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1 Introduction

Let f be a non-increasing density with compact support. Without loss of generality, assume
this to be the interval [0, 1]. The non-parametric maximum likelihood estimator f̂n for f
has been discovered by Grenander (1956). It is defined as the left derivative of the least
concave majorant (LCM) of the empirical distribution function Fn constructed from a sample
X1, . . . , Xn from f . Prakasa Rao (1969) obtained the earliest result on the asymptotic
pointwise behavior of the Grenander estimator. One immediately striking feature of this
result is that the rate of convergence is of the same order as the rate of convergence of
histogram estimators, and that the asymptotic distribution is not normal. It took much
longer to develop distributional theory for global measures of performance for this estimator.
The first distributional result for a global measure of deviation was the convergence to a
normal distribution of the L1-error mentioned in Groeneboom (1985) (see Groeneboom,

Hooghiemstra and Lopuhaä (1999) for a rigorous proof). A similar result in the regression
setting has been obtained by Durot (2000).

In this paper we extend the result for the L1-error to the Lk-error, for k ≥ 1. We will
follow the same approach as in Groeneboom, Hooghiemstra and Lopuhaä (1999), which,
instead of comparing f̂n to f , compared both inverses. The corresponding L1-errors are the
same, since they represent the area between the graphs of f̂n and f and the area between
the graphs of the inverses. Clearly, for k > 1 we no longer have such an easy correspondence
between the two Lk-errors. Nevertheless, we will show that the Lk-error between f̂n and f
can still be approximated by a scaled version of the Lk-error between the two inverses and
that this scaled version is asymptotically normal.

The main reason to do a preliminary inversion step, is that we use results from Groene-

boom, Hooghiemstra and Lopuhaä (1999) on the inverse process. But apart from this, we
believe that working with f̂n directly will not make life easier. For a ∈ [f(1), f(0)], the (left
continuous) inverse of f̂n is Un(a) = sup{x ∈ [0, 1] : f̂n(x) ≥ a}. Since f̂n(x) is the left
continuous slope of the LCM of Fn at the point x, a simple picture shows that it has the
following more useful representation

Un(a) = argmax
x∈[0,1]

{Fn(x)− ax}. (1.1)

Here the argmax function is the supremum of the times at which the maximum is attained.
Since Un(a) can be seen as the x-coordinate of the point that is touched first when dropping a
line with slope a on Fn, with probability one, f̂n(x) ≤ a if and only if Un(a) ≤ x. Asymptotic
normality of the Lk error relies on embedding the process Fn(x)−ax into a Brownian motion
with drift. The fact that the difference between Fn(x) − ax and the limit process is small,
directly implies that the difference of the locations of their maxima is small. However, it
does not necessarily imply that the difference of the slopes of the LCM’s of both processes is
small. Similarly, convergence in distribution of suitably scaled finite dimensional projections
of Un follows immediately from distributional convergence of Fn after suitable scaling, and
an argmax type of continuous mapping theorem (see for instance Kim and Pollard (1990)).
When working with f̂n directly, similar to Lemma 4.1 in Prakasa Rao (1969), one needs to
bound the probability that the LCM of a gaussian approximation of Fn on [0, 1] differs from
the one restricted to a shrinking interval, which is somewhat technical and tedious.

Another important difference between the case k > 1 and the case k = 1, is the fact
that for large k, the inconsistency of f̂n at zero, as shown by Woodroofe and Sun (1993),
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starts to dominate the behavior of the Lk-error. By using results from Kulikov and Lopuhaä

(2002) on the behavior of f̂n near the boundaries of the support of f , we will show that for
1 ≤ k < 2.5 the Lk-error between f̂n and f is asymptotically normal. This result can be
formulated as follows. Define for c ∈ IR,

V (c) = argmax
t∈IR

{W (t)− (t− c)2}, (1.2)

ξ(c) = V (c)− c, (1.3)

where {W (t) : −∞ < t < ∞} denotes standard two-sided Brownian motion on IR originating
from zero (i.e. W (0) = 0), and

Theorem 1.1 (Main theorem). Let f be a decreasing density on [0, 1], satisfying:

(A1) 0 < f(1) ≤ f(y) ≤ f(x) ≤ f(0) < ∞, for 0 ≤ x ≤ y ≤ 1;
(A2) f is twice continuously differentiable;
(A3) infx∈(0,1) |f ′(x)| > 0.

Then for 1 ≤ k < 2.5, with µk =
{

E|V (0)|k ∫ 1
0 (4f(x)|f ′(x)|)k/3 dx

}1/k
, the random variable

n1/6

{
n1/3

(∫ 1

0
|f̂n(x)− f(x)|k dx

)1/k

− µk

}

converges in distribution to a normal random variable with zero mean and variance
∫ 1

0
f(x)(2k+1)/3|f ′(x)|(2k−2)/3 dx

k2

(
E|V (0)|k

∫ 1

0

(
f(x)|f ′(x)|)k/3

dx

)(2k−2)/k
· 8

∫ ∞

0
cov(|ξ(0)|k, |ξ(c)|k)dc.

Note that the theorem holds under the same conditions as in Groeneboom et al. (1999).
For k ≥ 2.5, Theorem 1.1 is no longer true. However, the results from Kulikov and Lopuhaä

(2002) enable us to show that an analogous limiting result still holds for a modification of the
Lk-error.

In Section 2 we introduce a Brownian approximation of Un and derive asymptotic nor-
mality of a scaled version of the Lk-distance between Un and the inverse g of f . In Section 3
we show that on segments [s, t], where the graph of f̂n does not cross the graph of f , the
difference ∣∣∣∣∣

∫ t

s
|f̂n(x)− f(x)|k dx−

∫ f(s)

f(t)

|Un(a)− g(a)|k
|g′(a)|k−1

da

∣∣∣∣∣
is of negligible order. Together with the behavior near the boundaries of the support of f ,
for 1 ≤ k < 2.5, we establish asymptotic normality of the Lk-distance between f̂n and f
in Section 4. In Section 5 we investigate the case k > 2.5, and prove a result analogous to
Theorem 1.1 for a modified Lk-error.

Remark 1.1 With almost no additional effort one can establish asymptotic normality of a
weighted Lk-error nk/3

∫ 1
0 |f̂n(t)− f(t)|kw(t) dt, where w is continuous differentiable on [0, 1].

This may be of interest when one wants to use weights proportional to negative powers of
the limiting standard deviation (1

2f(t)|f ′(t)|)1/3 of f̂n(t). Moreover, when w is estimated at
a sufficiently fast rate, one may also replace w by its estimate in the above integral. Similar
results are in Kulikov and Lopuhaä (2004) on a weighted Lk-error.
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2 Brownian approximation

In this section we will derive asymptotic normality of the Lk-error of the inverse process of
the Grenander estimator. For this we follow the same line of reasoning as in Sections 3 and
4 in Groeneboom et al.(1999). Therefore, we only mention the main steps and transfer
all proofs to the appendix.

Let En denote the empirical process
√

n(Fn − F ). For n ≥ 1, let Bn be versions of the
Brownian bridge constructed on the same probability space as the uniform empirical process
En◦F−1 via the Hungarian embedding, and define versions Wn of Brownian motion by

Wn(t) = Bn(t) + ξnt, t ∈ [0, 1], (2.1)

where ξn is a standard normal random variable, independent of Bn. For fixed a ∈ (f(1), f(0))
and J = E, B, W , define

V J
n (a) = argmax

t

{
XJ

n (a, t) + n2/3
[
F (g(a) + n−1/3t)− F (g(a))− n−1/3at

]}
, (2.2)

where

XE
n (a, t) = n1/6

{
En(g(a) + n−1/3t)− En(g(a))

}
,

XB
n (a, t) = n1/6

{
Bn(F (g(a) + n−1/3t))−Bn(F (g(a)))

}
,

XW
n (a, t) = n1/6

{
Wn(F (g(a) + n−1/3t))−Wn(F (g(a)))

}
. (2.3)

One can easily check that V E
n (a) = n1/3{Un(a)− g(a)}. A graphical interpretation and basic

properties of V J
n are provided in Groeneboom et al.(1999). For n tending to infinity,

properly scaled versions of V J
n will behave as ξ(c) defined in (1.3).

As a first step we prove asymptotic normality for a Brownian version of the Lk-distance
between Un and g. This is an extension of Theorem 4.1 in Groeneboom et al.(1999).

Theorem 2.1 Let V W
n be defined as in (2.2) and ξ by (1.3). Then for k ≥ 1,

n1/6

∫ f(0)

f(1)

|V W
n (a)|k −E|V W

n (a)|k
|g′(a)|k−1

da

converges in distribution to a normal random variable with zero mean and variance

σ2 = 2
∫ 1

0
(4f(x))(2k+1)/3|f ′(x)|(2k−2)/3 dx

∫ ∞

0
cov(|ξ(0)|k, |ξ(c)|k) dc.

The next lemma shows that the limiting expectation in Theorem 2.1 is equal to

µk =
{

E|V (0)|k
∫ 1

0

(
4f(x)|f ′(x)|)k/3

dx

}1/k

. (2.4)

Lemma 2.1 Let V W
n be defined by (2.2) and let µk be defined by (2.4). Then for k ≥ 1,

lim
n→∞n1/6

{∫ f(0)

f(1)

E|V W
n (a)|k

|g′(a)|k−1
da− µk

k

}
= 0.
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The next step is to transfer the result of Theorem 2.1 to the Lk-error of V E
n . This can be

done by means of the following lemma.

