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1 Introduction

A major limitation of current non-Gibbsian theory is the lack of practical
examples where the phenomenon play a conspicuous, if not crucial, role. A
decade of studies has elucidated many subtle mathematical aspects of the
Gibbs-vs-non-Gibbs issue. But a natural question remains unanswered: Can
an instance be determined where something like a calculation of a physical
quantity or a simulation algorithm is proven wrong or shown to fail because
of non-Gibbsianness?

It occurred to us that stochastic processes could offer a simpler labo-
ratory in this regard. On the one hand, the key aspects of Gibbsianness
—non-nullness and quasi-locality— admit natural transcriptions in terms of
one-sided conditional probabilities. On the other hand, many classes of pro-
cesses have a well-developed theory that includes a wealth of construction
and approximation schemes which can be used to estimate large-deviation
rates, convergence rates of numerical algorithms, etc. A proven breakdown
of some of these schemes due to the lack of continuity or positivity of the
process could, perhaps, be shown to produce some observable consequence.

More generally, it appears that a convenient strategy towards these goals
would be to combine the stochastic-process approach with the theory of
one-dimensional specifications on which the notion of (non-)Gibbsianness
depends. This triggered a preliminary program of recollection and develop-
ment of links between both frameworks which, in fact, has led us to some
new contributions to each of them (specially to the former). In this paper
we present a panorama of the current status of this program, which was the
subject of the Phd thesis of one of us (Maillard, 2003). It is a summary of
two preprints (Fernández and Maillard 2003a and 2003b), to which we refer
the reader for the proofs.

We have investigated three aspects of the relation between processes and
specifications.

(I) Specification-theoretical techniques in the study of processes
While phase transitions are a well-known phenomenon in the theory of

processes (Bramson and Kalikow, 1993), the statistical mechanical emphasis
on phase diagrams seems to be lacking. Measures have been studied largely
on an individual basis, without exploiting the fact of having the same tran-
sition probabilities. The results of Section 3 —tail-field triviality, mixing
properties and ergodicity of extremal processes— go in the direction of fill-
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ing this gap. To tackle these issues we have found convenient to introduce
the notion of LIS (left-interval specification), which is the one-sided analogue
of a specification. While each LIS is uniquely determined by the single-site
transitions traditionally used to define processes, it provides a more flexible
tool to discuss asymptotic properties. Another by-product of the use of LIS
is contained in Sections 4 and 5. We obtain there new uniqueness criteria and
bounds on mixing rates by adapting well-known arguments for specifications.

(II) When is a Gibbs measure a process and viceversa?
The issue can be cast in more general terms. Given a process consistent

with some nicely behaved transition probabilities (e.g. Markov or continu-
ous), is it always consistent with some specification enjoying similar proper-
ties? An analogous question arises in the opposite direction. In Section 6 we
address this issue by attempting to establish appropriate maps between spec-
ifications and LIS. For comparison, we mention the work discussed in Georgii
(1988), Chapter 10, showing that general processes with (one-sided) Marko-
vian transitions have two-sided Markovian conditional probabilities. These
results, however, are not sufficient for our purposes. The passage from con-
ditional probabilities to specifications, while always possible (see, e.g., Sokal,
1981), may not preserve the relevant properties.

(III) Process techniques in the study of specifications
As the only result in this direction we mention the algorithm of Section

7 to construct a specification from single-site kernels. This opens the possi-
bility of studying specification-consistent measures on the basis of singleton
conditional probabilities, as is usually done for process.

We have tried to include enough definitions to make the review self-
contained. In particular, we start with a careful presentation of the process
formalism. Such a presentation serves two purposes. First, we introduce the
notation, à la Georgii (1988), needed to write reasonably compact formulas.
Second, we take the opportunity to recall and compare a number of notions
—transition kernels, transition densities, transition functions— which are
closely related but whose identification may lead to confusion and to some
degree of notational chaos.
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2 Specification-framework for processes

2.1 Standard set up for processes

The objects fixed from the outset are a measurable space (E, E) —called, for
brevity, the alphabet— and a family Ω ⊂ EZ of (admissible) configurations.
The rest of the construction is done on the measurable space (Ω,F), where
F is the restriction to Ω of EZ. A process on (Ω,F) is a probability measure
on this space, or, equivalently, a measure on (EZ, EZ) which has its support
in Ω. They are canonically described by the resulting laws on the family of
projections Xn : Ω → E, Xn(ω) = ωn. Furthermore, in probability theory
processes are classified according to their single-site conditional probabilities,
interpreted as “transition probabilities”.

