (4.19)

where θ ∈ IR. The value θ = 0 corresponds to the uniform density. It is a transition point,
in the sense that for θ < 0 (or θ > 0), the density is strictly decreasing (or increasing). We
perform the simulation for θ = 0,±1/20,±1/10,±1/5,±1/3 and ±1. Note that for smaller
|θ|, the density is closer to the uniform. The case θ = 1 was also considered by Woodroofe
and Sun (1999).

We have simulated one thousand values of Sn, Rn and Tn, as defined in (3.9), (3.10) and
(3.11), with k = 1. The constants depending on ζ in (3.12) and (3.13) have been determined
by a separate simulation, where we found E[ζ(0)] ≈ 0.521 and

∫∞
0 cov(ζ(0), ζ(s)) ds ≈ 0.0171.

For f̂ and f̂ ′ we used kernel estimators f̂B,n,k and f̂ ′B,n,h as defined (3.17) and (3.18).
The boundary kernel Kt, as defined in (3.16), was constructed with the triweight kernel
K(u) = 35

32(1−u2)31{|u|<1}. Since, we modify both at the boundaries 0 and 1, the bandwidth
should never exceed 1/2. For this reason we took h = min(C1(f)C2(K)n−1/5, 1/2), where the
constant C1(f) was estimated by using an exponential reference family.

In Table 2 we report simulated probabilities of rejecting the null hypothesis that f is
non-increasing at significance level 0.05, for underlying density fθ as defined in (4.19), and
for sample sizes n = 100, 1000 and 10000. The probabilities are simulated for the values of θ
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specified above. Critical values for Rn and Sn were taken from Table 1. For Tn we used the
95% percentile of the standard normal distribution.

The test based on Tn is very powerful, rejecting the null hypothesis already for small
positive θ’s. It is not a test of level α since for small negative θ, it rejects the null hypothesis
too often. However, at these decreasing, but almost flat underlying densities, the probability
of committing a type I error disappears rapidly with decreasing θ. Test statistics Rn and Sn

do produce tests of level α. However, the test based on Rn is less powerful than Tn. The test
based on statistic Sn appears to be least powerful.

We also compared the power of Tn to that of the tests proposed by Woodroofe and
Sun (1999) (see their Table 3). At the alternative fθ, with θ = 1, it appears that Tn is
preferable to their D-and P -test for reasonably large samples. For n = 100, we see that the
D-test has power 0.838 and the P -test 0.787, whereas Tn has power 0.960. Furthermore, we
also have simulated the power of Tn at underlying density f(x) = 2x. The comparison with
the D- and P -test is given in Table 3.

5 Proofs

We first show that for J = E, W , a properly scaled version of F J
n can be approximated by

the process

Ynt(s) = n1/6
(
Wn

(
F (t + n−1/3s)

)−Wn

(
F (t)

))
+

1
2
f ′(t)s2, for −∞ < s < ∞. (5.20)

plus linear term, where Wn is defined in (2.6).

Lemma 5.1 Suppose that f satisfies conditions (A1)-(A3). Let FE
n = Fn and let FW

n be
defined as in (2.7). Then for t ∈ (0, 1) fixed, J = E,W and s ∈ [−tn1/3, (1− t)n1/3]:

n2/3F J
n (t + n−1/3s) = Ynt(s) + LJ

nt(s) + RJ
nt(s),

Table 2: Simulated probabilities of rejection at α = 0.05.

θ −1 −0.33 −0.2 −0.1 −0.05 0 0.05 0.1 0.2 0.33 1

n = 100

Tn 0.013 0.091 0.114 0.181 0.214 0.241 0.285 0.323 0.413 0.539 0.960
Rn 0.000 0.000 0.007 0.016 0.020 0.034 0.043 0.051 0.075 0.161 0.771
Sn 0.000 0.002 0.008 0.013 0.022 0.026 0.034 0.038 0.060 0.111 0.625

n = 1000

Tn 0.006 0.025 0.042 0.136 0.191 0.286 0.396 0.559 0.809 0.974 1.000
Rn 0.000 0.000 0.001 0.008 0.015 0.055 0.109 0.215 0.481 0.871 1.000
Sn 0.000 0.000 0.004 0.012 0.022 0.041 0.091 0.163 0.376 0.779 1.000

n = 10 000

Tn 0.005 0.006 0.015 0.027 0.079 0.282 0.739 0.965 1.000 1.000 1.000
Rn 0.000 0.000 0.000 0.000 0.000 0.054 0.360 0.859 1.000 1.000 1.000
Sn 0.000 0.000 0.000 0.000 0.004 0.059 0.268 0.753 0.999 1.000 1.000

9



Table 3: Power of Tn compared to the D- and P -test.

n D-test P -test Tn

10 0.542 0.588 0.496
20 0.835 0.875 0.906
40 0.984 0.992 0.995

where Ynt is defined in (5.20), LJ
nt(s) is linear in s, and where for all k ≥ 1,

E sup
|s|≤log n

∣∣RJ
nt(s)

∣∣k = O(n−k/3(log n)3k),

uniformly in t ∈ (0, 1).

Proof: Taylor expansion together with (2.7) and (2.6) yields that

n2/3FW
n (t + n−1/3s) = Ynt(s) + LW

nt (s) + RW
nt (s),

with Ynt as defined in (5.20), LW
nt (s) is linear in s:

LW
nt (s) = n2/3F (t) + n1/6Wn(F (t)) + n1/3f(t)s,

and RW
nt (s) = 1

6n−1/3f ′′(θ1)s3, for some |θ1 − t| ≤ n−1/3|s|. Similarly

n2/3FE
n (t + n−1/3s) = n2/3FW

n (t + n−1/3s)

+n1/6
{

En(t + n−1/3s)−Bn(F (t + n−1/3s))
}

−n1/6ξn

{
F (t) + f(t)n−1/3s +

1
2
f ′(θ2)n−2/3s2

}

= Ynt(s) + LE
nt(s) + RE

nt(s),

where LE
nt(s) = LW

nt (s)− n1/6ξnF (t)− n−1/6ξnf(t)s is linear in s, and

RE
nt(s) = RW

nt (s)− n1/6
{

En(t + n−1/3s)−Bn(F (t + n−1/3s))
}
− 1

2
n−1/2ξnf ′(θ2)s2,

for some |θ2 − t| ≤ n−1/3|s|. It follows immediately from conditions (A1)-(A3) that:

sup
|s|≤log n

∣∣RW
nt (s)

∣∣k ≤ C1n
−k/3(log n)3k. (5.21)

Note that

sup
|s|≤log n

∣∣RE
nt(s)

∣∣ ≤ sup
|s|≤log n

∣∣RW
nt (s)

∣∣ + n1/6Sn +
1
2

sup |f ′|n−1/2(log n)2|ξn|,

where Sn = sups∈IR |En(s)−Bn(F (s))|. From Kómlos, Major and Tusnády (1975) we have
that

P
{

Sn ≥ n−1/2(C log n + x)
}
≤ Ke−λx,
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for positive constants C,K, and λ. This implies that for all k ≥ 1,

ESk
n = O(n−k/2(log n)k). (5.22)

Next use that for all a, b > 0 and k ≥ 1

(a + b)k ≤ 2k(ak + bk). (5.23)

Then from conditions (A1)-(A3) together with (5.22) and (5.21) we find that

E sup
|s|≤log n

∣∣RE
nt(s)

∣∣k = O
(
n−k/3(log n)3k

)
+O

(
n−k/3(log n)k

)
+O

(
n−k/2(log n)2k

)

= O
(
n−k/3(log n)3k

)
.

This proves the lemma.

The next step is to approximate the moments of AJ
n(t) by corresponding moments of the

concave majorant of the process Ynt. For this we need to show that the concave majorants
of F J

n on [0,1], and on a neighborhood of t are equal at t. This requires some results from
Kulikov and Lopuhaä (2003). They are listed below for easy reference.