Lemma 2.2 For J = E,B, W , let V J
n be defined as in (2.2). Then for k ≥ 1, we have

n1/6

∫ f(0)

f(1)

(
|V B

n (a)|k − |V W
n (a)|k

)
da = op(1),

and ∫ f(0)

f(1)

∣∣∣|V E
n (a)|k − |V B

n (a)|k
∣∣∣ da = Op(n−1/3(log n)k+2).

From Theorem 2.1 and Lemmas 2.1 and 2.2 we immediately have the following corollary.

Corollary 2.1 Let Un be defined by (1.1) and let µk be defined by (2.4). Then for k ≥ 1,

n1/6

(
nk/3

∫ f(0)

f(1)

|Un(a)− g(a)|k
|g′(a)|k−1

da− µk
k

)

converges in distribution to a normal random variable with zero mean and variance σ2 defined
in Theorem 2.1.

3 Relating both Lk-errors

When k = 1, the Lk-error has an easy interpretation as the area between two graphs. In
that case

∫ |Un(a)−g(a)| da is the same as
∫ |f̂n(x)−f(x)| dx, up to some boundaries effects.

This is precisely Corollary 2.1 in Groeneboom et al.(1999). In this section we show that a
similar approximation holds for

∫ t
s |f̂n(x)−f(x)|k dx on segments [s, t], where the graphs of f̂n

and f do not intersect. In order to avoid boundary problems, we will apply this approximation
in subsequent sections to a suitable cut-off version f̃n of f̂n.

Lemma 3.1 Let f̃n be a piecewise constant left-continuous non-increasing function on [0, 1]
with a finite number of jumps. Suppose that f(1) ≤ f̃n ≤ f(0), and define its inverse function
by

Ũn(a) = sup
{

x ∈ [0, 1] : f̃n(x) ≥ a
}

,

for a ∈ [f(1), f(0)]. Suppose that [s, t] ⊆ [0, 1], such that one of the following situations
applies:

1. f̃n(x) ≥ f(x), for x ∈ (s, t), such that f̃n(s) = f(s) and f̃n(t+) ≤ f(t),

2. f̃n(x) ≤ f(x), for x ∈ (s, t), such that f̃n(t) = f(t) and f̃n(s) ≥ f(s).

If

sup
x∈[s,t]

∣∣∣f̃n(x)− f(x)
∣∣∣ <

(infx∈[0,1] |f ′(x|)2
2 supx∈[0,1] |f ′′(x)| , (3.1)

then for k ≥ 1,
∣∣∣∣∣∣∣

∫ t

s

∣∣∣f̃n(x)− f(x)
∣∣∣
k

dx−
∫ f(s)

f(t)

∣∣∣Ũn(a)− g(a)
∣∣∣
k

|g′(a)|k−1
da

∣∣∣∣∣∣∣
≤ C

∫ f(s)

f(t)

∣∣∣Ũn(a)− g(a)
∣∣∣
k+1

|g′(a)|k da,

where C > 0 only depends on f and k.
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Proof: Let us first consider case 1. Let f̃n have m points of jump on (s, t). Denote them in
increasing order by ξ1 < · · · < ξm, and write s = ξ0 and ξm+1 = t. Denote by α1 > · · · > αm

the points of jump of Ũn on the interval (f(t), f(s)) in decreasing order, and write f(s) = α0

and αm+1 = f(t) (see Figure 1). We then have

s = ξ0 ξ1 ξ2 g(α3) ξ3 ξ4 ξ5 = t

f(t) = α5

α4

α3

α2

α1

f(s) = α0



•
•

•

•
•

↙ density f

↙ function f̃n

Figure 1: Segment [s, t] where f̃n ≥ f .

∫ t

s
|f̃n(x)− f(x)|kdx =

m∑

i=0

∫ ξi+1

ξi

|f̃n(ξi+1)− f(x)|k dx.

Apply Taylor expansion to f in the point g(αi) for each term, and note that f̃n(ξi+1) = αi.
Then, if we abbreviate gi = g(αi), for i = 0, 1, . . . ,m, we can write the right hand side as

m∑

i=0

∫ ξi+1

ξi

|f ′(gi)|k(x− gi)k

∣∣∣∣1 +
f ′′(θi)
2f ′(gi)

(x− gi)
∣∣∣∣
k

dx,

for some θi between x and gi, also using the fact that gi < ξi < x ≤ ξi+1. Due to condition
(3.1) and the fact that f̃n(ξi+1) = f̃n(x), for x ∈ (ξi, ξi+1], we have that

∣∣∣∣
f ′′(θi)
f ′(gi)

(x− gi)
∣∣∣∣ ≤

sup |f ′′|
inf |f ′|

|f(x)− f(gi)|
inf |f ′| ≤ sup |f ′′|

(inf |f ′|)2
∣∣∣f(x)− f̃n(x)

∣∣∣ ≤ 1
2
. (3.2)

Hence for x ∈ (ξi, ξi+1],
∣∣∣∣1 +

f ′′(θi)(x− gi)
2f ′(gi)

∣∣∣∣
k

≤ 1 +
|f ′′(θi)|(x− gi)

2|f ′(gi)| sup
z∈[ 1

2
, 3
2
]

kzk−1 ≤ 1 + C1(x− gi),

where C1 = sup |f ′′|
2 inf |f ′|k

(
3
2

)k−1. Similarly,

∣∣∣∣1 +
f ′′(θi)(x− gi)

2f ′(gi)

∣∣∣∣
k

≥ 1− C1(x− gi).
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Therefore we obtain the following inequality
∣∣∣∣∣
∫ t

s
|f̃n(x)− f(x)|k dx−

m∑

i=0

∫ ξi+1

ξi

|f ′(gi)|k(x− gi)k dx

∣∣∣∣∣ ≤ C1

m∑

i=0

∫ ξi+1

ξi

(x− gi)k+1 dx.

After integration, we can rewrite this inequality in the following way:
∣∣∣∣∣
∫ t

s
|f̃n(x)− f(x)|k dx− 1

k + 1

m∑

i=0

|f ′(gi)|k
{

(ξi+1 − gi)k+1 − (ξi − gi)k+1
}∣∣∣∣∣

≤ C1

k + 2

m∑

i=0

{
(ξi+1 − gi)k+2 − (ξi − gi)k+2

}
. (3.3)

Next, let us consider the corresponding integral for the inverse Ũn:

∫ f(s)

f(t)

|Ũn(a)− g(a)|k
|g′(a)|k−1

da =
m∑

i=0

∫ αi

αi+1

|ξi+1 − g(a)|k
|g′(a)|k−1

da =
m∑

i=0

∫ gi+1

gi

(ξi+1 − x)k|f ′(x)|k dx,

now using that gi < x < gi+1 < ξi+1. Apply Taylor expansion to f ′ in the point gi. For the
right hand side, we then obtain

m∑

i=0

∫ gi+1

gi

(ξi+1 − x)k|f ′(gi) + f ′′(θi)(x− gi)|k dx,

for some θi between x and gi. Using (3.2), by means of the same arguments as above we get
the following inequality:

∣∣∣∣∣
∫ f(s)

f(t)

|Ũn(a)− g(a)|k
|g′(a)|k−1

da−
m∑

i=0

∫ gi+1

gi

|f ′(gi)|k(ξi+1 − x)k dx

∣∣∣∣∣

≤ C1

m∑

i=0

∫ gi+1

gi

(ξi+1 − x)k(x− gi) dx. (3.4)

Since gi < x < gi+1 < ξi+1, for each term on the right hand side of (3.4), we have that
∫ gi+1

gi

(ξi+1 − x)k(x− gi) dx ≤ (ξi+1 − gi)
∫ gi+1

gi

(ξi+1 − x)k dx

=
1

k + 1

{
(ξi+1 − gi)k+2 − (ξi+1 − gi+1)k+1(ξi+1 − gi)

}

≤ 1
k + 1

{
(ξi+1 − gi)k+2 − (ξi+1 − gi+1)k+2

}
.

Hence from (3.4) we find that
∣∣∣∣∣
∫ f(s)

f(t)

|Ũn(a)− g(a)|k
|g′(a)|k−1

da− 1
k + 1

m∑

i=0

|f ′(gi)|k
{

(ξi+1 − gi)k+1 − (ξi+1 − gi+1)k+1
}∣∣∣∣∣

≤ C1

k + 1

m∑

i=0

{
(ξi+1 − gi)k+2 − (ξi+1 − gi+1)k+2

}
. (3.5)
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For the third integral in the statement of the lemma, similarly as before, we can write

∫ f(s)

f(t)

|Ũn(a)− g(a)|k+1

|g′(a)|k da =
m∑

i=0

∫ gi+1

gi

|f ′(gi)|k+1(ξi+1 − x)k+1

∣∣∣∣1 +
f ′′(θ)
f ′(gi)

(x− gi)
∣∣∣∣
k+1

.

According to (3.2) we have that for x ∈ (gi, gi+1),
∣∣∣∣1 +

f ′′(θ)
f ′ (gi)

(x− gi)
∣∣∣∣ ≥

1
2
,

so that after integration we obtain

∫ f(s)

f(t)

|Ũn(a)− g(a)|k+1

|g′(a)|k da ≥ C2

k + 2

m∑

i=0

{
(ξi+1 − gi)k+2 − (ξi+1 − gi+1)k+2

}
, (3.6)

where C2 =
(

1
2

)k+1 inf |f ′|k+1.
Now, let us define ∆ as the difference between the first two integrals:

∆ def=
∫ t

s
|f̃n(x)− f(x)|k dx−

∫ f(s)

f(t)

|Ũn(a)− g(a)|k
|g′(a)|k−1

da.