To describe these objects we need some notation. For Λ ⊂ Z, let XΛ :
Ω → EΛ; ω 7→ ωΛ, denote the projection XΛ = (Xn)n∈Λ and let ΩΛ be its
inverse image and FΛ the induced σ-algebra on the latter, namely the one
generated by cylinders with base in ΩΛ. For interval-like Λ we shall prefer
“range” notation: Ωm

` , Ω[`,m], Ω≤m , Ω]−∞,m] = Ωm
−∞. This notation will

be used for all relevant objects like in ωm
` , F≤m, etc.

Definition 2.1 A family of (singleton) transition probabilities is a
set (fn)n∈Z of kernels fn( · | · ) : F≤n × Ω −→ [0, 1] such that

(a) each fn is a probability measure with respect to the first coordinate:
fn(Ω≤n | ω) = 1 for each n ∈ Z and each ω ∈ Ω;

(b) each fn is a F≤n−1-measurable function with respect to the second co-
ordinate (“past”), that is fn(A | · ) is F≤n−1-measurable for each A ∈
Ω≤n, and

(c) each probability measure fn is deterministically frozen for each given
past: fn(B | ω) = 1B(ω) if B ∈ F≤n−1.

The kernels fn model an stochastic evolution, where each past only deter-
mines a probability distribution for the next state of the evolution. While it
is natural to think fn( · | ω) as a probability measure on Ωn —the configura-
tion space at time n—, it is mathematically more convenient to define them
as measures on the increasing family of σ-algebras F≤n.
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Definition 2.2 A measure µ on (Ω,F) is a process consistent with the
family (fn) if ∫

fn(B | ω) µ(dω) = µ(B) (2.3)

for each n ∈ Z and each B ∈ F≤n.

If, to simplify, we denote ν(h) , Eν(h) for a measure ν and a ν-integrable
function h, this identity becomes

µ
(
fn(h | · )

)
= µ(h) (2.4)

for each F≤n-measurable h. This last equation can, and will, be written
briefly as µ(fn(h)) = µ(h). From the point of view of probability-theory
the requirements (2.3)/(2.4) are equivalent to demanding that for each F≤n-
measurable h the function fn(h) be (a realization of) the conditional expecta-
tion Eµ(h | X≤n). In the translation- or shift-invariant case, the different fn

are obtained as translations of a single kernel, for instance f0. This amounts
to suppresing the subscript n of fn.

Every FΛ-measurable function h is of the form h(ω) = h̃(XΛ(ω)) = h̃(ωΛ)

for some function h̃. It is customary to identify h with h̃. Likewise, every
measure ν on FΛ can be identified with a measure ν̃ = ν ◦X−1

Λ on EΛ. With
these identifications (2.4) can be written in the form

∫ [∫
h(x≤n) fn(dω≤n | σn−1

−∞ )
]
µ(dσ) =

∫
h(ω≤n) µ(dω) (2.5)

for all h ∈ F≤n.
Objects like these have received a variety of names in the literature, like

chain with complete connections (Onicescu–Mihoc, 1935), chain of infinite
order (Harris, 1955) and g-measure (Keane, 1972). In the presence of conti-
nuity hypotheses of the type reviewed in Section 4, they correspond to what
Kalikow (1990) calls random Markov processes or uniform martingales.

Usually, the alphabet space (E, E) comes equipped with a natural measure
λ and the transition probabilities are defined by density functions pn : Ωn ×
Ω≤n−1 −→ [0,∞) in the form

fn(dω≤n | σn−1
−∞ ) = pn(ωn | σn−1

−∞ )
[
λ(dωn)× δσn−1

−∞
(dω≤n−1)

]
. (2.6)
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This is the standard situation when E is finite or countable, with λ equal to
the counting measure. In the shift-invariant case,

pn(ωn | ωn−1
−∞ ) = g(ωn

−∞) (2.7)

for a single function g [in symbolic dynamical systems it is convenient to
invert the sense of time and work with g(z∞n )].

For completeness, let us mention some well-known examples of families
of transition probabilities (we write them in the shift-invariant version for
simplicity).

• Markov of order k: For each B ∈ F0 the function f(B | · ) is measur-
able with respect to F[−k,−1]. With obvious identifications this can be
codified through the identity

f(B | σ−1
−∞) = f(B | σ−1

−k) .

In the case (2.6), the densities pn are of the form pn(ωn | σn−1
n−k).

• Mixture of Markov:

f(dω≤0 | σ−1
−∞) =

∑

k

ak f (k)(dω≤0 | σ−1
−k)

where each f (k) is a Markovian kernel of order k and 0 ≤ ak ≤ 1,∑
k ak = 1. The case of finite mixtures has been put forward by Raftery

(1985). In fact, if the alphabet is countable every kernel of the form
(2.6) with pn continuous with respect to the second argument can be
written as a (possibly infinite) mixture of Markov kernels.