Lemma 5.2 Let g and h be functions on an interval B ⊂ IR. Then

1. For any linear function l(t) = at+ b on B, we have [CMB(g + l)] (t) = [CMBg] (t)+ l(t)
for all t ∈ B.

2. (CMBg) + infB h ≤ CMB(g + h) ≤ (CMBg) + supB h on B.

3. Let [a, b] ⊂ B ⊂ IR and suppose that [CM[a,b]g](x1) = [CMBg](x1) and [CM[a,b]g](x2) =
[CMBg](x2), for x1 < x2 in [a, b]. Then [CM[a,b]g](t) = [CMBg](t), for all t ∈ [x1, x2].

Proof: See Kulikov and Lopuhaä (2003).

Lemma 5.3 Let Z be defined in (2.2) and, for d > 0, let N(d) be the event that [CMIRZ](s)
and [CM[−d,d]Z](s) are equal for s ∈ [−d/2, d/2]. Then there exist constants C1 > 0 and
C2 > 0, such that for all d sufficiently large

P (N(d)c) ≤ C1 exp
(
−C2d

3/2
)

.

Proof: See Kulikov and Lopuhaä (2003).

Lemma 5.4 For d > 0, let Int(d) = [0, 1]∩ [t−dn−1/3, t+dn−1/3]. For J = E, W , t ∈ (0, 1),
let NJ

nt(d) be the event that [CM[0,1]F
J
n ](s) and [CMInt(d)F

J
n ](s) are equal for s ∈ Int(d/2).

Then, for any distribution function F satisfying conditions (A1)-(A3),

P
{
NJ

nt(d)c
} ≤ 8 exp

(−Cd3
)
,

where C > 0 does not depend on d, t and n.

Proof: See Kulikov and Lopuhaä (2003).
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Lemma 5.5 Suppose that f satisfies conditions (A1)-(A3). For t ∈ (0, 1) fixed, let Ynt be
defined as in (5.20). Let AE

n (t) = An(t) and AW
n (t) be defined in (2.1) and (2.8). Define

Hnt = [−n1/3t, n1/3(1− t)] ∩ [− log n, log n]. Then for all k ≥ 1, and for J = E,W

EAJ
n(t)k = E [DHntYnt] (0)k + o(n−1/6)

uniformly for t ∈ (0, 1).

Proof: Let Int(d) and NJ
nt(d) be defined as in Lemma 5.4, and write Int = Int(log n) and

NJ
nt = NJ

nt(log n). Then by property 3 of Lemma 5.2, on the event NJ
nt, the concave majorants

CM[0,1]F
J
n and CMIntF

J
n coincide on [t− n−1/3 log n/2, t + n−1/3 log n/2]. In particular, they

coincide at t, so that

AJ
n(t)1NJ

nt
= n2/3[DIntF

J
n ](t)1NJ

nt
for J = E,W. (5.24)

By definition |AE
n (t)| ≤ 2n2/3 and AW

n is bounded by 2n2/3
(
1 + n−1/2 sups∈[0,1] |Wn(s)|

)
, so

that

E
∣∣∣AJ

n(t)k − n2k/3[DIntF
J
n ](t)k

∣∣∣ 1(NJ
nt)

c ≤ 2k+1n2k/3E

(
1 + n−1/2 sup

s∈[0,1]
|Wn(s)|

)k

1(NJ
nt)

c

≤ 2k+1n2k/3

{
E

(
1 + n−1/2 sup

s∈[0,1]
|Wn(s)|

)2k}1/2 {
P

(
(NJ

nt)
c
)}1/2

.

Next, use (5.23) together with the fact that all moments of sups∈[0,1] |Wn(s)| are finite. Then
it follows from Lemma 5.4 that

EAJ
n(t)k = n2k/3E[DIntF

J
n ](t)k + E

(
AJ

n(t)k − n2k/3[DIntF
J
n ](t)k

)
1(NJ

nt)
c

= n2k/3E[DIntF
J
n ](t)k + n2k/3O(e−

1
2
C2(log n)3),

uniformly for t ∈ (0, 1). From Lemmas 5.1 and 5.2, we have for s ∈ Hnt = n1/3(Int − t):

n2/3
[
DIntF

J
n

]
(t) =

[
DHnt(Ynt + RJ

nt)
]
(0) = [DHntYnt] (0) + ∆nt,

where ∆nt =
[
DHnt(Ynt + RJ

nt)
]
(0)− [DHntYnt] (0). We find that

EAJ
n(t)k = E [DHntYnt] (0)k + εnt + n2k/3O

(
e−

1
2
C2(log n)3

)
, (5.25)

where, by application of the mean value theorem,

|εnt| ≤ kE|θnt|k−1|∆nt| ≤ k
{

E|θnt|2k−2
}1/2 {

E|∆nt|2
}1/2

, (5.26)

with |θnt − [DHntYnt] (0)| ≤ |∆nt|. Since Hnt ⊂ [− log n, log n], by application of (5.23)

E|θnt|2k−2 ≤ 42k−2

(
E sup
|s|≤log n

|Ynt(s)|2k−2 + E|∆nt|2k−2

)
, (5.27)

where according to property 2 of Lemma 5.2 together with Lemma 5.1, for all k ≥ 1

E|∆nt|k ≤ 2kE sup
|s|≤log n

|RJ
nt(s)|k = O

(
n−k/3(log n)3k

)
, (5.28)
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uniformly for t ∈ (0, 1). On the other hand, for |s| ≤ log n, there exist constants C3, C4 > 0
that only depend on f , such that

sup
|s|≤log n

|Ynt(s)| ≤ sup
|s|≤C3 log n

|Wn(s)|+ C4(log n)2 d= (C3 log n)1/2 sup
|s|≤1

|W (s)|+ C4(log n)2.

Because all moments of sup|s|≤1 |W (s)| are finite, from (5.26), (5.27) and (5.28) we conclude
that εnt = O(

n−1/3(log n)2k+1
)
. Together with (5.25) this proves the lemma.

By uniform continuity of Brownian motion on compacta, the process Ynt(s) is close to the
process Wn(f(t)s)+ 1

2f ′(t)s2. In view of Theorem 2.1 this difference must be of smaller order
than n−1/6. Unfortunately, it does not suffice to bound the difference between the concave
majorants by

sup
|s|≤log n

∣∣∣∣Wn

(
n1/3

(
F (t + n−1/3s)− F (t)

))
−Wn

(
f(t)s

)∣∣∣∣ ,

because according to the properties of the modulus of continuity for Brownian motion, this
is of order O(n−1/6 log n). However, Lemma 5.7 follows from the next lemma that ensures
that the two concave majorants at zero are sufficiently close. We only need this lemma for
continuous g, but with a little more effort a similar result can be obtained for non-continuous g.

Lemma 5.6 Let g be a continuous function on an interval B ⊂ IR. Let 0 ∈ B◦ and let
φ : IR → IR be invertible with φ(0) = 0. Let supB g < ∞ and suppose there exists an
α ∈ [0, 1/2] such that

1− α ≤ φ(t)
t

≤ 1 + α, (5.29)

for all t ∈ B\{0}. Then
∣∣∣∣
[
CMφ−1(B)(g ◦ φ)

]
(0)− [CMBg] (0)

∣∣∣∣ ≤ 4α

{
sup
B

g − [CMBg] (0)
}

.