By (3.3) and (3.5) and the fact that ξ0 = g0 and ξm+1 = gm+1, we find that

|∆| ≤ D

m∑

i=0

(ξi+1 − gi+1)k+1
∣∣∣|f ′(gi)|k − |f ′(gi+1)|k

∣∣∣

+D
m∑

i=0

{
(ξi+1 − gi)k+2 − (ξi − gi)k+2

}
(3.7)

+D
m∑

i=0

{
(ξi+1 − gi)k+2 − (ξi+1 − gi+1)k+2

}
,

where D is some positive constant that depends only on the function f and k. By a Taylor
expansion, the first term on the right hand side of (3.7) can be bounded by

D
m∑

i=0

(ξi+1 − gi+1)k+1
∣∣∣|f ′(gi)|k − |f ′(gi) + f ′′(θi)(gi+1 − gi)|k

∣∣∣

≤ D
m∑

i=0

(ξi+1 − gi+1)k+1|f ′(gi)|k
∣∣∣∣∣1−

∣∣∣∣1 +
f ′′(θi)(gi+1 − gi)

f ′(gi)

∣∣∣∣
k
∣∣∣∣∣

≤ D
m∑

i=0

(ξi+1 − gi+1)k+1(gi+1 − gi) sup |f ′|k sup |f ′′|
inf |f ′| sup

x∈[ 1
2
, 3
2
]

kzk−1

≤ C3

m∑

i=0

(ξi+1 − gi+1)k+1(gi+1 − gi),

with C3 only depending on f and k, where we also use (3.2) and the fact that according to
(3.1), we have that (gi+1 − gi) sup |f ′′|/ inf |f ′| < 1

2 . Since gi < gi+1 < ξi+1, this means that
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the first term on the right hand side of (3.7) can be bounded by

C3

m∑

i=0

(ξi+1 − gi+1)k+1(gi+1 − gi) ≤ C3

m∑

i=0

{(ξi+1 − gi)− (ξi+1 − gi+1)} (ξi+1 − gi+1)k+1

≤ C3

m∑

i=0

{
(ξi+1 − gi)k+2 − (ξi+1 − gi+1)k+2

}
.

Because ξ0 = g0 and ξm+1 = gm+1, for the second term on the right hand side of (3.7), we
have that

m∑

i=0

{
(ξi+1 − gi)k+2 − (ξi − gi)k+2

}
=

m∑

i=0

{
(ξi+1 − gi)k+2 − (ξi+1 − gi+1)k+2

}
.

Putting things together and using (3.6) we find that

|∆| ≤ C4

m∑

i=0

{
(ξi+1 − gi)k+2 − (ξi+1 − gi+1)k+2

}
≤ C5

∫ f(s)

f(t)

|Ũn(a)− g(a)|k+1

|g′(a)|k da,

where C5 only depends on f and k. This proves the lemma for case 1.

s = ξ0 ξ1 ξ2 ξ3 g(α3) ξ4 ξ5 = t

f(t) = α5

α4

α3

α2

α1

f(s) = α0


•
•

•

•

↙ density f

↙ function f̃n

Figure 2: Segment [s, t] where f̃n ≤ f .

For case 2, the proof is similar. The main differences are that f̃n(ξi) = αi (see Figure 2)
and that the Taylor expansions are applied to f in gi+1 instead of gi. Similar to (3.3), now
using that gi+1 ≥ ξi+1 ≥ ξi, we obtain

∣∣∣∣∣
∫ t

s
|f̃n(x)− f(x)|k dx− 1

k + 1

m∑

i=0

|f ′(gi+1)|k
{

(gi+1 − ξi)k+1 − (gi+1 − ξi+1)k+1
}∣∣∣∣∣

≤ C1

k + 2

m∑

i=0

{
(gi+1 − ξi)k+2 − (gi+1 − ξi+1)k+2

}
. (3.8)
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Similar to (3.5), now using that gi+1 ≥ gi ≥ ξi, we now obtain
∣∣∣∣∣
∫ f(s)

f(t)

|Ũn(a)− g(a)|k
|g′(a)|k−1

da− 1
k + 1

m∑

i=0

|f ′(gi+1)|k
{

(gi+1 − ξi)k+1 − (gi − ξi)k+1
}∣∣∣∣∣

≤ C1

k + 1

m∑

i=0

{
(gi+1 − ξi)k+2 − (gi − ξi)k+2

}
, (3.9)

and similar to (3.6) we find
∫ f(s)

f(t)

|Ũn(a)− g(a)|k+1

|g′(a)|k da ≥ C2

k + 2

m∑

i=0

{
(gi+1 − ξi)k+2 − (gi − ξi)k+2

}
. (3.10)

For the difference between the two integrals, again using that ξ0 = g0 and ξm+1 = gm+1, we
now find

|∆| ≤ D
m∑

i=0

(gi − ξi)k+1
∣∣∣|f ′(gi)|k − |f ′(gi+1)|k

∣∣∣

+D

m∑

i=0

{
(gi+1 − ξi)k+2 − (gi − ξi)k+2

}
(3.11)

+D
m∑

i=0

{
(gi+1 − ξi)k+2 − (gi+1 − ξi+1)k+2

}
,

where D is some positive constant that depends only on the function f and k. The first two
terms on the right hand side of (3.11) can be bounded similar to the first two terms on the
right hand side of (3.7), which yields

|∆| ≤ C4

m∑

i=0

{
(gi+1 − ξi)k+2 − (gi − ξi)k+2

}
≤ C5

∫ f(s)

f(t)

∣∣∣Ũn(a)− g(a)
∣∣∣
k+1

|g′(a)|k da,

where C5 only depends on f and k. This proves the lemma for case 2.

4 Asymptotic normality of the Lk-error of f̂n

We will apply Lemma 3.1 to the following cut-off version of f̂n:

f̃n(t) =





f(0) if f̂n(x) ≥ f(0),
f̂n(x) if f(1) ≤ f̂n(x) < f(0),
f(1) if f̂n(x) < f(1).

(4.1)

The next lemma shows that f̃n satisfies condition (3.1) with probability tending to one.

Lemma 4.1 Define the event

An =

{
sup

x∈[0,1]

∣∣∣f̃n(x)− f(x)
∣∣∣ ≤ infx∈[0,1] |f ′(x)|2

2 supt∈[0,1] |f ′′(x)|

}
.

Then P{Ac
n} → 0.
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Proof: It is sufficient to show that sup |f̃n(x) − f(x)| tends to zero. For this we can follow
the line of reasoning in Section 5.4 of Groeneboom and Wellner (1992). Similar to their
Lemma 5.9 we derive from our Lemma A.1 that for each a ∈ (f(1), f(0)),

P
{
|Un(a)− g(a)| ≥ n−1/3 log n

}
≤ C1 exp{−C2(log n)3}.

By monotonicity of Un and the conditions of f , this means that there exists a constant C3 > 0
such that

P

{
sup

a∈(f(1),f(0))
|Un(a)− g(a)| ≥ C3n

−1/3 log n

}
≤ C1 exp{−1

2C2(log n)3}.

This implies that the maximum distance between successive points of jump of f̂n is of the
order O(n−1/3 log n). Since both f̃n and f are monotone and bounded by f(0), this also
means that the maximum distance between f̃n and f is of the order O(n−1/3 log n).

The difference between the Lk-errors for f̂n and f̃n is bounded as follows
∣∣∣∣
∫ 1

0
|f̂n(x)− f(x)|k dx−

∫ 1

0
|f̃n(x)− f(x)|k dx

∣∣∣∣ (4.2)

≤
∫ Un(f(0))

0
|f̂n(x)− f(x)|k dx +

∫ 1

Un(f(1))
|f̂n(x)− f(x)|k dx.

The next lemma shows that the integrals on the right hand side are of negligible order.

Lemma 4.2 Let Un be defined in (1.1). Then
∫ Un(f(0))

0
|f̂n(x)− f(x)|k dx = op(n−(2k+1)/6),

and ∫ 1

Un(f(1))
|f̂n(x)− f(x)|k dx = op(n−(2k+1)/6).

Proof: Consider the first integral, which can be bounded by

2k

∫ Un(f(0))

0
|f̂n(x)− f(0)|k dx + 2k

∫ Un(f(0))

0
|f(x)− f(0)|k dx

≤ 2k

∫ Un(f(0))

0
|f̂n(x)− f(0)|k dx +

2k

k + 1
sup |f ′|kUn(f(0))k+1. (4.3)

Define the event Bn =
{
Un(f(0)) ≤ n−1/3 log n

}
. Then Un(f(0))k+11Bn = op(n−(2k+1)/6).