• Variable-length Markov: For each B ∈ F0,

f(B | σ−1
−∞) = f(B | σ−1

−k(σ))

where k(σ) is a backwards stopping time, in the sense that the event
{k = `} is measurable with respect to F[−`,0]. Transitions of this
type, but with k(x) ≤ K for some finite K ∈ N have been studied
by Bühlman and Wyner (1999). If k(x) is unbounded, the kernels are
generally discontinuous with respect to the past.
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2.2 Standard set up for measures consistent with spec-
ifications

For comparison purposes let us now summarize the specification framework
as used in mathematical statistical mechanics. We denote by S the family of
finite subsets of Z.

Definition 2.8 A specification γ on (Ω,F) is a family of probability ker-
nels {γΛ}Λ∈S , γΛ : F × Ω → [0, 1] such that for all Λ in S,

(a) For each A ∈ F , γΛ(A | ·) ∈ FΛc .

(b) For each B ∈ FΛc and ω ∈ Ω, γΛ(B | ω) = 11B(ω).

(c) For each ∆ ∈ S : ∆ ⊃ Λ,

γ∆ γΛ = γ∆ . (2.9)

Property c) is called consistency, and it is written as a composition of prob-
ability kernels. With our notation for expectations, (2.9) is equivalently to

γ∆

(
γΛ(h | · )

∣∣∣ σ
)

= γ∆(h | ω) (2.10)

for each F -measurable function h and configuration σ ∈ Ω.
A Markov specification of range k corresponds to the particular case in

which for each Λ ∈ S the functions γΛ(A | ·) ∈ F∂kΛ for all A ∈ FΛ. Here
∂kΛ = {i ∈ Λc : |i − j| ≤ k for some j ∈ Λ}. Gibbsian specifications are
defined in terms of interactions via the Boltzmann prescription. They can
be characterized by suitable continuity and non-nullness properties which,
at the present level of generality, involve some subtleties regarding spaces of
observables and uniformity of the non-nullness. These have been discussed
at some length in van Enter, Fernández and Sokal (1992), Section 2.3.3.

Definition 2.11 A probability measure µ on (Ω,F) is said to be consistent
with a specification γ if

µ γΛ = µ ∀ Λ ∈ S . (2.12)

The family of these measures will be denoted G(γ).
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In comparing with the previous section, we see three major differences
between the frameworks provided by transition probabilities and by specifi-
cations.

(D1) Transition probabilities involve only singleton (single-site) kernels, while
specifications require kernels defined for each finite region.

(D2) Transition probabilities involve conditioning only with respect to the
past, while each specification kernel corresponds to conditioning with
respect to the whole complement of the relevant region, in particular
past and future. This is the essential difference at the conceptual level.

(D3) At the level of singletons, transition probabilities involve a further mea-
surability issue. Indeed, in (2.3)/(2.4), only observables depending on
the evolution up to time n are allowed, while no similar restriction is
present in the corresponding expression (2.12) for specifications.

In order to exploit the complementarity of the two frameworks, and to es-
tablish relationships between them, we develop in the sequel approaches that
reduce some of these differences. We work on issue (D1) from both sides:
On the one hand (Section 2.3) we propose the systematic use of systems of
multi-site transition probabilities that, as proven by the results of Sections
3, 4 and 5, lend themselves more easily to specification techniques. On the
other hand, in Section 7 we discuss the possibility of characterizing specifi-
cations through their singletons, as is the case for transition probabilities. In
Section 6 we address issue (D2) and we determine regimes where one- and
two-sided conditionings are related.

2.3 LIS

A way to treat transition probabilities on a more similar footing to specifica-
tions is to consider transitions to multi-site regions. Due to the measurability
constraint invoked in (D3) only interval-like regions can be considered (re-
gions with holes would lead to partial integrals with forbidden dependences
on future sites). Multi-site transitions are obtained from singletons in the
obvious manner :

f[`,m] , f` f`+1 · · · fm (2.13)

that is,

f[`,m](A|x`−1
−∞) = f`

[
f`+1(· · · fm(A| · ) · · · | · )

∣∣∣ x`−1
−∞

]
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for A ∈ F≤m. The resulting family admits a formalization parallel to that of
specifications, except that only intervals are allowed and that conditioning,
and measurability, are only leftwards. That is why we call them left interval -
specifications. In the sequel let us adopt the notation

Sb = finite intervals in Z , lΛ , min Λ , mΛ , max Λ

Definition 2.14 A left interval-specification (LIS) f on (Ω,F) is a fam-
ily of probability kernels {fΛ}Λ∈Sb

, fΛ : F≤mΛ
×Ω −→ [0, 1] such that for all

Λ in Sb,

(a) For each A ∈ F≤mΛ
, fΛ(A | · ) is F≤lΛ−1-measurable.

(b) For each B ∈ F≤lΛ−1 and ω ∈ Ω, fΛ(B | ω) = 11B(ω).

(c) For each ∆ ∈ Sb : ∆ ⊃ Λ,

f∆fΛ = f∆ on F≤mΛ
.