Proof: Consider the function h(t) = g(t) − supB g. For a < b, let [a, b] ⊂ B be an interval
containing zero. Then with property (5.29), t and φ(t) have the same sign. Hence, φ−1(a) <
φ−1(b) and 0 ∈ [φ−1(a), φ−1(b)]. This yields the following inequality

1 + α

1− α
· h(a)b− h(b)a

b− a
≤ h(a)φ−1(b)− h(b)φ−1(a)

φ−1(b)− φ−1(a)
≤ 1− α

1 + α
· h(a)b− h(b)a

b− a
. (5.30)

First assume that both CMBh and CMφ−1(B)(h ◦ φ) have non-empty segments containing
zero. Let [τ1, τ2] ⊂ B, with τ1 < τ2, be the segment of CMBh that contains zero. Similarly,
let [ξ1, ξ2] ⊂ φ−1(B) be the segment of CMφ−1(B)(h ◦ φ) that contains zero, with ξ1 < ξ2.
Denote ti = φ−1(τi) and xi = φ(ξi), for i = 1, 2, so that t1 < t2 and x1 < x2. Consider the
line between (x1, h(x1)) and (x2, h(x2)). Since [x1, x2] ⊂ B, the intercept at zero of this line
must be below [CMBh](0):

h(x1)x2 − h(x2)x1

x2 − x1
≤ [CMBh](0) =

h(τ1)τ2 − h(τ2)τ1

τ2 − τ1
. (5.31)
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Similarly, consider the line between
(
t1, (h◦φ)(t1)

)
and

(
t2, (h◦φ)(t2)

)
. Since [t1, t2] ⊂ φ−1(B),

the intercept at zero of this line must be below [CMφ−1(B)(h ◦ φ)](0):

(h ◦ φ)(t1)t2 − (h ◦ φ)(t2)t1
t2 − t1

≤ [CMφ−1(B)(h ◦ φ)](0) =
(h ◦ φ)(ξ1)ξ2 − (h ◦ φ)(ξ2)ξ1

ξ2 − ξ1
,

or equivalently,

h(τ1)φ−1(τ2)− h(τ2)φ−1(τ1)
φ−1(τ2)− φ−1(τ1)

≤ [CMφ−1(B)(h ◦ φ)](0) =
h(x1)φ−1(x2)− h(x2)φ−1(x1)

φ−1(x2)− φ−1(x1)
.

Together with (5.31) and (5.30), this implies that

1 + α

1− α
[CMBh](0) ≤ h(τ1)φ−1(τ2)− h(τ2)φ−1(τ1)

φ−1(τ2)− φ−1(τ1)
≤ [CMφ−1(B)(h ◦ φ)](0)

≤ 1− α

1 + α
· h(x1)x2 − h(x2)x1

x2 − x1
≤ 1− α

1 + α
[CMBh](0).

Now use that (1 − α)/(1 + α) ≥ 1 − 4α and (1 + α)/(1 − α) ≤ 1 + 4α, for α ∈ [0, 1/2] and
apply property 2 of Lemma 5.2 to the function g(t) = h(t) + supB g. This finishes the proof
for the case that both CMBh and CMφ−1(B)(h◦φ) have non-empty segments containing zero.

If this is not the case, for ε > 0 sufficiently small, such that [−ε, ε] ⊂ B, define

gε(t) =





g(t) if t ∈ B \ [−ε, ε]
g(0) + (g(0)− g(−ε))t/ε if t ∈ [−ε, 0]
g(0) + (g(ε)− g(0))φ−1(t)/φ−1(ε) if t ∈ [0, ε].

Then gε is continuous and linear on [−ε, 0] and the function gε ◦φ is linear on [0, φ−1(ε)]. This
implies that for the corresponding function hε = gε−supB gε, both CMBh and CMφ−1(B)(h◦φ)
have non-empty segments containing zero. Next, let δ > 0 arbitrary and choose ε > 0
sufficiently small such that sup |gε − g| ≤ δ. Then, again by property 2 of Lemma 5.2 and by
(5.29), it follows that |[CMBg] (0)− [CMBgε] (0)| ≤ supt∈[−ε,ε] |g(t)− gε(t)| ≤ δ, and similarly
∣∣[CMφ−1(B)(g ◦ φ)

]
(0)− [

CMφ−1(B)(gε ◦ φ)
]
(0)

∣∣ ≤ sup
t∈[φ−1(−ε),φ−1(ε)]

|(g ◦ φ)(t)− (gε ◦ φ)(t)|

= sup
t∈[−ε,ε]

|g(t)− gε(t)| ≤ δ,

where δ > 0 can be chosen arbitrarily small.

Lemma 5.7 Suppose that f satisfies conditions (A1)-(A3). Let t ∈ (0, 1) and let ζ be defined
as in (2.3). Let AE

n (t) = An(t) and AW
n (t) be defined in (2.1) and (2.8). Then for all k ≥ 1,

and for J = E,W ,

EAJ
n(t)k =

(
2f(t)2

|f ′(t)|
)k/3

Eζ(0)k + o(n−1/6),

uniformly in t ∈ (n−1/3 log n, 1− n−1/3 log n), and

EAJ
n(t)k ≤

(
2f(t)2

|f ′(t)|
)k/3

Eζ(0)k + o(n−1/6),

uniformly in t ∈ (0, 1).
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Proof: For t ∈ (0, 1) fixed let Ynt be defined as in (5.20) and let

Znt(s) = Wn(f(t)s) +
1
2
f ′(t)s2. (5.32)

Let ant = max(0, t − n−1/3 log n) and bnt = min(1, t + n−1/3 log n). Define the interval
Jnt =

[
n1/3 (F (ant)− F (t)) /f(t), n1/3 (F (bnt)− F (t)) /f(t)

]
and the mapping

φnt(s) =
n1/3

(
F (t + n−1/3s)− F (t)

)

f(t)
.

Then Hnt = φ−1
nt (Jnt) = [n1/3(ant − t), n1/3(bnt − t)], and there exists a constant C1 > 0

only depending on f , such that for all s ∈ Hnt, we have 1 − αn ≤ φnt(s)/s ≤ 1 + αn, where
αn = C1n

−1/3 log n. By definition of Znt and Ynt,

(Znt ◦ φnt)(s) = Ynt(s) +
1
2
f ′(t)s2

(
φnt(s)2

s2
− 1

)
.

Since Hnt ⊂ [− log n, log n], according to property 2 of Lemma 5.2, there exists constant
C2 > 0 only depending on f , such that

∣∣[DHntYnt](0)− [DHnt(Znt ◦ φnt)](0)
∣∣ ≤ C2n

−1/3(log n)3. (5.33)

Now apply Lemma 5.6 with g = Znt, φ = φnt, α = αn and B = Jnt. This yields that
∣∣[DHnt(Znt ◦ φnt)](0)− [DJntZnt](0)

∣∣ ≤ 8αn sup
s∈IR

|Znt(s)|.

Together with (5.33) we conclude that there exists a constant C > 0 only depending on f ,
such that

|[DHntYnt](0)− [DJntZnt](0)| ≤ Cn−1/3 log n

(
(log n)2 + sup

s∈IR
|Znt(s)|

)
. (5.34)

Similar to the proof of Lemma 5.5, this implies that

E[DHntYnt](0)k = E[DJntZnt](0)k + εnt, (5.35)

where |εnt| ≤ k
{
E|θnt|2k−2

}1/2 {
E|∆nt|2

}1/2, with ∆nt = [DHntYnt](0) − [DJntZnt](0) and
|θnt − [DHntYnt](0)| ≤ |∆nt|. Note that with c1(t) and c2(t) as defined in (2.5), by Brownian
scaling one has

c1(t)Znt(c2(t)s)
d= Z(s). (5.36)

Since P{supt∈IR(W (t) − t2) > x} ≤ 4 exp(−x3/2/2) (see for instance Lemma 3.3 in Kulikov

and Lopuhaä (2003)), it follows that for all k ≥ 1,

E

(
sup
s∈IR

|Znt(s)|
)k

≤ CE

(
sup
s∈IR

|Z(s)|
)k

< ∞,

for a constant C > 0 only depending on f . From (5.34) we conclude that for all k ≥ 1

E|∆nt|k = O(n−k/3(log n)3k). (5.37)
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Similar to the proof of Lemma 5.5, using an inequality similar to (5.27) together with (5.37),
we find that εnt = O(n−1/3(log n)2k+1), so that from (5.35) we get

E[DHntYnt](0)k = E[DJntZnt](0)k +O(n−1/3(log n)2k+1).