Moreover, according to Theorem 2.1 in Groeneboom et al.(1999) it follows that P{Bc
n} →

0. Since for any η > 0,

P
(
n

2k+1
6 |Un(f(0))|k+11Bc

n
> η

)
≤ P{Bc

n} → 0,

this implies that the second term in (4.3) is of the order op(n−(2k+1)/6). The first term in
(4.3) can be written as

2k

(∫ Un(f(0))

0
|f̂n(x)− f(0)|k dx

)
1Bn + 2k

(∫ Un(f(0))

0
|f̂n(x)− f(0)|k dx

)
1Bc

n
, (4.4)
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where the second integral is of the order op(n−(2k+1)/6) by the same reasoning as before. To
bound the first integral in (4.4), we will construct a suitable sequence (ai)m

i=1, such that the
intervals (0, n−a1 ] and (n−ai , n−ai+1 ], for i = 1, 2, . . . ,m − 1, cover the interval (0, Un(f(0))],
and such that the integrals over these intervals can be bounded appropriately. First of all let

1 > a1 > a2 > · · · > am−1 ≥ 1/3 > am, (4.5)

and let z0 = 0 and zi = n−ai , i = 1, . . . , m, so that 0 < z1 < · · · < zm−1 ≤ n−1/3 < zm. On the
event Bn, for n sufficiently large, the intervals (0, n−a1 ] and (n−ai , n−ai+1 ] cover (0, Un(f(0))].
Hence, when we denote Ji = [zi ∧Un(f(0)), zi+1 ∧Un(f(0))], the first integral in (4.4) can be
bounded by

m−1∑

i=0

(∫

Ji

(
f̂n(x)− f(0)

)k
dx

)
1Bn ≤

m−1∑

i=0

(zi+1 − zi)|f̂n(zi)− f(0)|k,

using that f̂n is decreasing and the fact that Ji ⊂ (0, Un(f(0))], so that f̂n(zi) − f(0) ≥
f̂n(x)− f(0) ≥ 0, for x ∈ Ji. It remains to show that

m−1∑

i=0

(zi+1 − zi)|f̂n(zi)− f(0)|k = op(n−(2k+1)/6). (4.6)

From Woodroofe and Sun (1993), we have that

f̂n(0) → f(0) sup
1≤j<∞

j

Γj
, (4.7)

in distribution, where Γj are partial sums of standard exponential random variables. Therefore

z1|f̂n(0)− f(0)|k = Op(n−a1). (4.8)

According to Theorem 3.1 in Kulikov and Lopuhaä (2002), for 1/3 ≤ α < 1,

n(1−α)/2
(
f̂n(n−α)− f(n−α)

)
→ Z, (4.9)

in distribution, where Z is a non-degenerate random variable. Since for any i = 1, . . . , m− 1
we have that 1/3 ≤ ai < 1, it follows that

|f̂n(zi)− f(0)| ≤ |f̂n(zi)− f(zi)|+ sup |f ′|zi = Op(n−(1−ai)/2) +Op(n−ai) = Op(n−(1−ai)/2).

This implies that for i = 1, . . . ,m− 1,

(zi+1 − zi)|f̂n(zi)− f(0)|k = Op(n−ai+1−k(1−ai)/2). (4.10)

Therefore, if we can construct a sequence (ai) satisfying (4.5), as well as

a1 >
2k + 1

6
, (4.11)

ai+1 +
k(1− ai)

2
>

2k + 1
6

, for all i = 1, . . . ,m− 1, (4.12)
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then (4.6) follows from (4.8) and (4.10). One may take

a1 =
2k + 7

12

ai+1 =
k(ai − 1)

2
+

2k + 3
8

, for i = 1, . . . , m− 1.

Since k < 2.5, it immediately follows that (4.11) and (4.12) are satisfied. To show that (4.5)
holds, first note that 1 > a1 > 1/3, because k < 2.5. It remains to show that the described
sequence strictly decreases and reaches 1/3 in finitely many steps. As long as ai > 1/3, it
follows that

ai − ai+1 =
2− k

2
ai +

2k − 3
8

.

When k = 2, this equals 1/8. For 1 ≤ k < 2, use that ai > 1/3, to find that ai− ai+1 > 1/24,
and for 2 ≤ k < 2.5, use that ai ≤ a1 = (2k+1)/7, to find that ai−ai+1 ≥ (k+1)(2.5−k)/12.
This means that the sequence (ai) also satisfies (4.5), which proves (4.6).

Similar to (4.3), the second integral can be bounded by

2k

∫ 1

Un(f(1))
|f(1)− f̂n(x)|k dx +

2k

k + 1
sup |f ′|k(1− Un(f(1))k+1.

From here the proof is similar as above. We can use the same sequence (ai) as before, and
take Bn = {1 − Un(f(1)) ≤ n−1/3 log n}. If we now define z0 = 1, zi = 1 − n−ai , for
i = 1, 2, . . . , m− 1, then similar to the argument above, we are left with considering

(∫ 1

Un(f(1))
|f(1)− f̂n(x)|k dx

)
1Bn ≤

m−1∑

i=0

(zi − zi+1)|f(1)− f̂n(zi)|k. (4.13)

The first term is (
1− (1− n−a1)

) |f(1)− f̂n(1)|k = n−a1f(1)k.

According to Theorem 4.1 in Kulikov and Lopuhaä (2002), for 1/3 < α < 1,

n(1−α)/2
(
f(1− n−α)− f̂n(1− n−α)

)
→

(
f(1) argmax

t∈[0,∞)
{W (t)− t2}

)1/2

, (4.14)

in distribution. Hence, for i = 1, 2, . . . , m− 1 each term is of the order Op(n−ai+1−k(1−ai)/2).
As before the sequence (ai) chosen above satisfies (4.11) and (4.12), which implies that (4.13)
is of the order op(n−(2k+1)/6). This proves the lemma.

We are now able to prove our main result concerning the asymptotic normality of the
Lk-error, for 1 ≤ k < 2.5.

Proof of Theorem 1.1: First consider the difference
∣∣∣∣∣
∫ 1

0
|f̂n(x)− f(x)|k dx−

∫ f(0)

f(1)

|Un(a)− g(a)|k
|g′(a)|k−1

da

∣∣∣∣∣ , (4.15)
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which can be bounded by
∣∣∣∣
∫ 1

0
|f̂n(x)− f(x)|k dx−

∫ 1

0
|f̃n(x)− f(x)|k dx

∣∣∣∣ + Rn, (4.16)

where

Rn =

∣∣∣∣∣
∫ 1

0
|f̃n(x)− f(x)|k dx−

∫ f(0)

f(1)

|Un(a)− g(a)|k
|g′(t)|k−1

da

∣∣∣∣∣ .

Let An be the event defined in Lemma 4.1, so that P{Ac
n} → 0. As in the proof of Lemma 4.2,

this means that Rn1Ac
n

= op(n−(2k+1)/6). Note that on the event An, the function f̃n satisfies
the conditions of Lemma 3.1, and that for any a ∈ [f(1), f(0)],

Un(a) = sup{t ∈ [0, 1] : f̂n(t) > a} = sup{t ∈ [0, 1] : f̃n(t) > a} = Ũn(a).

Moreover, we can construct a partition [0, s1], (s1, s2], . . . , (sl, 1] of [0, 1] in such a way that
on each element of the partition, f̃n satisfies either condition 1 or condition 2 of Lemma 3.1.
This means that we can apply Lemma 3.1 to each element of the partition. Putting things
together, it follows that Rn1An is bounded from above by

C

∫ f(0)

f(1)

|Un(a)− g(a)|k+1

|g′(a)|k da.

Corollary 2.1 implies that this integral is of the order Op(n−(k+1)/3), so that Rn1An =
op(n−(2k+1)/6). Finally, the first difference in (4.16) can be bounded as in (4.2), which means
that according to Lemma 4.2 it is of the order op(n−(2k+1)/6). Together with Corollary 2.1,
this implies that

n1/6

(
nk/3

∫ 1

0
|f̂n(x)− f(x)|k dx− µk

k

)
→ N(0, σ2),

where σ2 is defined in Theorem 2.1. An application of the δ-method then yields that

n1/6

(
n1/3

(∫ 1

0
|f̂n(x)− f(x)|kdx

)1/k

− µk

)

converges to a normal random variable with mean zero and variance
{

1
k

(
µk

k

)1/k−1
}2

σ2 =
σ2

k2µ2k−2
k

= σ2
k.

5 Asymptotic normality of a modified Lk-error for large k

For large k the inconsistency of f̂n at zero starts to dominate the behavior of the Lk-error.
The following lemma indicates that for k > 2.5 the result of Theorem 1.1 does not hold. For
k > 3, the Lk-error tends to infinity, whereas for 2.5 < k ≤ 3, we are only able to prove that
the variance of the integral near zero tends to infinity. In the latter case, it is in principle
possible that the behavior of the process f̂n − f on [0, zn] depends on the behavior of the
process on [zn, 1] in such a way that the variance of the whole integral stabilizes, but this
seems unlikely. The proof of this lemma is transferred to the appendix.
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Lemma 5.1 Let zn = 1/(2nf(0)). Then we have the following.

(i) If k > 3, then nk/3E

∫ 1

0
|f̂n(x)− f(x)|k dx →∞.

(ii) If k > 2.5, then var
(

n(2k+1)/6

∫ zn

0
|f̂n(x)− f(x)|k dx

)
→∞.

Although Lemma 5.1 indicates that for k > 2.5 the result Theorem 1.1 will not hold for
the usual Lk-error, a similar result can be derived for a modified version. For k ≥ 2.5 we will
consider a modified Lk-error of the form

n1/6



n1/3

(∫ 1−n−ε

n−ε

|f̂n(x)− f(x)|k dx

)1/k

− µk



 , (5.1)

where µk is the constant defined in Theorem 1.1. In this way, for suitable choices of ε, we
avoid a region where the Grenander estimator is inconsistent in such a way that we are still
able to determine its global performance.