Definition 2.15 A probability measure µ on (Ω, F) is said to be consistent
with a LIS f (or a chain consistent with f) if for each Λ ∈ Sb

µfΛ = µ on F≤mΛ

The family of these measures will be denoted G(f).

Of course, the LIS and the standard set-up are totally equivalent:

Theorem 2.16 Let (fi)i∈Z be a family of probability kernels fi : F≤i ×Ω →
[0, 1] such that for each i ∈ Z
(a) fi (A | · ) is F≤i−1-measurable, for each A ∈ F≤i.

(b) fi (B | ω) = 11B(ω) for each B ∈ F≤i−1 and ω ∈ Ω,

Then the LIS f = {fΛ}Λ∈Sb
defined by

fΛ = flΛ flΛ+1 · · · fmΛ

is the unique LIS such that f{i} = fi for all i ∈ Z. Furthermore,

G(f) =
{

µ : µfi = µ, for all i ∈ Z
}

.

This theorem, left as an exercise to the reader, shows that the notion of
LIS does not, in itself, incorporate any new ingredient to the standard set-up.
Nevertheless, LIS are useful objects to study the structure and properties of
the set of processes consistent with a given family of transition probabilities.
Results so obtained are reviewed in the next three Sections.
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3 General results for LIS

The results grouped in this section do not impose any hypothesis on the
LIS. They correspond to well-known properties of measures consistent with
specifications (see, for instance, Chapters 7 and 14 in Georgii, 1988).

Theorem 3.1 (Extremality and triviality) Let f = (fΛ)Λ∈Sb
be a LIS

on (Ω,F). Let F−∞ ,
⋂

k∈ZF≤k ( left tail σ-algebra). Then

(a) G(f) is a convex set.

(b) A measure µ is extreme in G(f) if and only if it is trivial on F−∞.

(c) Let µ ∈ G(f) and ν ∈ P(Ω,F) such that ν ¿ µ. Then ν ∈ G(f) if and
only if there exists a F−∞-measurable function h ≥ 0 such that ν = hµ.

(d) Each µ ∈ G(f) is uniquely determined (within G(f)) by its restriction
to the left tail σ-algebra F−∞.

(e) Two distinct extreme elements µ, ν of G(f) are mutually singular on
F−∞.

Theorem 3.2 (Triviality and mixing) For each probability measure µ on
(Ω,F), the following statements are equivalent.

(a) µ is trivial on F−∞.

(b) lim
Λ↑Z

sup
B∈F≤lΛ−1

| µ(A ∩B)− µ(A)µ(B) |= 0, for all cylinder sets A ∈ F .

(c) lim
Λ↑Z

sup
B∈F≤lΛ−1

| µ(A ∩B)− µ(A)µ(B) |= 0, for all A ∈ F .

Theorem 3.3 (Infinite volume limits) Let f be a LIS, µ an extreme point
of G(f) and (Λn)n≥1 a sequence of regions in Sb such that Λn ↑ Z. Then

(a) fΛnh → µ(h) µ-a.s. for each bounded local function h on Ω

(b) If Ω is a compact metric space, then for µ-almost all ω ∈ Ω, fΛnh →
µ(h) for all continuous local functions h on Ω.
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The next theorem refers to ergodic properties. Its statement involves the
(right) shift τ(i) = i + 1 on Z, which induces, in the usual fashion, shift
operators (also denoted by τ) on subsets of Z, configurations and families
thereof, functions and measures. We assume that Ω is shift invariant and
denote by I the σ-algebra of shift-invariant measurable sets, Pinv(Ω,F) the
set of shift-invariant probability measures on (Ω,F), and Ginv(f) the family
of shift-invariant chains consistent with a LIS f . A measure in Pinv(Ω,F) is
ergodic if it is trivial on I.

Theorem 3.4 (Ergodic chains) Let f be a shift-invariant or station-
ary LIS, that is such that

fτΛ (τA | τω) = fΛ (A | ω)

for each Λ ∈ Sb and ω ∈ Ω. Then

(a) A chain µ ∈ Ginv(f) is extreme in Ginv(f) if and only if it is ergodic.

(b) Let µ ∈ Ginv(f). If ν ∈ Pinv(Ω,F) is such that ν ¿ µ, then ν ∈ Ginv(f).

(c) Ginv(f) is a face of Pinv(Ω,F). More precisely, if µ, ν ∈ Pinv(Ω,F) and
0 < s < 1 are such that s µ + (1− s) ν ∈ Ginv(f) then µ, ν ∈ Ginv(f).

4 Uniqueness of chains compatibles with LIS

We turn now to criteria under which a LIS has at most one consistent chain.