Together with Lemma 5.5 and scaling property (5.36), we find that

EAJ
n(t)k = c1(t)−kE [DIRZ] (0)k + c1(t)−kE

(
[DIntZ] (0)k − [DIRZ] (0)k

)
+ o(n−1/6), (5.38)

where Int = c2(t)−1Jnt. First note that for any t ∈ (0, 1), on the interval Int, the concave
majorant CMIntZ always lies below CMIRZ. Because Int contains 0, this implies that

EAJ
n(t)k ≤ c1(t)−kE [DIRZ] (0)k + o(n−1/6),

uniformly for t ∈ (0, 1).
When t ∈ (n−1/3 log n, 1− n−1/3 log n), there exist an M > 0, only depending on f , such

that [−M log n,M log n] ⊂ Int. Note that on the interval [−M log n,M log n] we always have
CM[−M log n,M log n]Z ≤ CMIntZ ≤ CMIRZ. Write NnM = N(M log n), with N(d) as defined
in Lemma 5.3. On the event NnM , we have

[
CM[−M log n,M log n]Z

]
(0) = [CMIntZ] (0) =

[CMIRZ] (0). Hence
∣∣∣E

(
[DIntZ] (0)k − [DIRZ] (0)k

)∣∣∣ ≤ E
∣∣∣[DIntZ] (0)k − [DIRZ] (0)k

∣∣∣ 1Nc
nM

≤ 2k+1E

(
sup
s∈IR

|Z(s)|
)k

1Nc
nM

≤ 2k+1

{
E

(
sup
s∈IR

|Z(s)|
)2k

}1/2

{P (N c
nM )}1/2 .

Since E(sup |Z|)2k < ∞, it follows from Lemma 5.3 that E
(
[DIntZ] (0)k − [DIRZ] (0)k

)
=

o(n−1/6). Together with (5.38) and the fact that ζ = DIRZ this proves the lemma.

Lemma 5.8 Suppose that f satisfies conditions (A1)-(A3). Let AE
n = An and AW

n be defined
by (2.1) and (2.8). Then for all k ≥ 1, we have

∫ 1
0

∣∣AE
n (t)k −AW

n (t)k
∣∣ dt = op(n−1/6).

Proof: By Markov’s inequality is suffices to prove that E
∣∣AE

n (t)k −AW
n (t)k

∣∣ = o(n−1/6)
uniformly in t ∈ (0, 1). Let Int(d) and NJ

nt(d) be defined as in Lemma 5.4. Write Int =
Int(log n) and NJ

nt = NJ
nt(log n), and let Knt = NE

nt ∩NW
nt . Then according to (5.24):

E
∣∣∣AE

n (t)k −AW
n (t)k

∣∣∣ = n2k/3E
∣∣∣[DIntF

E
n ](t)k − [DIntF

W
n ](t)k

∣∣∣ 1Knt (5.39)

+E
∣∣∣AE

n (t)k −AW
n (t)k

∣∣∣ 1Kc
nt

.

We first bound the second expectation the right hand side of (5.39). We have that

E
∣∣∣AE

n (t)k −AW
n (t)k

∣∣∣ 1Kc
nt

≤ EAE
n (t)k1Kc

nt
+ EAW

n (t)k1Kc
nt

≤
{

EAE
n (t)2k

}1/2
{P (Kc

nt)}1/2 +
{

EAW
n (t)2k

}1/2
{P (Kc

nt)}1/2 ,

where, according to Lemma 5.4, P (Kc
nt) ≤ 16e−C(log n)3 uniformly in t ∈ (0, 1). Since from

Lemma 5.7 we know that EAJ
n(t)2k are bounded uniformly in n and t ∈ (0, 1), we conclude

that
E

∣∣∣AE
n (t)k −AW

n (t)k
∣∣∣ 1Kc

nt
= O(e−

1
2
C(log n)3), (5.40)
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uniformly in t ∈ (0, 1).
To bound the first expectation in (5.39), apply the mean value theorem to write

n2k/3
∣∣∣[DIntF

E
n ](t)k − [DIntF

W
n ](t)k

∣∣∣ 1Knt

≤ k|θnt|k−1n2/3
∣∣[DIntF

E
n ](t)− [DIntF

W
n ](t)

∣∣ 1Knt

≤ k
(
AE

n (t)k−1 + AW
n (t)k−1

)
n2/3

∣∣[DIntF
E
n ](t)− [DIntF

W
n ](t)

∣∣ . (5.41)

By Lemmas 5.1 and 5.2, n2/3
∣∣[DIntF

E
n ](t)− [DIntF

W
n ](t)

∣∣ ≤ |RE
nt(0)| + |RW

nt (0)|. Hence,
together with (5.41), the first expectation in (5.39) can be bounded by

k

{
E

(
AE

n (t)k−1 + AW
n (t)k−1

)2
}1/2 {

E
(|RE

nt(0)|+ |RW
nt (0)|)2

}1/2
,

From Lemma 5.7 together with (5.23), it follows that the first expectation is bounded uni-
formly for t ∈ (0, 1). According to Lemma 5.1, the second expectation is of the order
O(n−1/3(log n)3). Together with (5.40) this proves the lemma.

Lemma 5.9 Suppose that f satisfies conditions (A1)-(A3). The process {AW
n (t) : t ∈ [0, 1]}

is strong mixing process with mixing function

αn(d) = 12e−C1nd3
,

where C1 > 0 only depends on f . More specifically, for d > 0,

sup |P (A ∩B)− P (A)P (B)| ≤ αn(d),

where the supremum is taken over all sets A ∈ σ{AW
n (s) : 0 < s ≤ t} and B ∈ σ{AW

n (u) :
t + d ≤ u < 1}.
Proof: Let t ∈ (0, 1) arbitrary and take 0 < s1 ≤ s2 ≤ · · · ≤ sk = t < t + d = u1 ≤ u2 ≤
· · · ≤ ul < 1. Consider events

E1 =
{
AW

n (s1) ∈ B1, . . . , A
W
n (sk) ∈ Bk

}
,

E2 =
{
AW

n (u1) ∈ C1, . . . , A
W
n (ul) ∈ Cl

}
,

for Borel sets B1, . . . , Bk and C1, . . . , Cl of IR. Note that cylinder sets of the form E1 and E2

generate the σ-algebras σ{AW
n (s) : 0 < s ≤ t} and σ{AW

n (u) : t + d ≤ u < 1}, respectively.
Define the event

S =
{[

CM[0,1]F
W
n

]
(u) =

[
CM[0,t+d/2]F

W
n

]
(u) for any u ∈ [0, t]

and
[
CM[0,1]F

W
n

]
(u) =

[
CM[t+d/2,1]F

W
n

]
(u) for any u ∈ [t + d, 1]

}
.

Let E′
1 = E1 ∩ S and E′

2 = E2 ∩ S. Then by independency of the increments of the process
FW

n , the events E′
1 and E′

2 are independent. Therefore by means of Lemma 5.4

|P (E1 ∩ E2)− P (E1)P (E2)| ≤ 3P (Sc) ≤ 48e−Cd3n

for some constant C > 0 that only depends on f . This proves the lemma.
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From Lemmas 5.8 and 5.7 it follows immediately that for proving asymptotic normality
of n1/6

∫ 1
0

(
An(t)k − EAn(t)k

)
g(t) dt, it suffices to prove that its Brownian version

TW
n = n1/6

∫ 1

0

(
AW

n (t)k − EAW
n (t)k

)
g(t) dt, (5.42)

is asymptotically normal. The proof runs along the lines of the proof of Theorem 4.1 in
Groeneboom, Hooghiemstra and Lopuhaä (1999) and needs two lemmas that bound co-
variances by the mixing coefficient. The lemmas are analogous to Theorems 17.2.1 and 17.2.2
in Ibragimov and Linnik (1971) and can be proven similarly, since stationarity is not essential
in these theorems.