We first determine for what values of ε we cannot expect asymptotic normality of (5.1).
First of all, for ε > 1, similar to the proof of Lemma 5.1, it follows that

var
(

n(2k+1)/6

∫ zn

n−ε

|f̂n(x)− f(x)|k dx

)
→∞.

For ε < 1/6, in view of Lemma 3.1 and the Brownian approximation discussed in Section 2,
we have that

n(2k+1)/6

∫ 1−n−ε

n−ε

|f̂n(x)− f(x)|k dx

will behave as

n1/6

∫ f(1−n−ε)

f(n−ε)

nk/3|UW
n (a)− g(a)|k
|g′(a)|k−1

da,

which, according to Lemma 2.1, is of the order O(n1/6−ε). Hence, we also cannot expect
asymptotic normality of (5.1) for ε < 1/6. Finally, for (k − 1)/(3k − 6) < ε < 1, a more
tedious argument in the same spirit as the proof of Lemma 5.1, yields that

var

(
n(2k+1)/6

∫ 2n−ε

n−ε

|f̂n(x)− f(x)|k dx

)
→∞.

Hence, in order to obtain a proper limit distribution for (5.1) for k ≥ 2.5, we will choose ε
between 1/6 and (k − 1)/(3k − 6).

To prove a result analogous to Theorem 1.1, we define another cut-off version of the
Grenander estimator:

f ε
n(x) =





f(n−ε) if f̂n(x) ≥ f(n−ε),
f̂n(x) if f(1− n−ε) ≤ f̂n(x) < f(n−ε),
f(1− n−ε) if f̂n(x) < f(1− n−ε),

and its inverse function

U ε
n(a) = sup

{
x ∈ [n−ε, 1− n−ε] : f̂n(x) ≥ a

}
, (5.2)

for a ∈ [f(1− n−ε), f(n−ε)]. The next lemma is the analogue of Lemma 4.1.
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Lemma 5.2 Define the event

Aε
n =

{
sup

x∈[0,1]
|f ε

n(x)− f(x)| ≤ infx∈[0,1] |f ′(x)|2
2 supt∈[0,1] |f ′′(x)|

}
.

Then P{Aε
n} → 1.

Proof: It suffices to show that supx∈[0,1] |f ε
n(x)− f(x)| → 0. Using the definition of f ε

n we
can bound

sup
x∈[0,1]

|f ε
n(x)− f(x)| ≤ sup

x∈[0,1]

∣∣f ε
n(x)− f̃n(x)

∣∣ + sup
x∈[0,1]

∣∣f̃n(x)− f(x)
∣∣ (5.3)

The first term on the right hand side of (5.3) is smaller than sup |f ′|n−ε which, together with
Lemma 4.1, implies that supx∈[0,1] |f ε

n(x)− f(x)| = op(n−1/6).

Similar to (4.2), the difference between the modified Lk-errors for f̂n and f ε
n is bounded

as follows
∣∣∣∣∣
∫ 1−n−ε

n−ε

|f̂n(x)− f(x)|k dx−
∫ 1−n−ε

n−ε

|f ε
n(x)− f(x)|k dx

∣∣∣∣∣ (5.4)

≤
∫ Uε

n(f(n−ε))

n−ε

|f̂n(x)− f(x)|k dx +
∫ 1−n−ε

Uε
n(f(1−n−ε))

|f̂n(x)− f(x)|k dx.

The next lemma is the analogue of Lemma 4.2 and shows that both integrals on the right
hand side are of negligible order.

Lemma 5.3 For k ≥ 2.5 and 1/6 < ε < (k − 1)/(3k − 6), let U ε
n be defined in (5.2). Then

∫ Uε
n(f(n−ε))

n−ε

|f̂n(x)− f(x)|k dx = op(n−(2k+1)/6),

and ∫ 1−n−ε

Uε
n(f(1−n−ε))

|f̂n(x)− f(x)|k dx = op(n−(2k+1)/6).

Proof: Consider the first integral, then similar to (4.3) we have that

2k

∫ Uε
n(f(n−ε))

n−ε

|f̂n(x)− f(n−ε)|k dx + 2k

∫ Uε
n(f(n−ε))

n−ε

|f(n−ε)− f(x)|k dx (5.5)

≤ 2k

∫ Uε
n(f(n−ε))

n−ε

|f̂n(x)− f(n−ε)|k dx +
2k

k + 1
sup |f ′|k(U ε

n(f(n−ε))− n−ε)k+1.

If we define the event Bε
n = {U ε

n(f(n−ε))−n−ε ≤ n−1/3 log n}, then by a similar reasoning as
in the proof of Lemma 4.2, it follows that (U ε

n(f(n−ε))− n−ε)k+1 = op(n−(2k+1)/6). The first
integral on the right hand side of (5.5) can be written as

(∫ Uε
n(f(n−ε))

n−ε

|f̂n(x)− f(n−ε)|k dx

)
1Bn +

(∫ Uε
n(f(n−ε))

n−ε

|f̂n(x)− f(n−ε)|k dx

)
1Bc

n
,
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where the second term is of the order op(n−(2k+1)/6) by the same reasoning as before. To
bound (∫ Uε

n(f(n−ε))

n−ε

|f̂n(x)− f(n−ε)|k dx

)
1Bn (5.6)

we distinguish between two cases:

(i) 1/6 < ε ≤ 1/3

(ii) 1/3 < ε < (k − 1)/(3k − 6)

In case (i), the integral (5.6) can be bounded by |f̂n(n−ε) − f(n−ε)|kn−1/3 log n. According
to Theorem 3.1 in Kulikov and Lopuhaä (2002), for 0 < α < 1/3,

n1/3
(
f̂n(n−α)− f(n−α)

)
→ |4f(0)f ′(0)|1/3 V (0), (5.7)

in distribution, where V (0) is defined in (1.2). It follows that |f̂n(n−ε)− f(n−ε)| = Op(n−1/3)
and therefore (5.6) is of the order op(n−(2k+1)/6).

In case (ii), similar to Lemma 4.2, we will construct a suitable sequence (ai)m
i=1, such that

the intervals (n−ai , n−ai+1 ], for i = 1, 2, . . . ,m − 1 cover the interval (n−ε, Un(f(n−ε))], and
such that the integrals over these intervals can be bounded appropriately. First of all let

ε = a1 > a2 > · · · > am−1 ≥ 1/3 > am, (5.8)

and let zi = n−ai , i = 1, . . . , m, so that 0 < z1 < · · · < zm−1 ≤ n−1/3 < zm. Then, similar to
the proof of Lemma 4.2, we can bound (5.6) as follows

(∫ Uε
n(f(n−ε))

n−ε

|f̂n(x)− f(n−ε)|k dx

)
1Bn ≤

m−1∑

i=1

(zi+1 − zi)|f̂n(zi)− f(n−ε)|k.

Since 1/3 ≤ ai ≤ ε < 1, for i = 1, . . . , m− 1, we can apply (4.9) and conclude that each term
is of the order Op(n−(1−ai)/2). Therefore, it suffices to construct a sequence (ai) satisfying
(5.8), as well as

ai+1 +
k(1− ai)

2
>

2k + 1
6

, for all i = 1, . . . ,m− 1. (5.9)

One may take

a1 = ε

ai+1 =
k(ai − 1)

2
+

2k + 1
6

+
1
8

(
k − 1

3(k − 2)
− ε

)
, for i = 1, . . . , m− 1.

Then (5.9) is satisfied and it remains to show that the described sequence strictly decreases
and reaches 1/3 in finitely many steps. This follows from the fact that ai ≤ ε and k ≥ 2.5,
since in that case

ai − ai+1 =
k − 2

2

(
k − 1

3(k − 2)
− ai

)
− 1

8

(
k − 1

3(k − 2)
− ε

)
≥ 4k − 9

8

(
k − 1

3(k − 2)
− ε

)
> 0.

As in the proof of Lemma 4.2, the argument for the second integral is similar. Now take
Bε

n = {1−n−ε−U ε
n(f(1−n−ε)) ≤ n−1/3 log n}. The case 1/6 < ε ≤ 1/3 can be treated in the
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same way as before. For the case 1/3 < ε < (k − 1)/(3k − 6), we can use the same sequence
(ai) as above, but now define zi = 1 − n−ai , i = 1, . . . , m, so that 1 > z1 > . . . > zm−1 ≥
1− n−1/3 > zm. Then we are left with considering

(∫ 1−n−ε

Uε
n(f(1−n−ε))

|f(1− n−ε)− f̂n(x)|k dx

)
1Bn ≤

m−1∑

i=1

(zi − zi+1)|f(1− n−ε)− f̂n(zi)|k.

As before, each term in the sum is of the order Op

(
n−ai+1−k(1−ai)/2

)
, for i = 1, . . . , m − 1.

The sequence chosen above satisfies (5.9) and (5.8), which implies that the sum above is of
the order op(n−(2k+1)/6).

Apart from (5.4) we also need to bound the difference between integrals for Un and its
cut-off version U ε

n:
∣∣∣∣∣
∫ f(0)

f(1)

|Un(a)− g(a)|k
|g′(a)|k−1

da−
∫ f(n−ε)

f(1−n−ε)

|U ε
n(a)− g(a)|k
|g′(a)|k−1

da

∣∣∣∣∣ (5.10)

≤
∫ f(0)

f̃n(n−ε)

|Un(a)− g(a)|k
|g′(a)|k−1

da +
∫ f̃n(1−n−ε)

f(1)

|Un(a)− g(a)|k
|g′(a)|k−1

da.