4.1 Uniqueness from transition-probability theory

A number of complementary uniqueness criteria are available in the litera-
ture, mostly obtained using coupling techniques for singleton probabilities.
In their original versions they suppose a finite or countable alphabet, Ω = EZ

and shift-invariant singletons. In particular, the transition probabilities have
the form (2.6)–(2.7) for a suitable function g defined on E−N. The different
criteria involve two types of hypotheses:

(i) Continuity hypotheses referring to the speed at which the k-variation

vark(g) , sup
{
|g(ω)− g(σ)| : ω0

−k = σ0
k

}
(4.1)

decreases with k.
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(ii) One of the following non-nullness hypotheses. A function g is

• (uniformly) non-null if

inf
ω∈Ω≤0

g(ω) > 0

• weakly (uniformly) non-null if

∑
ω0

inf
ω−1
−∞

g(ω) > 0

Here is a list of conditions under which the transitions probabilities de-
fined by g have at most one consistent chain. All but the last one involve a
continuity condition of the form

∑
n≥1

n∏

k=1

∆k = +∞ (4.2)

for a suitable sequence ∆k ∈ [0, 1].

(a) Harris (1955): g is weakly non-null and

∆k = 1− |E|
2

vark(g) . (4.3)

(b) Berbee (1987): g is non-null and

∆k = exp
(
−vark(log g)

)
. (4.4)

(c) Stenflo (2003): g is non-null and

∆k(g) = inf
(ω,σ) : ω−1

−k=σ−1
−k

∑
ω0

g(ω−1
−∞ω0) ∧ g(σ−1

−∞ω0) . (4.5)

(d) Johansson and Öberg (2002): g is non-null and

∑

k≥0

var2
k(log g) < +∞ . (4.6)
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These conditions are largely complementary. Harris’ criterion demands a
weaker continuity condition than Stenflo’s if |E| = 2 but the opposite is true
for the remaining cases. The variance of the log appears in Berbee’s criterion
because this author compares values of the g function through ratios rather
than through differences. He and Lalley (1986, 2000) obtain in addition
a regeneration scheme when

∑
vark(log g) < ∞. This scheme has been

extended by Comets, Fernández and Ferrari (2002) to weakly non-null g
satisfying a continuity condition like (4.2) but with ∆k given in (5.5) below.

We feel that in most of the preceding criteria little effort has been put
into optimizing the non-nullness condition. Guided by our experience with
non-Gibbsianness, we believe that a precise determination of the non-nullness
hypothesis is as important as that of the continuity hypothesis.

4.2 Uniqueness from LIS theory

Resorting to specification-like techniques, we can obtain two new unique-
ness criteria. The first one is the analogue of a condition found by Georgii
(1974; see also Georgii, 1988, Section 8.3) —later rediscovered by Lebowitz,
Bricmont and Pfister (1974).

Theorem 4.7 (One-sided boundary-uniformity) Let f be a LIS for which
there exists a constant c > 0 satisfying the following property: For every
m ∈ Z and every cylinder set A ∈ F≤m there exists an integer n < m such
that

f[n,m](A | ξ) ≥ c f[n,m](A | η) for all ξ, η ∈ Ω . (4.8)

Then there exists at most one chain consistent with f .

Requirement (4.8) corresponds to a certain “lack of rigidity” with respect to
the past. It combines non-nullness and continuity properties in a not very
explicit way (for instance it is satisfied if g is non-null and has summable
variations).

Our second criterion is a transcription of the well-known Dobrushin cri-
terion in statistical mechanics (Georgii, 1988, Chapter 8 and Simon, 1993,
Chapter V). No non-nullness hypothesis is involved, but topology plays a
role. Indeed, the alphabet espace (E, E) is assumed to have a Borel mea-
surable structure defined by some bounded metric d. The LIS is required to
be continuous in the sense that the functions Ω 3 ω −→ fΛ(A | ω) be
continuous for all Λ ∈ Sb and all A ∈ FΛ.
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For a given function h on configurations and j ∈ Z we define the d-
oscillation of h at j:

δd
j (h) , sup

{ |h(ξ)− h(η)|
d (ξj, ηj)

: ξj 6= ηj and ξ = η off j

}
(4.9)

and we call a d-sensitivity matrix for the LIS f a nonnegative matrix
α = (αij)i,j∈Z such that αij = 0 if j ≥ i and

δd
j (fih) ≤ δd

i (h) αij (4.10)

if j < i and h ∈ Fi.

Theorem 4.11 (One-sided Dobrushin) If f is a continuous LIS for which
there exists a d-sensitivity matrix α with

∑
j<i

αij < 1 for all i ∈ Z , (4.12)

then there exists at most one chain consistent with f .

The canonical choice for a d-sensitivity matrix is:

Cij(f) , sup
ξ=η off j

∥∥∥
◦
fi ( · | ξ) −

◦
fi ( · | η)

∥∥∥
d

d (ξj, ηj)
, j < i (4.13)

and Cij(f) = 0 otherwise. Here ‖·‖d is the Vasserstein-Kantorovich-Rubinstein

distance and
◦
fi ( · | ξ) is the restriction of each singleton measure to (Ωi,Fi).