Lemma 5.10 If X is measurable with respect to {σ{AW
n (s) : 0 < s ≤ t} and Y is measurable

with respect to {σ{AW
n (u) : t + d ≤ u < 1} (d > 0), and if |X| ≤ C1 and |Y | ≤ C2 a.s., then

|E(XY )− E(X)E(Y )| ≤ 4C1C2αn(d).

Lemma 5.11 If X is measurable with respect to {σ{AW
n (s) : 0 < s ≤ t} and Y is measurable

with respect to {σ{AW
n (s) : t + d ≤ u < 1} (d > 0), and if for some δ > 0,

E|X|2+δ ≤ C3 and E|Y |2+δ ≤ C4,

then
|E(XY )− E(X)E(Y )| ≤ C5 (αn(d))δ/(2+δ) ,

where C5 > 0 only depends on C3 and C4.

We first derive the asymptotic variance of TW
n . To this end we introduce the Brownian

version of the process ζnt defined in (2.4). For t ∈ (0, 1) fixed and t + c2(t)sn−1/3 ∈ (0, 1),

ζW
nt (s) = c1(t)AW

n (t + c2(t)sn−1/3), (5.43)

where AW
n is defined in (2.8) and c1(t) and c2(t) are defined in (2.5). From the fact that

ζnt converges to ζ in distribution (see Theorem 4.1 in Kulikov and Lopuhaä (2003)) and
Lemma 5.8, it follows immediately that the process

{ζW
nt (s) : s ∈ IR} → {ζ(s) : s ∈ IR} in distribution. (5.44)

Furthermore, note that Lemma 5.7 implies that for every m = 1, 2, . . . there exists a constant
M > 0 such that EAW

n (t)km < M , uniformly in n = 1, 2 . . . and t ∈ (0, 1). Hence it follows
from Markov’s inequality, that for all m = 1, 2, . . . there exists a constant M ′ > 0

P{|ζW
nt (s)|k > y} ≤ M ′

ym
,

uniformly in n = 1, 2 . . ., t ∈ (0, 1) and t + c2(t)sn−1/3 ∈ (0, 1). This guarantees uniform
integrability of the sequence ζW

nt (s)k for s, t and k fixed, so that together with (5.44) it implies
convergence of moments of (ζW

nt (0)k, ζW
nt (s)k) to the corresponding moments of (ζ(0)k, ζ(s)k).

This leads to the following lemma.
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Lemma 5.12 Suppose that f satisfies conditions (A1)-(A3). Then for any function g that
is continuous on [0, 1], and any k ≥ 1,

var
(

n1/6

∫ 1

0
AW

n (t)kg(t)dx

)
→

∫ 1

0

2(2k+5)/3f(t)(4k+1)/3

|f ′(t)|(2k+2)/3
g(t)2 dt

∫ ∞

0
cov(ζ(0)k, ζ(s)k) ds.

Proof: We have with ζW
nt as defined in (5.43),

var
(

n1/6

∫ 1

0
AW

n (t)kg(t)dx

)

= 2n1/3

∫ 1

0

∫ 1

u
cov

(
AW

n (t)k, AW
n (u)k

)
g(t)g(u) dt du

= 2
∫ 1

0

c2(t)
c1(t)2k

∫ n1/3(1−t)/c2(t)

0
cov(ζW

nt (0)k, ζW
nt (s)k)g(t)g(t + c2(t)sn−1/3) dt ds,

by change of variables of integration u = t + c2(t)sn−1/3. As noted above for s and t fixed,

cov(ζW
nt (0)k, ζW

nt (s)k) → cov(ζ(0)k, ζ(s)k).

Lemma 5.7 implies that uniformly in n = 1, 2, . . ., s and t, we have E|ζW
nt (0)|3k ≤ C3 and

E|ζW
nt (s)|3k ≤ C4. Hence by Lemma 5.11, it follows that

cov(ζW
nt (0)k, ζW

nt (s)k) ≤ C5αn

(
n−1/3c2(t)s

)1/3
≤ D1 exp(−D2|s|3),

where D1, D2 > 0 do not depend on n, s and t. Substituting c1(t), c2(t) as defined in (2.5),
and using that g is uniformly bounded on [0, 1], it follows by dominated convergence that

var
(

n1/6

∫ 1

0
AW

n (t)kg(t)dx

)
→

∫ 1

0

2(2k+5)/3f(t)(4k+1)/3

|f ′(t)|(2k+2)/3
g(t)2 dt

∫ ∞

0
cov(ζ(0)k, ζ(s)k ds.

Proof of Theorem 2.1: It suffices to prove the statement for TW
n as defined in (5.42).

Define
Xn(t)

def
=

(
AW

n (t)k − EAW
n (t)k

)
g(t).

Let

Ln = n−1/3(log n)3, Mn = n−1/3 log n, Nn =
[

1
Ln + Mn

]
,

where [x] denotes the integer part of x. We divide interval [0, 1] into blocks of alternating
length

Aj = [(j − 1)(Ln + Mn), (j − 1)(Ln + Mn) + Ln],
Bj = [(j − 1)(Ln + Mn) + Ln, j(Ln + Mn)],

where 1 ≤ j ≤ Nn. Now write TW
n = S

′
n + S

′′
n + Rn, where

S
′
n = n1/6

Nn∑

j=1

∫

Aj

Xn(t) dt,

S
′′
n = n1/6

Nn∑

j=1

∫

Bj

Xn(t) dt,

Rn = n1/6

∫ 1

Nn(Ln+Mn)
Xn(t) dt.
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According to Lemma 5.7 and the Cauchy-Schwarz inequality, for all s, t ∈ (0, 1),

E|Xn(s)Xn(t)| ≤ C, (5.45)

where C is uniform with respect to s, t and n. Together with a fact that length of the interval
of integration for Rn is O(n−1/3(log n)3) this shows E|Rn| → 0 and hence Rn = op(1).

Next we show that contribution of integrals over small blocks is negligible. To this end
consider

E(S
′′
n)2 = n1/3

Nn∑

j=1

E

(∫

Bj

Xn(t) dt

)2

+ n1/3
∑

i6=j

∫

Bi

∫

Bj

EXn(s)Xn(t) ds dt.

We have that

|EXn(s)Xn(t)| = |g(s)g(t)||cov(AW
n (s)k, AW

n (t)k)| ≤ D1e
−D2n|s−t|3 ,

where D1, D2 > 0 do not depend s, t and n, using the fact that g in uniformly bounded on [0, 1]
together with Lemma 5.11. Moreover, for s ∈ Bi and t ∈ Bj , we have |s− t| ≥ n−1/3(log n)3.
Since Nn = O(n1/3/(log n)3) this implies that

∣∣∣∣∣∣
n1/3

∑

i6=j

∫

Bi

∫

Bj

EXn(s)Xn(t) ds dt

∣∣∣∣∣∣
≤ n1/3N2

nM2
nD1e

−D2(log n)9 → 0.

Hence, using (5.45) we obtain

E(S
′′
n)2 = O(n1/3NnM2

n) + o(1) → 0,

so that the contribution of the small blocks is negligible.
Define

Yj = n1/6

∫

Aj

Xn(t) dt and σ2
n = var




Nn∑

j=1

Yj


 ,

so that S
′
n =

∑Nn
j=1 Yj and σ2

n = var(S
′
n). We have

∣∣∣∣∣∣
E exp





iu

σn

Nn∑

j=1

Yj



−

Nn∏

j=1

E exp
{

iu

σn
Yj

}∣∣∣∣∣∣

≤
Nn∑

k=2

∣∣∣∣∣∣
E exp





iu

σn

k∑

j=1

Yj



− E exp





iu

σn

k−1∑

j=1

Yj



E exp

{
iu

σn
Yk

}∣∣∣∣∣∣
≤ 4(Nn − 1)αn(Mn),

where the last inequality follows from Lemma 5.10. Observe that (Nn − 1)αn(Mn) → 0,
which means that we can apply the Central Limit Theorem to independent copies of Yj .
Asymptotic normality of S′n follows if we can show that the independent copies of the Yj ’s
satisfy the Lindeberg condition, i.e., for all ε > 0,

1
σ2

n

Nn∑

j=1

EY 2
j 1{|Yj |>εσn} → 0,
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as n →∞. Note that by the Markov inequality EY 2
j 1{|Yj |>εσn} ≤ E|Yj |3/(εσn). Again using

the Cauchy-Schwarz inequality and uniform boundedness of the moments of |Xn(t)| we obtain

sup
1≤j≤Nn

E|Yj |3 = n1/2O(|Aj |3) = O(n−1/2(log n)9).