The next lemma shows that both integrals on the right hand side are of negligible order.

Lemma 5.4 For k ≥ 2.5, let 1/6 < ε < (k − 1)/(3k − 6). Furthermore let Un be defined in
(1.1) and let f̃n be defined in (4.1). Then

∫ f(0)

f̃n(n−ε)

∣∣Un(a)− g(a)
∣∣k

|g′(a)|k−1
da = op(n−(2k+1)/6),

and ∫ f̃n(1−n−ε)

f(1)

∣∣Un(a)− g(a)
∣∣k

|g′(a)|k−1
da = op(n−(2k+1)/6).

Proof: Consider the first integral and define the event An =
{
f(0)− f̃n(n−ε) < n−1/6/ log n

}
.

For 1/6 < ε ≤ 1/3, according to (5.7) we have that

f(0)− f̃n(n−ε) ≤ |f̂n(n−ε)− f(0)| ≤ |f̂n(n−ε)− f(n−ε)|+ sup |f ′|n−ε

= Op(n−1/3) +O(n−ε) = op(n−1/6/ log n).

This means that if 1/6 < ε ≤ 1/3, the probability P{Ac
n} → 0. For 1/3 < ε < 1,

P{Ac
n} ≤ P{f(0)− f̃n(n−ε) > 0} ≤ P

{
f̂n(n−ε)− f(n−ε) < n−ε sup |f ′|

}
→ 0,

since according to (4.9), f̂n(n−ε) − f(n−ε) is of the order n−(1−ε)/2. Next, write the first
integral as

(∫ f(0)

f̃n(n−ε)

∣∣Un(a)− g(a)
∣∣k

|g′(a)|k−1
da

)
1An +

(∫ f(0)

f̃n(n−ε)

∣∣Un(a)− g(a)
∣∣k

|g′(a)|k−1
da

)
1Ac

n
. (5.11)
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Similar to the argument used in Lemma 4.2, the second integral in (5.11) is of the order
op(n−(2k+1)/6). The expectation of the first integral is bounded by

E

∫ f(0)

f(0)−n−1/6/ log n

∣∣Un(a)− g(a)
∣∣k

|g′(a)|k−1
da ≤ n−k/3C1

∫ f(0)

f(0)−n−1/6/ log n
E

∣∣V E
n (a)

∣∣k da

≤ C2n
(2k+1)/6/ log n,

using Lemma A.1. The Markov inequality implies that the first term in (5.11) is of the order
op(n−(2k+1)/6). For the second integral the proof is similar.

Theorem 5.1 Suppose conditions (A1) - (A3) of Theorem 1.1 are satisfied. Then for k ≥ 2.5
and for any ε, such that 1/6 < ε < (k − 1)/(3k − 6),

n1/6



n1/3

(∫ 1−n−ε

n−ε

|f̂n(x)− f(x)|k dx

)1/k

− µk





converges in distribution to a normal random variable with zero mean and variance σ2
k, where

µk and σ2
k are defined in Theorem 1.1.

Proof: As in the proof of Theorem 1.1, it suffices to show that the difference
∣∣∣∣∣
∫ 1−n−ε

n−ε

|f̂n(x)− f(x)|k dx−
∫ f(0)

f(1)

|Un(a)− g(a)|k
|g′(a)|k−1

da

∣∣∣∣∣

is of the order op(n−(2k+1)/6). We can bound this difference by
∣∣∣∣∣
∫ 1−n−ε

n−ε

|f̂n(x)− f(x)|k dx−
∫ 1−n−ε

n−ε

|f ε
n(x)− f(x)|k dx

∣∣∣∣∣ (5.12)

+

∣∣∣∣∣
∫ f(0)

f(1)

|Un(a)− g(a)|k
|g′(a)|k−1

da−
∫ f(n−ε)

f(1−n−ε)

|U ε
n(a)− g(a)|k
|g′(a)|k−1

da

∣∣∣∣∣ (5.13)

+

∣∣∣∣∣
∫ 1−n−ε

n−ε

|f ε
n(x)− f(x)|k dx−

∫ f(n−ε)

f(1−n−ε)

|U ε
n(a)− g(t)|k
|g′(a)|k−1

da

∣∣∣∣∣ . (5.14)

Differences (5.12) and (5.13) can be bounded as in (5.4) and (5.10), so that Lemmas 5.3 and
5.4 imply that these terms are of the order op(n−(2k+1)/6). Finally, Lemma 3.1 implies that
(5.14) is bounded by ∫ f(n−ε)

f(1−n−ε)

|U ε
n(a)− g(a)|k+1

|g′(a)|k da.

Write the integral as

∫ f(0)

f(1)

|Un(a)− g(a)|k+1

|g′(a)|k da+

(∫ f(0)

f(1)

|Un(a)− g(a)|k+1

|g′(a)|k da−
∫ f(n−ε)

f(1−n−ε)

|U ε
n(a)− g(a)|k+1

|g′(a)|k da

)
.

Then Corollary 2.1 and Lemma 5.4 imply that both terms are of the order op(n−(2k+1)/6).
This proves the theorem.
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A Appendix

The proofs in Section 2 follow the same line of reasoning as in Groeneboom et al.(1999).
Since we will frequently use results from this paper, we state them for easy reference. First,
the tail probabilities of V J

n have a uniform exponential upper bound.

Lemma A.1 For J = E, B, W , let V J
n be defined by (2.2). Then there exist constants

C1, C2 > 0 only depending on f , such that for all n ≥ 1, a ∈ (f(1), f(0)) and x > 0,

P
{∣∣V J

n (a)
∣∣ ≥ x

} ≤ C1 exp(−C2x
3).

Properly normalized versions of V J
n (a) converge in distribution to ξ(c) defined in (1.3). To

be more precise, for a ∈ (f(1), f(0)), define

φ1(a) =
|f ′(g(a))|2/3

(4a)1/3
> 0, (A.15)

φ2(a) = (4a)1/3|f ′(g(a))|1/3 > 0, (A.16)

and let
Jn(a) =

{
c : a− φ2(a)cn−1/3 ∈ (f(1), f(0))

}
.

For J = E,B,W and c ∈ Jn(a), define,

V J
n,a(c) = φ1(a)V J

n (a− φ2(a)cn−1/3), (A.17)

Then we have the following property.

Lemma A.2 For J = E, B,W , integer d ≥ 1, a ∈ (f(1), f(0)) and c ∈ Jn(a)d,we have joint
distributional convergence of (V J

n,a(c1), . . . , V J
n,a(cd)) to the random vector (ξ(c1), . . . , ξ(cd)).

Due to the fact that Brownian motion has independent increments, the process V W
n is mixing.

Lemma A.3 The process {V W
n (a)) : a ∈ (f(1), f(0))} is strong mixing with mixing function:

αn(d) = 12e−C3nd3
, where the constant C3 > 0 only depends on f .

As a direct consequence of Lemma A.3 we have the following lemma, which is a slight extension
of Lemma 4.1 in Groeneboom et al.(1990).

Lemma A.4 Let l and m be fixed such that l + m > 0 and let h be a continuous function.
Define

ch = 2
∫ 1

0
(4f(x))(2l+2m+1)/3|f ′(x)|(4−4l−4m)/3h(f(x))2 dx.

Then,

var

(
n1/6

∫ f(0)

f(1)
V W

n (a)l|V W
n (a)|mh(a) da

)
→ ch

∫ ∞

0
cov(ξ(0)l|ξ(0)|m, ξ(c)l|ξ(c)|m) dc,

as n →∞.
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Proof: The proof runs along the lines of the proof of Lemma 4.1 in Groeneboom et
al.(1999). We first have that

var

(
n1/6

∫ f(0)

f(1)
V W

n (a)l|V W
n (a)|mh(a) da

)

= −2
∫ f(0)

f(1)

∫ n1/3φ2(a)−1(a−f(0))

0
(4a)(2l+2m+1)/3|g′(a)| 4(l+m)−1

3 h(a)h(a− φ2(a)n−1/3c)

· cov
(
V W

n,a(0)l|V W
n,a(0)|m, V W

n,a(c)
l|V W

n,a(c)|m
)

dc da.

According to Lemma A.1, for a and c fixed, the sequence V W
n,a(c)

l|V W
n,a(c)|m is uniformly inte-

grable. Hence by Lemma A.2 the moments of
(
V W

n,a(0)l|V W
n,a(0)|m, V W

n,a(c)
l|V W

n,a(c)|m
)

converge
to corresponding moments of (ξ(0)l|ξ(0)|m, ξ(c)l|ξ(c)|m). Again Lemma A.1 and the fact that
l + m > 0, yields that

E|V W
n,a(0)|3(l+m) < C and E|V W

n,a(c)|3(l+m) < C,

where C > 0 does not depend on n, a and c. Together with Lemma A.3 and Lemma 3.2 in
Groeneboom et al.(1999) this yields that

∣∣∣cov
(
V W

n,a(0)l|V W
n,a(0)|m, V W

n,a(c)
l|V W

n,a(c)|m
)∣∣∣ ≤ D1e

−D2|c|3 ,

where D1 and D2 do not depend on n, a and c. It follows by dominated convergence that

var

(
n1/6

∫ f(0)

f(1)
V W

n,a(0)l|V W
n (a)|mh(a) da

)

→ −ch

∫ −∞

0
cov

(
ξ(0)l |ξ(0)|m , ξ(c)l |ξ(c)|m

)
dc,

= ch

∫ ∞

0
cov

(
ξ(0)l |ξ(0)|m , ξ(c)l |ξ(c)|m

)
dc,

using that the process ξ is stationary, where

ch = 2
∫ f(0)

f(1)
(4a)(2l+2m+1)/3|g′(a)|(4l+4m−1)/3h(a)2 da

= 2
∫ 1

0
(4f(x))(2l+2m+1)/3|f ′(x)|(4−4l−4m)/3h(f(x))2 dx.