If d is the discrete metric [d(ξj, ηj) = 1 if ξj 6= ηj and 0 otherwise], ‖ ‖d

coincides with the variational norm. For a countable alphabet we therefore
have

Cij = δj(gi) , sup
{
|gi(ξ)− gi(η)| : ξ = η off j

}
(4.14)

with gi is the function on Ωi
−∞ defined by

gi(ω
i
−∞) , pi(ωi | ωi−1

−∞) (4.15)

[pi defined in (2.6)]. In this way we obtain the following version of Dobrushin
criterion.

Corollary 4.16 A continuous LIS on a countable alphabet admits at most
one consistent chain if

∑
j<i

δj(gi) < 1 for all i ∈ Z . (4.17)
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5 Mixing properties for LIS

The following results refer to the speed at which the limits of Theorem 3.2
are achieved. They apply in the uniqueness regime, that is, for LIS having
at most one consistent measure. Mixing results come in two flavors. On
the one hand, they bound the loss of memory, namely the sensitivity of
the expectations f[−n,0](h0 | ω) on the past ω as n grows, for a function h0

measurable with respect to F0. On the other hand, they offer bounds on
correlations Corµ(h0, hn) = |µ(h0hn)− µ(h0)µ(hn)|.

5.1 Mixing from coupling

The mixing results in the literature are a corollary of the arguments leading to
the uniqueness criteria reviewed in Section 4.1 above. They apply in the same
setting (countable alphabet, shift-invariant transitions defined by a function
g) and assume a condition of the form (4.2) for a certain sequence ∆k ∈ [0, 1],
k ∈ N. The results rely on an auxiliary house of cards process defined by this
sequence. It is a Markovian process with E = N and transitions

P (k + 1 | k) = ∆k

P (0 | k) = 1−∆k
(5.1)

and zero otherwise. Let
∆∗

n = P (Wn = 0) (5.2)

where Wn is the chain starting at W0 = 0 and evolving with rates (5.1).
If h0 is a bounded F{0}-measurable function, the available mixing results

say that

sup
ω,σ

∣∣∣f[−n,0](h0 | ω)− f[−n,0](h0 | σ)
∣∣∣ ≤ ch0 ∆∗

n (5.3)

in the following situations:

(a) g non-null and
∆k = exp[−vark+1(log g)] . (5.4)

(b) g weakly non-null and

∆k = inf
w

∑
ω0

inf
η

g(η−k−1
−∞ ω−1

−k ω0) . (5.5)
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We see that, in both cases, the unique measure µ ∈ G(f) satisfies

Corµ(h0, hn) ≤ ch0 hn ∆∗
n (5.6)

for hn bounded and F<n-measurable.
Result (a) was obtained by Bressaud, Fernández and Galves (1999), it

was preceded by a slightly weaker version by Iosifescu (1992). Result (b)
appears explicitly in Comets, Fernández and Ferrari (2002). In the regime∏∞

k=1 ∆k > 0 it follows also from the regenerative constructions by Berbee
(1987) and Lalley (1986-2001).

Inequalities (5.3) and (5.6) are to be combined with the following prop-
erties of ∆∗

n (Bressaud, Fernández and Galves, 1999, appendix):

∑
m

m∏

k=0

∆k = +∞ ⇐⇒ ∆∗
n → 0 ; (5.7)

∞∏

k=0

∆k > 0 ⇐⇒
∑

k

(1−∆k) < +∞ ⇐⇒
∑

n

∆∗
n < +∞ ; (5.8)

1−∆k ≤ const k−a =⇒ ∆∗
n ≤ const n−a , (5.9)

and

1−∆k ≤ const exp(−ak) =⇒ ∆∗
n ≤ const(a−) exp[−(a−)n] (5.10)

where a− stands for any number strictly less than a.

5.2 Mixing from Dobrushin theory

In the setting of Section 4.2 we introduce the space of functions of bounded
d-oscillations in Λ:

Bd(Λ) ,
{
FΛ-measurable h : sup

j∈Λ
δd
j (h) < ∞

}
, (5.11)

for each Λ ⊂ Z. We also introduce the projection matrices

(PΛ)kj =

{
1 if k = j and k ∈ Λ
0 otherwise

(5.12)
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and we denote [
A

1− A

]

kj

,
∑
n≥1

[An]kj , (5.13)

for a matrix (Akj)k,j∈Z with nonnegative entries.
Dobrushin’s “dusting” argument yields the following loss-of-memory bound.