Hence
1
σ2

n

Nn∑

j=1

EY 2
j 1|Yj |>εσn

≤ 1
εσ3

n

Nn sup
1≤j≤Nn

E|Yj |3 = O(σ−3
n n−1/6(log n)6).

Note that
σ2

n = var(S
′
n) = var

(
TW

n

)
+ var(S

′′
n + Rn)− 2ETW

n (S
′′
n + Rn).

Using the already obtained results E(S
′′
n)2 = o(1) and ER2

n = o(1), together with the Cauchy-
Schwarz inequality, we conclude that

var(S
′′
n + Rn) = E(S

′′
n)2 + ER2

n + 2E(S
′′
nRn) → 0,

and that according to the Lemma 5.12

ETW
n (S

′′
n + Rn) ≤

√
E (TW

n )2 var(S′′n + Rn) → 0.

So we find that σ2
n = var(S

′
n) = σ2 + o(1), which implies

1
σ2

n

Nn∑

j=1

EY 2
j 1{|Yj |>εσn} = o(n−1/6(log n)6) → 0.

Proof of Theorem 3.1: Let Gn be the empirical distribution function of the Ui’s and let
Ĝn be its least concave majorant on [0, 1]. Then Fn(t) = Gn(F (t)) for all t ∈ [0, 1]. When f
is non-increasing, then F is concave, so that Ĝn(F (t)) is also concave. Moreover, Ĝn(F (t))
lies above Gn(F (t)) = Fn(t). Since F̂n(t) is the least concave function on [0,1] that lies above
Fn, it follows that F̂n(t) ≤ Ĝn(F (t)). We find that for all t ∈ [0, 1],

F̂n(t)− Fn(t) ≤ Ĝn(F (t))−Gn(F (t)). (5.46)

It follows that Sn(X1, X2, . . . , Xn) ≤ Sn(U1, U2, . . . , Un). When f = 1, then F (t) = t, so that
according to property 2 of Lemma 5.2,

n1/2(F̂n(t)− Fn(t)) = n1/2
(
F̂n(t)− t

)− (
Fn(t)− t

)
= [D[0,1]En](t), (5.47)

where En(t) is the uniform empirical process. Since the mapping h 7→ supt∈[0,1][D[0,1]h](t)
is continuous, it follows that Sn converges in distribution to supt∈[0,1][D[0,1]B](t), where B
denotes Brownian bridge. Because B(t) has the same distribution as W (t) − tW (1) and,
according to property 2 of Lemma 5.2, D[0,1] is invariant under addition of linear functions,
this proves Theorem 3.1.

Proof of Theorem 3.2: Using Fn(t) = Gn(F (t)) and (5.46), we find
∫ 1

0

(
F̂n(t)− Fn(t)

)
dFn(t) ≤

∫ 1

0

(
Ĝn(F (t))−Gn(F (t))

)
dGn(F (t))

=
∫ 1

0
[D[0,1]Gn](t) dGn(t),
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which means that Rn(X1, X2, . . . , Xn) ≤ Rn(U1, U2, . . . , Un). When f = 1, then similar to the
proof of Theorem 3.1, using that the mapping h 7→ ∫ 1

0 [D[0,1]h](t) dt is continuous, it follows
that

nk/2

∫ 1

0

(
F̂n(t)− Fn(t)

)k
dt →

∫ 1

0

(
Ŵ (t)−W (t)

)k
dt.

To prove the same for Rn, it suffices to show

nk/2

∫ 1

0
(F̂n(t)− Fn(t))kd(Fn(t)− F (t)) = op(1).

To this end, let Gn be the class of functions (F1 − F2)k, where F1 ≥ F2 are distribution
functions satisfying sup |F1 − F2| ≤ n−1/2 log n. According to Theorem 3.1, we have that
(F̂n − Fn)k is in Gn with probability tending to one. Therefore, we can restrict ourself to
proving

sup
h∈Gn

∫ 1

0
h(t) d(Fn(t)− F (t)) = op(n−k/2). (5.48)

First, note that the total variation of (F1 − F2)k in Gn is

V = TV((F1 − F2)k) ≤ k sup(F1 − F2)k−1TV(F1 − F2) ≤ 2kn−(k−1)/2(log n)k−1.

Therefore, (F1 − F2)k in Gn is of bounded variation and may be represented as a difference
of two monotone functions, both bounded by V . Hence, if F denotes this class, then Gn ⊆
{f1−f2; f1, f2 ∈ F}. This implies that the entropy with bracketing HB(δ,Gn, P ) with respect
to L2(P )-norm is bounded as

HB(δ,Gn, P ) ≤ 2HB(δ/(2V ),F , P ) ≤ Dn−(k−1)/2(log n)k−1/δ, (5.49)

where the constant D > 0 does not depend on δ > 0 and P . Next, we will apply Theorem
5.11 in van de Geer (2000). Application of this theorem involves a suitable bound on the
generalized entropy with bracketing HB,K(δ,Gn, P ) with respect to ρK , defined by

ρ2
K(g) = 2K2

∫ (
e|g|/K − 1− |g|/K

)2
dP

(see Definition 5.1 in van de Geer (2000)). With K = 4n−k/2(log n)k, it follows from
Lemma 5.10 in van de Geer (2000) that

HB,K(δ,Gn, P ) ≤ HB(δ/
√

2,Gn, P ) ≤ 2Dn−(k−1)/2(log n)k−1/δ. (5.50)

Furthermore, it is easy to see that there exists a constant B > 0, such that for any g ∈ Gn,

ρK(g) ≤ BρL2(P )(g) ≤ Bn−k/2(log n)k.

Now, (5.48) follows from Theorem 5.11 in van de Geer (2000), with K = 4n−k/2(log n)k,
R = Bn−k/2(log n)k, a = C(BD)1/2n−(2k−1)/4(log n)(2k−1)/2, C1 = 1, and C0 = C

√
2, where

C is a universal constant.

Proof of Theorem 3.3: First note that for γ = (k + 1)/3,
∣∣∣∣
∫ 1

0
An(t)k

(
|f̂ ′n(t)|γ − |f ′(t)|γ

)
dt

∣∣∣∣ ≤ γ sup
t∈[0,1]

|ξt|γ−1

∫ 1

0
An(t)k|f̂ ′n(t)− f ′(t)| dt, (5.51)
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where ξt is between |f̂ ′n(t)| and |f ′(t)|. Since both sup |f̂ ′n| = Op(1) and 1/ inf |f̂ ′n| = Op(1), it
follows that sup |ξt|γ−1 = Op(1) for any γ. By application of Hölders inequality, the integral
on the right hand side is bounded by

(∫ 1

0
An(t)pk dt

)1/p (∫ 1

0
|f̂ ′n(t)− f ′(t)|q dt

)1/q

,

where p ≥ 1, is chosen such that 1/p + 1/q = 1. According to Lemma 5.7 the first integral is
of the order Op(1), and according to condition (ii), the second term is of the order op(n−1/6).
Next, consider

∣∣∣∣
∫ 1

0
f̂n(t)2k/3|f̂ ′n(t)|1/3 dt−

∫ 1

0
f(t)2k/3|f ′(t)|1/3 dt

∣∣∣∣

≤
∫ 1

0
f̂n(t)2k/3

∣∣∣|f̂ ′n(t)|1/3 − |f ′(t)|1/3
∣∣∣ dt +

∫ 1

0
|f ′(t)|1/3

∣∣∣f̂n(t)2k/3 − f(t)2k/3
∣∣∣ dt

≤ sup(f̂n)2k/3

∫ 1

0

∣∣∣|f̂ ′n(t)|1/3 − |f ′(t)|1/3
∣∣∣ dt + sup |f ′|1/3

∫ 1

0

∣∣∣f̂n(t)2k/3 − f(t)2k/3
∣∣∣ dt

Conditions (A1)-(A3) imply that sup |f ′| is bounded and sup |f̂n| = Op(1). The two integrals
can be treated in the same way as in (5.51). It follows that µn − µ = op(n−1/6). Finally,
σn − σ = op(n−1/6) can be shown similarly. This proves the theorem.