This proves the lemma.

Proof of Theorem 2.1: Write

W k
n (a) =

|V W
n (a)|k − E|V W

n (a)|k
|g′(a)|k−1

,

and define

Ln = (f(0)− f(1))n−1/3(log n)3,
Mn = (f(0)− f(1))n−1/3 log n,

Nn =
[
(f(0)− f(1))

Ln + Mn

]
=

[
n1/3

log n + (log n)3

]
,
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where [x] denotes the integer part of x. We divide the interval (f(1), f(0)) into 2Nn +1 blocks
of alternating length

Aj = (f(1) + (j − 1)(Ln + Mn), f(1) + (j − 1)(Ln + Mn) + Ln],
Bj = (f(1) + (j − 1)(Ln + Mn) + Ln, f(1) + j(Ln + Mn)],

where j = 1, . . . , Nn. Now write

Tn,k = S
′
n,k + S

′′
n,k + Rn,k,

where

S
′
n,k = n1/6

Nn∑

j=1

∫

Aj

W k
n (a) da,

S
′′
n,k = n1/6

Nn∑

j=1

∫

Bj

W k
n (a) da,

Rn,k = n1/6

∫ f(0)

f(1)+Nn(Ln+Mn)
W k

n (a) da.

From here on the proof is completely the same as the proof of Theorem 4.1 in Groeneboom
et al.(1999). Therefore we omit all specific details and only give a brief outline of the
argument. Lemmas A.1 and A.3 imply that all moments of W k

n (a) are bounded uniformly in
a, and that E|W k

n (a)W k
n (b)| ≤ D1 exp

(−D2n|b− a|3). This is used to ensure that ER2
n → 0

and that the contribution of the small blocks is negligible: E(S′′n,k)
2 → 0. We then only have

to consider the contribution over the big blocks. When we denote

Yj = n1/6

∫

Aj

W k
n (a) da and σ2

n = var




Nn∑

j=1

Yj


 ,

one finds that
∣∣∣∣∣∣
E exp





iu

σn

Nn∑

j=1

Yj



−

Nn∏

j=1

E exp
{

iu

σn
Yj

}∣∣∣∣∣∣
≤ 4(Nn − 1) exp(−C3nM3

n) → 0,

where C3 > 0 only depends on f . This means that we can apply the central limit theorem
to independent copies of Yj . Hence, asymptotic normality of S′n,k follows if we show that the
contribution of the big blocks satisfies the Lindeberg condition, i.e., for each ε > 0,

1
σ2

n

Nn∑

j=1

EY 2
j 1{|Yj |>εσn} → 0, n →∞. (A.18)

By using the uniform boundedness of the moments of |W k
n (a)|, we have that

1
σ2

n

Nn∑

j=1

EY 2
j 1{|Yj |>εσn} ≤

1
εσ3

n

Nn sup
1≤k≤Nn

E|Yj |3 = O
(
σ−3

n n−1/6(log n)6
)

.
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Similar computations as in the proof of Theorem 4.1 in Groeneboom et al.(1999), yields
that

σ2
n = var(Tn,k) +O(1).

Application of Lemma A.4, with l = 0, m = k and h(a) = 1/|g′(a)|k−1, implies that σ2
n → σ2,

which proves (A.18).

In order to prove Lemma 2.1, we first prove the following lemma.

Lemma A.5 Let V W
n be defined by (2.2) and let V (0) be defined by (1.2). Then for k ≥ 1,

and for all a such that

n1/3 {F (g(a)) ∧ (1− F (g(a)))} ≥ log n, (A.19)

we have

E|V W
n (a)|k = E|V (0)|k (4a)k/3

|f ′(g(a))|2k/3
+O(n−1/3(log n)k+3),

where the term O(n−1/3(log n)k+3) is uniform in all a satisfying (A.19).

Proof: The proof relies on the proof of Corollary 3.2 in Groeneboom et al.(1999). There
it is shown that, if we define

Hn(y) = n1/3
{

H
(
F (g(a)) + n−1/3y

)
− g(a)

}
,

with H being the inverse of F , and

Vn,b = sup
{

y ∈ [−n1/3F (g(a)), n1/3(1− F (g(a)))] : W (y)− by2 is maximal
}

,

with b = |f ′(g(a))|/(2a2), then for the event An = {|V W
n (a)| ≤ log n, |Hn(Vn,b)| ≤ log n}, one

has that P{Ac
n} is of the order O(e−C(log n)3), which then implies that

sup
a∈(f(1),f(0))

E|V W
n (a)−Hn(Vn,b)| = O(n−1/3(log n)4).

Similarly, together with an application of the mean value theorem, this yields

sup
a∈(f(1),f(0))

E
∣∣∣|V W

n (a)|k − |Hn(Vn,b)|k
∣∣∣ = O(n−1/3(log n)3+k). (A.20)

Note that by definition, the argmax Vn,b closely resembles the argmax Vb(0), where

Vb(c) = argmax
t∈IR

{W (t)− b(t− c)2}. (A.21)

Therefore we write

E |Hn(Vn,b)|k = E |Hn(Vb(0))|k + E
(
|Hn(Vn,b)|k − |Hn(Vb(0))|k

)
. (A.22)

Since by Brownian scaling Vb(c) has the same distribution as b−2/3V (cb2/3), where V is defined
in (1.2), together with the conditions on f , we find that

E |Hn(Vb(0))|k = a−kE |Vb(0)|k +O(n−1/3) =
(4a)k/3

|f ′(g(a))|2k/3
E|V (0)|k +O(n−1/3).
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As in the proof of Corollary 3.2 in Groeneboom et al.(1999), Vn,b can only be different
from Vb(0) with probability of the order O(e−

2
3
(log n)3). Hence, from (A.22) we conclude that

E |Hn(Vn,b)|k =
(4a)k/3

|f ′(g(a))|2k/3
E|V (0)|k +O(n−1/3).

Together with (A.20) this proves the lemma.

Proof of Lemma 2.1: The result immediately follows from Lemma A.5. The values of a
for which condition (A.19) does not hold, gives a contribution of the order O(n−1/3 log n) to
the integral

∫
E|V W

n (a)|k da, and finally,
∫ f(0)

f(1)

(4a)k/3

|f ′(g(a))|2k/3|g′(a)|k−1
da =

∫ 1

0
(4f(x))k/3|f ′(x)|k/3dx.

Proof of Lemma 2.2: The proof of the first statement relies on the proof of the Corollary
3.3 in Groeneboom et al.(1990). Here it is shown, that if for a belonging to the set

Jn = {a : both a and a(1− ξnn−1/2) ∈ (f(1), f(0))},
we define

V B
n (a, ξn) = V B

n (a(1− n−1/2ξn)) + n1/3
{

g(a(1− n−1/2ξn))− g(a)
}

,

then for the event An = {|ξn| ≤ n1/6, |V W
n (a)| ≤ log n, |V B

n (a, ξn)| ≤ log n}, one has that
P{Ac

n} is of the order O(e−C(log n)3), which then implies that
∫

a∈Jn

E
∣∣V B

n (a, ξn)− V W
n (a)

∣∣ da = O(n−1/3(log n)3).

Hence, by using the same method as in proof of Lemma 2.1, we obtain:
∫

a∈Jn

E
∣∣∣|V B

n (a, ξn)|k − |V W
n (a)|k

∣∣∣ da = O(n−1/3(log n)k+2).

From Lemma A.1 it also follows that E|V B
n (a)|k = O(1) and E|V W

n (a)|k = O(1), uni-
formly with respect to n and a ∈ (f(1), f(0)). Hence the contribution of the integrals over
[f(1), f(0)] \ Jn is negligible, and it remains to show that

n1/6

∫

a∈Jn

{
|V B

n (a, ξn)|k − |V B
n (a)|k

}
da = op(1). (A.23)

For k = 1, this is shown in the proof of Corollary 3.3 in Groeneboom et al.(1999), so we
may assume that k > 1. Completely similar to the proof in the case k = 1, we first obtain

n1/6

∫

a∈Jn

{
|V B

n (a, ξn)|k − |V B
n (a)|k

}
da

= n1/6

∫ f(0)

f(1)

{∣∣∣V B
n (a)− ag′(a)ξnn−1/6

∣∣∣
k
− |V B

n (a)|k
}

da +Op(n−1/3).
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Let ε > 0 and write ∆n(a) = ag′(a)ξnn−1/6. Then we can write

n1/6

∫ f(0)

f(1)

{∣∣V B
n (a)−∆n(a)

∣∣k − |V B
n (a)|k

}
da

= n1/6

∫ f(0)

f(1)

{∣∣V B
n (a)−∆n(a)

∣∣k − |V B
n (a)|k

}
1[0,ε](|V B

n (a)|) da (A.24)

+n1/6

∫ f(0)

f(1)

{∣∣V B
n (a)−∆n(a)

∣∣k − |V B
n (a)|k

}
1(ε,∞)(|V B

n (a)|) da. (A.25)

First consider the term (A.24) and distinguish between

1. |V B
n (a)| < 2|∆n(a)|,

2. |V B
n (a)| ≥ 2|∆n(a)|,

In case 1,
∣∣∣|V B

n (a)−∆n(a)|k − |V B
n (a)|k

∣∣∣ ≤ 3k|∆n(a)|k + 2k|∆n(a)|k ≤ (3k + 2k)|ag′(a)ξn|kn−k/6.