Theorem 5.14 Let f be a continuous LIS and (αij) a d-sensitivity matrix
for f . Then, for every Λ ∈ Sb, j < lΛ and h ∈ Bd(Λ),

δd
j (fΛh) ≤

∑

k∈Λ

δd
k(h)



|Λ|∑

l=1

(PΛ α)l




kj

=
∑

k∈Λ

δd
k(h)

[
PΛ α

1− PΛ α

]

kj

. (5.15)

This theorem yields obvious mixing results. For a compact alphabet, how-
ever, we get a more precise estimation of the mixing rates.

Theorem 5.16 Assume Ω compact and let f be a continuous LIS satisfying
the Dobrushin condition (4.12) for a d-sensitivity matrix (αij). Let µ be the
only chain consistent with f (it exists by compactness). Then if h1 ∈ Bd(Λ)
and h2 ∈ Bd(∆), with m∆ < lΛ,

Corµ (h1, h2) ≤ D2

4

∑

l∈∆

∑
m∈Λ

δd
m(h1) Aml δ

d
l (h2) (5.17)

where

Aml ,
[

PΛ α

1− PΛ α

]

ml

+
∑

k≤m∆

[
PΛ α

1− PΛ α

]

mk

[
P[k+1,m∆] α

1− P[k+1,m∆] α

]

lk

. (5.18)

To estimate the rates stated in the preceding theorems, the following
argument is useful. Suppose that there exists a function F : Z2 → R+

satisfying the triangle inequality F (i, j) ≤ F (i, k)+F (k, j), for all i, j, k ∈ Z,
such that

γi ,
∑
j<i

αij eF (i,j) < 1 , (5.19)

for each i ∈ Z. Then for each Λ ∈ Sb

[(PΛ α)n]kj ≤ γΛ e−F (k,j) , (5.20)
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with γΛ = maxi∈Λ γi. As a consequence,

[
PΛ α

1− PΛ α

]

kj

≤ γΛ

1− γΛ

e−F (k,j) . (5.21)

The bounds (5.20) and (5.21) can be used for exponential and power-law sen-
sitivities, in the latter case through functions of the form F (i, j) = c log(1 +
|i− j|).

It is easy to construct examples showing that these mixing results are
complementary to those of Section 5.1.

6 Relations between LIS and specifications

6.1 The objective

Our goal, in this part of our program, is to establish maps between LIS and
specifications that preserve important properties, in particular consistency
of measures. At the very least we seek maps

b : f −→ γf such that G(f) ⊂ G(γf ) (6.1)

and
c : γ −→ fγ such that G(γ) ⊂ G(fγ) . (6.2)

In addition we impose two natural demands:

1. The applications should pass on as many properties as possible, such as
continuity, non-nullness, loss of memory rates and validity of uniqueness
criteria.

2. In favorable cases, the maps must be inverse of each other:

γfγ

= γ , fγf

= f (6.3)

A program like this has been completely achieved for Markov processes
with finite alphabet through matrix-theoretical arguments (see, for instance,
Georgii, 1988, Chapter 3). Our results, besides generalizing the Markovian
results in many directions, offer an alternative purely probabilistic treatment
of them.
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6.2 The spaces

In this section the alphabet is assumed to be finite. For simplicity we state
the results in a shift-invariant setting. To be precise, we need two definitions
and a collection of spaces.

Let us denote S→ the family of intervals of the form V = [i, +∞[, i ∈ Z, or
V = Z. We say that a LIS f satisfies a hereditary uniqueness condition
(HUC) if for all V ∈ S→ and all configurations ω ∈ Ω, the LIS f (V,ω) defined
by

f
(V,ω)
Λ ( · | ξ) , fΛ( · | ωV− ξV ) , (6.4)

(Λ ∈ Sb, Λ ⊂ V , ωV c ξV ∈ Ω) admits a unique consistent chain. Likewise, a
specification γ satisfies a HUC (for the family S→) if for all sets V ∈ S→ and
all configurations ω ∈ Ω, the specification γ(V,ω) defined by

γ
(V,ω)
Λ ( · | ξ) , γΛ( · | ωV c ξV ) , (6.5)

(Λ ∈ S, Λ ⊂ V , ωV c ξV ∈ Ω) admits a unique consistent measure.
All the LIS uniqueness conditions presented so far are in fact HUC. On

the other hand, the Dobrushin and boundary-uniformity conditions for spec-
ifications are also HUC.

A specification γ is continuous on Ω if the functions Ω 3 ω −→
γΛ (σΛ | ω) are continuous. for all Λ ∈ S and all σΛ ∈ ΩΛ. It is non-null on
Ω if γΛ(ωΛ | ω) > 0 for each ω ∈ Ω and Λ ∈ S.

Here are the spaces we need.