Lemma 5.13 Let f and K satisfy (A1)-(A3) and (K1)-(K3). Suppose that h = O(n−1/5),
then for i = 0, 1,

(i) supt∈[0,1] |f̂ (i)
n,h(t)| = Op(1) and 1/ inft∈[0,1] |f̂ (i)

n,h(t)| = Op(1),

(ii) for any 1 ≤ q < 6/5,
∫ 1
0 |f̂

(i)
n (t)− f (i)(t)|q dt = op(n−q/6).

Proof: Following the proof of Prakasa Rao (1983) page 38, we have that

sup
t∈[0,1]

|f̂n,h(t)− Ef̂n,h(t)| ≤ 1
h

sup
y∈[0,1]

|Fn(y)− F (y)|TV(K),

where TV(K) denotes the total variation of K. Note that since K is differentiable, it is of
bounded variation, so that TV(K) < ∞. This implies that the above supremum is of the
order Op(h−1n−1/2) = Op(n−3/10). Similarly,

sup
t∈[0,1]

|f̂ ′n,h(t)−Ef̂ ′n,h(t)| ≤ 1
h2

sup
y∈[0,1]

|Fn(y)− F (y)|TV(K ′) = Op(h−2n−1/2) = Op(n−1/10).

Next, we use that

Ef̂n,h(t) =
∫ 1

−1
K(u)f(t− hu) du (5.52)

and

Ef̂ ′n,h(t) =
∫ 1

−1
K(u)f ′(t− hu) du. (5.53)
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Then, it follows for i = 0, 1, that

sup
t∈[0,1]

|f̂ (i)
n,h(t)| ≤ sup

t∈[0,1]
|f̂ (i)

n,h(t)− Ef̂
(i)
n,h(t)|+ sup

t∈[0,1]
|Ef̂

(i)
n,h(t)|

≤ Op(n−1/10) + sup
t∈[0,1]

|f (i)(t)| = Op(1).

The infimum can treated similarly, using that

inf
t∈[0,1]

|f̂ (i)
n,h(t)| ≥ inf

t∈[0,1]
|Ef̂

(i)
n,h(t)| − sup

t∈[0,1]
|f̂ (i)

n,h(t)− Ef̂
(i)
n,h(t)|

≥ 1
2

inf
t∈[0,1]

|f (i)(t)| − sup
t∈[0,1]

|f̂ (i)
n,h(t)−Ef̂

(i)
n,h(t)|.

This proves (i).
For (ii), use the triangle inequality for the Lq-norm ‖ · ‖q:

‖f̂ (i)
n,h − f (i)‖q ≤ ‖f̂ (i)

n,h −Ef̂
(i)
n,h‖q + ‖Ef̂

(i)
n,h − f (i)‖q. (5.54)

For the second term, we can write

(
‖Ef̂

(i)
n,h − f (i)‖q

)q
=

∫ 1

0
|Ef̂

(i)
n,h(t)− f (i)(t)|q dt.

This integral can be decomposed into three integrals over the intervals [0, h), [h, 1 − h], and
(1− h, 1]. According to conditions (A1)-(A3), (5.52), and (5.53), the integrals over [0, h) and
(1− h, 1] are of order O(h), and for h ≤ t ≤ 1− h, we use that

Ef̂n,h(t) =
∫ 1

−1
K(u)f(t− hu) du = f(t) +

h2

2

∫ 1

−1
f ′′(ξt,u)u2K(u) du (5.55)

and

Ef̂ ′n,h(t) =
∫ 1

−1
K(u)f ′(t− hu) du = f ′(t)− h

∫ 1

−1
f ′′(ξt,u)uK(u) du. (5.56)

This implies that also ∫ 1−h

h
|Ef̂

(i)
n,h(t)− f (i)(t)|q dt = O(h).

It follows that for i = 0, 1,

‖Ef̂
(i)
n,h − f (i)‖q = O(h1/q) = o(n−1/6).

To bound the first term in (5.54), write

(
‖f̂ (i)

n,h − Ef̂
(i)
n,h‖q

)q
=

∫ 1

0
|f̂ (i)

n,h(t)− Ef̂
(i)
n,h(t)|q dt.

Again we can decompose the integral into three integrals over the intervals [0, h), [h, 1 − h],
and (1− h, 1]. On [0, h) and (1− h, 1] we bound

|f̂ (i)
n,h(t)−Ef̂

(i)
n,h(t)| ≤ sup

t∈[0,1]
|f̂ (i)

n,h(t)−Ef̂
(i)
n,h(t)| = Op(n−1/10).
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This implies that the integrals over [0, h) and (1 − h, 1] are of the order Op(hn−q/10) =
O(n−(q+2)/10). For the integral over [h, 1− h], we write

∫ 1−h

h
|f̂ (i)

n,h(t)−Ef̂
(i)
n,h(t)|q dt ≤

(∫ 1−h

h

(
f̂

(i)
n,h(t)− Ef̂

(i)
n,h(t)

)2
dt

)q/2

.

Now, also use that

varf̂n,h(t) ≤ 1
nh

∫ 1

−1
K(u)2f(t− hu) du (5.57)

and that

varf̂ ′n,h(t) ≤ 1
nh3

∫ 1

−1
K ′(u)2f(t− hu) du. (5.58)

According to (5.57) and (5.55), we have that

E

∫ 1−h

h

(
f̂n,h(t)− Ef̂n,h(t)

)2
dt ≤ sup |f |

nh

∫ 1

−1
K(u)2 du = O(n−4/5).

Similarly, by means of (5.58) and (5.56),

E

∫ 1−h

h

(
f̂ ′n,h(t)−Ef̂ ′n,h(t)

)2
dt ≤ sup |f |

nh3

∫ 1

−1
K ′(u)2 du = O(n−2/5).

It follows that for i = 0, 1

∫ 1−h

h
|f̂ (i)

n,h(t)− Ef̂
(i)
n,h(t)|q dt ≤

(∫ 1−h

h
|f̂ (i)

n,h(t)−Ef̂
(i)
n,h(t)|2 dt

)q/2

= O(n−q/5).

It follows that

‖Ef̂
(i)
n,h − f (i)‖q =

(
Op(hn−q/10) +O(n−q/5)

)1/q
= op(n−1/6),

which proves (ii).

For boundary kernels we prove the following lemma. Both properties imply the two
conditions of Theorem 3.3.

Lemma 5.14 Let f and K satisfy (A1)-(A3) and (K1)-(K3). Suppose that h ↓ 0 such that
nh4 →∞, then for i = 0, 1,

(i) supt∈[0,1] |f̂ (i)
B,n,h(t)− f (i)(t)| = op(1).

(ii)
∫ 1
0 (f̂ (i)

B,n,h(t)− f (i)(t))2 dt = op(n−1/3).