In case 2, note that
∣∣∣|V B

n (a)−∆n(a)|k − |V B
n (a)|k

∣∣∣ = k|θ|k−1|∆n(a)|,

where θ is between |V B
n (a)| ≤ ε and |V B

n (a) − ∆n(a)| ≤ 3
2ε. Using that ξn and V B

n are
independent, the expectation of (A.24) is bounded from above by

C1ε
k−1E|ξn|

∫ f(0)

f(1)
|ag′(a)|P{|V B

n (a)| ≤ ε} da +Op(n−(k−1)/6),

where C1 > 0 only depends on f and k. Hence, since k > 1, we find that

lim sup
n→∞

n1/6

∫ f(0)

f(1)

{∣∣∣V B
n (a)− ag′(a)ξnn−1/6

∣∣∣
k
− |V B

n (a)|k
}

1[0,ε](|V B
n (a)|) da (A.26)

is bounded from above by C2ε
k−1, where C2 > 0 only depends on f and k. Letting ε ↓ 0 and

using that k > 1, then yields that (A.24) tends to zero.
The term (A.25) is equal to

∫ f(0)

f(1)

−2ξnag′(a)V B
n (a) + (ag′(a)ξn)2n−1/6

|V B
n (a)−∆n(a)|+ |V B

n (a)| · kθ(a)k−11(ε,∞)(|V B
n (a)|) da, (A.27)

where θ(a) is between |V B
n (a)−∆n(a)| and |V B

n (a)|. Note that for |V B
n (a)| > ε,

∣∣∣∣
2V B

n (a)
|V B

n (a)−∆n(a)|+ |V B
n (a)| −

V B
n (a)

|V B
n (a)|

∣∣∣∣ ≤
|ag′(a)n−1/6ξn|

ε
= Op(n−1/6),

uniformly in a ∈ (f(1), f(0)), so that (A.27) is equal to

−kξn

∫ f(0)

f(1)
ag′(a)V B

n (a)|V B
n (a)|k−21(ε,∞)(|V B

n (a)|) da

+kξn

∫ f(0)

f(1)
ag′(a)

V B
n (a)

|V B
n (a)|

(
|V B

n (a)|k−1 − θ(a)k−1
)

1(ε,∞)(|V B
n (a)|) da +Op(n−1/6).

24



We have that

∣∣∣|V B
n (a)|k−1 − θ(a)k−1

∣∣∣ ≤ |V B
n (a)|k−1

∣∣∣∣∣
∣∣∣∣1−

∆n(a)
V B

n (a)

∣∣∣∣
k−1

− 1

∣∣∣∣∣ = Op(n−1/6),

where the big O-term in uniform in a. This means that (A.27) is equal to

−kξn

∫ f(0)

f(1)
ag′(a)V B

n (a)|V B
n (a)|k−2 da (A.28)

+kξn

∫ f(0)

f(1)
ag′(a)sign(V B

n (a))|V B
n (a)|k−11[0,ε)(|V B

n (a)|) da +Op(n−1/6). (A.29)

The integral in (A.29) is of the order O(εk−1), whereas Eξ2
n = 1. Since k > 1, this means

that after letting ε ↓ 0, (A.29) tends to zero. Finally, let SB
n (a) = ag′(a)V B

n (a)
∣∣V B

n (a)
∣∣k−2

and write

E

(
ξn

∫ f(0)

f(1)
SB

n (a) da

)2

= var

(∫ f(0)

f(1)
SB

n (a) da

)
+

(
E

∫ f(0)

f(1)
SB

n (a) da

)2

.

Then, since according to Lemma A.1, all moments of |SB
n (a)| are bounded uniformly in a, we

find by dominated convergence and Lemma A.2 that

lim
n→∞E

∫ f(0)

f(1)
SB

n (a) da =
∫ f(0)

f(1)

a|g′(a)|
(φ1(a))k

(
Eξ(0) |ξ(0)|k−2

)
da = 0,

because the distribution of ξ(0) is symmetric. Applying Lemma A.4 with l = 1, m = k − 2
and h(a) = ag′(a) we obtain

var

(∫ f(0)

f(1)
ag

′
(a)V B

n (a)
∣∣V B

n (a)
∣∣k−2

da

)
= O(n−1/3).

We conclude that (A.27) tends to zero in probability. This proves the first statement of the
lemma.

The proof of the second statement relies on the proof of Corollary 3.1 in Groeneboom et
al.(1999). There it is shown that for the event An =

{|V B
n (a)| < log n , |V E

n (a)| < log n
}

one
has that P{Ac

n} is of the orderO(e−C(log n)3). Furthermore, if Kn = {supt |En(t)−Bn(F (t))| ≤
n−1/2(log n)2}, then P{Kn} → 1 and

E
∣∣|V E

n (a)| − |V B
n (a)|∣∣ 1An∩Kn = O(n−1/3(log n)3), (A.30)

uniformly in a ∈ (f(1), f(0)). By the mean value theorem, together with (A.30), we now have
that

E
∣∣∣|V E

n (a)|k − |V B
n (a)|k

∣∣∣ 1Kn ≤ k(log n)k−1E
∣∣|V E

n (a)| − |V B
n (a)|∣∣ 1An∩Kn + 2nk/3P{Ac

n}
= O(n−1/3(log n)k+2) +O(nk/3e−C(log n)3).

This proves the lemma.

Before proving Lemma 5.1, we first prove the following lemma.
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Lemma A.6 Let k ≥ 2.5 and zn = 1/(2nf(0)). Then there exist 0 < a1 < b1 < a2 < b2 < ∞,
such that for i = 1, 2

lim inf
n→∞ P

{
n

∫ zn

0
|f̂n(x)− f(x)|k dx ∈ [ai, bi]

}
> 0.

Proof: Consider the event An = {Xi ≥ zn, for all i = 1, 2, . . . , n}. Then it follows that
P{An} → 1/

√
e > 1/2. Since on the event An, the estimator f̂n is constant on the interval

[0, zn], for any ai > 0 we have

P

{
n

∫ zn

0
|f̂n(x)− f(x)|k dx ∈ [ai, bi]

}
≥ P

{(
n

∫ zn

0
|f̂n(0)− f(x)|k dx

)
1An ∈ [ai, bi]

}

= P

{(
|f̂n(0)− f(0)|k

2f(0)
+ Rn

)
1An ∈ [ai, bi]

}
,

where
Rn = n

∫ zn

0
kθn(x)k−1

(
|f̂n(0)− f(x)| − |f̂n(0)− f(0)|

)
dx,

with θn(x) between |f̂n(0)− f(x)| and |f̂n(0)− f(0)|. Using (4.7), we obtain that Rn is of the
order Op(n−1) and therefore

|f̂n(0)− f(0)|k
2f(0)

+ Rn → f(0)k−1

2

∣∣∣∣∣ sup
1≤j<∞

j

Γj
− 1

∣∣∣∣∣
k

in distribution. Now, choose 0 < a1 < b1 < a2 < b2 < ∞, such that for i = 1, 2

P





f(0)k−1

2

∣∣∣∣∣ sup
1≤j<∞

j

Γj
− 1

∣∣∣∣∣
k

∈ [ai, bi]



 > 1− 1/

√
e.

Then, for i = 1, 2 we find

P

{
n

∫ zn

0
|f̂n(x)− f(x)|k dx ∈ [ai, bi]

}
≥ P

{(
|f̂n(0)− f(0)|k

2f(0)
+ Rn

)
∈ [ai, bi]

}
− P{Ac

n},

which converges to a positive value.

Proof of Lemma 5.1: Take 0 < a1 < b1 < a2 < b2 < ∞ as in Lemma A.6, and let Ani be
the event

Ani =
{

n

∫ zn

0
|f̂n(x)− f(x)|k dx ∈ [ai, bi]

}
.

Then

nk/3E

∫ 1

0
|f̂n(x)− f(x)|k dx ≥ nk/3E

∫ zn

0
|f̂n(x)− f(x)|k dx1An1 ≥ a1n

(k−3)/3P{An1}.

Since, according to Lemma A.6, P{An1} tends to a positive constant, this proves (i).
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For (ii), write Xn = n
∫ zn

0 |f̂n(x)− f(x)|k dx, and define B = {EXn ≥ (a2 + b1)/2}. Then

var(Xn) ≥ E(Xn − EXn)21An1∩B + E(Xn − EXn)21An2∩Bc

≥ 1
4
(a2 − b1)2P{An1}1B +

1
4
(a2 − b1)2P{An2}1Bc

≥ 1
4
(a2 − b1)2 min(P{An1}, P{An2}).

Hence, according to Lemma A.6,

lim inf
n→∞ var

(
n(2k+1)/6

∫ zn

0
|f̂n(x)− f(x)|k dx

)

≥ lim inf
n→∞ n(2k−5)/3 1

4
(a2 − b1)2 min(P{An1}, P{An2}) = ∞.
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