Proof: For the boundary kernel estimator f̂B,n,h we can use the same Taylor expansion
(5.52), when h ≤ t ≤ 1− h. For 0 ≤ t = αh < h, we have

Ef̂B,n,h(t) =
∫ α

−1
KL

α (u)f(t− hu) du = f(t) +
h2

2

∫ α

−1
f ′′(ξt,u)u2KL

α (u) du,
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and for 1− h < t = 1− βh ≤ 1, we have

Ef̂B,n,h(t) =
∫ 1

−β
KR

β (u)f(t− hu) du = f(t) +
h2

2

∫ 1

−β
f ′′(ξt,u)u2KR

β (u) du.

Hence, incorporating the definition of Kt given in (3.16), this means that for every t ∈ [0, 1],

Ef̂B,n,h(t) = f(t) +
h2

2

∫ 1

−1
f ′′(ξt,u)u2Kt(u) du. (5.59)

For the boundary kernel estimator of the derivative

f̂ ′B,n,h(t) =
1
h2

∫
K ′

t

(
t− x

h

)
dFn(x)− 1

h
Kt

(
t

h

)
f̂B,n,h(0)− 1

h
Kt

(
t− 1

h

)
f̂B,n,h(1),

we use the Taylor expansion (5.53), when h ≤ t ≤ 1− h. Note that in that case Kt = K, and
that Kt(t/h) and Kt((1− t)/h) are both zero. For 0 ≤ t = αh < h ≤ 1/2,

K ′
t

(
t− 1

h

)
= 0

1
h

Kt

(
t

h

)
Ef̂B,n,h(0) =

1
h

KL
α (α)f(0) +

h

2
KL

α (α)
∫ 0

−1
f ′′(ξ0,u)u2KL

0 (u) du

and

1
h2

E

∫
K ′

t

(
t− x

h

)
dFn(x) =

1
h

∫ α

−1
K ′

t(u)f(t− hu) du

=
[

1
h

KL
α (u)f(t− hu)

]α

−1

+
∫ α

−1
Kt(u)f ′(t− hu) du

=
1
h

KL
α (α)f(0) + f ′(t)− h

∫ α

−1
f ′′(ξt,u)uKt(u) du.

It follows that for 0 ≤ t = αh < h ≤ 1/2,

Ef̂ ′B,n,h(t) = f ′(t) +
h

2
KL

α (α)
∫ 0

−1
f ′′(ξ0,u)u2KL

0 (u) du− h

∫ α

−1
f ′′(ξt,u)uKt(u) du,

where |ξ0,u| ≤ hu and |ξt,u − t| ≤ hu. For 1/2 ≤ 1− h < t = 1− βh ≤ 1,

K ′
t

(
t

h

)
= 0

1
h

Kt

(
t− 1

h

)
Ef̂B,n,h(1) =

1
h

KR
β (−β)f(1) +

h

2
KR

β (−β)
∫ 1

0
f ′′(ξ1,u)u2KR

0 (u) du

and

1
h2

E

∫
K ′

t

(
t− x

h

)
dFn(x) =

1
h

∫ 1

−β
K ′

t(u)f(t− hu) du

=
[

1
h

KR
β (u)f(t− hu)

]1

−β

+
∫ 1

−β
Kt(u)f ′(t− hu) du

=
1
h

KR
β (−β)f(1) + f ′(t)− h

∫ 1

−β
f ′′(ξt,u)uKt(u) du.
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It follows that for 1/2 ≤ 1− h < t = 1− βh ≤ 1,

Ef̂ ′B,n,h(t) = f ′(t) +
h

2
KR

β (−β)
∫ 1

0
f ′′(ξ1,u)u2KR

0 (u) du− h

∫ 1

−β
f ′′(ξt,u)uKt(u) du,

where |ξ1,u| ≤ hu and |ξt,u − t| ≤ hu. Putting this together, we obtain for every t ∈ [0, 1],

Ef̂ ′B,n,h(t) = f ′(t)− h

∫ 1

−1
f ′′(ξt,u)uKt(u) du (5.60)

+
h

2
Kt

(
t

h

) ∫ 1

−1
f ′′(ξ0,u)u2K0(u) du

+
h

2
Kt

(
t− 1

h

)∫ 1

−1
f ′′(ξ1,u)u2K1(u) du.

Furthermore, there exist constants A, B > 0 not depending on t, such that

|Kt(u)| ≤ (A + B|u|)K(u). (5.61)

We proceed as in the proof of Lemma 5.13. First note that

|Kt(x)−Kt(y)| = c1,t|K(x)−K(y)|+ c2,t|xK(x)− yK(y)|
≤ C1|K(x)−K(y)|+ C2|xK(x)− yK(y)|,

for some C1 > 0 and C2 > 0 that do not depend on t. Hence, if L(u) = uK(u) then

sup
t∈[0,1]

TV(Kt) ≤ C1TV(K) + C2TV(L).

Because L′(u) = uK ′(u) + K(u), it follows that L is of bounded variation. This means that

sup
t∈[0,1]

|f̂B,n,h(t)− Ef̂B,n,h(t)| ≤ 1
h

sup
y∈[0,1]

|Fn(y)− F (y)| sup
t∈[0,1]

TV(Kt) = O(n−1/2h−1).

On the other hand according to (5.59),

sup
t∈[0,1]

|Ef̂B,n,h(t)− f(t)| ≤ 1
2
h2 sup |f ′′| sup

t∈[0,1]

∫ 1

−1
u2Kt(u) du = O(h2).

This proves (i) for i = 0. Similarly, for the estimator of the derivative first note that

|K ′
t(x)−K ′

t(y)| ≤ C1|K ′(x)−K ′(y)|+ C2|xK ′(x)− yK ′(y)|+ C2|K(x)−K(y)|,
so that if M(u) = uK ′(u), then

sup
t∈[0,1]

TV(K ′
t) ≤ C1TV(K ′) + C2TV(M) + C2TV(K).

This implies that

sup
t∈[0,1]

|f̂ ′B,n,h(t)−Ef̂ ′B,n,h(t)|

≤ 1
h2

sup
y∈[0,1]

|Fn(y)− F (y)|
(

sup
t∈[0,1]

TV(K ′
t) + sup

t,u∈[0,1]
|K ′

t(u)| sup
t∈[0,1]

TV(Kt)

)

= Op(n−1/2h−2).
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With (5.60),
sup

t∈[0,1]
|Ef̂ ′B,n,h(t)− f ′(t)| ≤ C3h,

for some C3 > 0. This proves (i) for i = 1.
For (ii) we also need that

varf̂B,n,h(t) ≤ C1

nh
, (5.62)

for some C1 > 0 only depending on K and f . For the derivative we can write

f̂ ′B,n,h(t) =
1
h2

∫
K ′

t

(
t− x

h

)
dFn(x)− 1

h
Kt

(
t

h

)
f̂B,n,h(0)− 1

h
Kt

(
t− 1

h

)
f̂B,n,h(1)

=
1
h2

∫
Lt

(
t− x

h

)
dFn(x),

where

Lt(u) = K ′
t(u)−K ′

t

(
t

h

)
K0

(
u− t

h

)
−K ′

t

(
t− 1

h

)
K1

(
u +

1− t

h

)
.

This means that

varf̂ ′B,n,h(t) ≤ 1
nh3

∫ 1

−1
Lt(u)2f(t− hu) du ≤ C2

nh3
, (5.63)

for some C2 > 0 only depending on K and f . According to (5.62) and (5.59), we have that

E

∫ 1

0

(
f̂B,n,h(t)− f(t)

)2
dt ≤ C1

nh
+

sup |f ′′|2
4

h4

(∫ 1

−1
u2Kt(u) du

)2

= O(n−4/5),

which proves (i) for i = 0. Similarly, by means of (5.63) and (5.60),

E

∫ 1

0

(
f̂ ′B,n,h(t)− f ′(t)

)2
dt ≤ C2

nh3
+ C3h

2 = O(n−2/5),

which proves (ii) for i = 1.
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