LIS spaces:

Θ ,
{

f continuous and non-null on Ω
}

ΘSUM ,
{

f ∈ Θ :
∑
j<0

δj(g) < +∞
}

ΘHUC ,
{

f ∈ Θ : f satisfies a HUC
}

ΘEXP ,
{

f ∈ ΘSUM : δj(g) ≤ const exp(α j)
}
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Specification spaces:

Π ,
{

γ continuous and non-null on Ω
}

Π1 ,
{

γ ∈ Π : |G(γ)| = 1
}

ΠHUC ,
{

γ ∈ Π1 : γ satisfies a HUC over all [i, +∞[, i ∈ Z
}

ΠEXP ,
{

γ ∈ ΠHUC : δj(γ) ≤ const exp(−α |j|)
}

6.3 The results

Theorem 6.6 (LIS Ã specification) There is a map

b : ΘSUM → Π
f 7→ γf

defined by

γf
Λ (σΛ | ω) , lim

n→+∞
f[lΛ,n]

(
σΛωn

mΛ+1 | ω<lΛ

)

f[lΛ,n]

(
ωΛc∩[lΛ,n] | ω<lΛ

) (6.7)

which satisfies

(a) G(f) ⊂ G(γf )

(b) b restricted to b−1(Π1) is one-to-one.

(c) If f ∈ b−1(Π1), then G(f) = G(γf ) =
{
µf

}
, where µf is the only chain

consistent with γf .

Theorem 6.8 (specification Ã LIS) There is a map

c : ΠHUC → ΘHUC

γ 7→ fγ

defined by
fγ

Λ (A | ω<lΛ) , lim
k→+∞

γΛ∪[mΛ+1,mΛ+k] (A | ω) (6.9)

which enjoys the following properties:

(a) G(fγ) = G(γ) = {µγ}, where µγ is the only Gibbs measure consistent
with γ.
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(b) The map c is one-to-one.

(c) If γ satisfies the Dobrushin uniqueness condition, then so does fγ

(d) If γ satisfies the boundary-uniformity uniqueness condition, then so
does fγ.

Finally we generalize the known correspondence between Markov transi-
tion probabilities and specifications.

Theorem 6.10 (LIS ! specification)

(a) b ◦ c = Id over c−1(ΘSUM), and G(fγ) = G(γ) = {µγ}
(b) c ◦ b = Id over b−1(ΠHUC) and G(γf ) = G(f) =

{
µf

}

(c) b and c establish a one-to-one correspondence between ΘEXP and ΠEXP

that preserves the consistent measure.

7 Construction of a specification from single-

tons

To conclude we present a “(re)construction theorem” to build specifications
starting from single-site kernels. This is the only instance in this work where
we use the theory of LIS as an inspiration for the theory of specifications.
The inspiration is, of course, Theorem 2.16 where LIS are constructed from
singletons.

Our setting is general and not restricted to one dimension: There is an
arbitrary alphabet espace (E, E) and a configuration space (Ω,F), where
Ω ⊂ EZd

, for a given d ≥ 1, and F is the projection to Ω of EZd
. We

are interested in specifications defined as densities with respect to natural
alphabet measures [analogous to LIS of the form (2.6)]. That is, our initial
objects are

• A family of a priori measures (λi)i∈Zd ,

• their products λΛ ,
⊗

i∈Λ λi for Λ ⊂ Zd, and
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• the kernels over (Ω,F) defined, for each Λ ⊂ Zd, by

λΛ(A | ω) =
(
λΛ ⊗ δωΛc

)
(A) (7.1)

for every A ∈ F and ω ∈ Ω.

The kernels λΛ do not form a specification. In particular the measures λi

need not be normalized or even finite.

Theorem 7.2 Let (γi)i∈Zd be a family of probability kernels on F ×Ωi such
that

1. For each i ∈ Zd and for some measurable function ρi,

γi = ρiλi

2. The following properties hold:

(a) Normalization: (λi (ρi)) (ω) = 1, for all ω ∈ Ω and i ∈ Zd

(b) Bounded-positivity: infω λj

(
ρj ρ−1

i

)
(ω) > 0 and supω λj

(
ρj ρ−1

i

)
(ω) <

+∞ for every i, j ∈ Zd

(c) Order-consistency :

ρi

λi

(
ρi ρ

−1
j

)(ω) =
ρj

λj

(
ρj ρ−1

i

)(ω) (7.3)

for every i, j ∈ Z and every ω ∈ Ω

Then:

(I) There exists a unique family ρ = {ρΛ}Λ∈S of positive measurable func-

tions on Ω such that γ , {ρΛλΛ}Λ∈S is a specification with γ{i} = γi

for each i ∈ Zd.

(II) Such γ satisfies:

(i) G(γ) =
{
µ ∈ P(Ω,F) : µγi = µ for all i ∈ Zd

}

(ii) For all Λ, Γ ∈ S such that Γ ⊂ Λc.

ρΛ∪Γ =
ρΛ

λΛ

(
ρΛ ρ−1

Γ

) . (7.4)
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(iii) For each Λ ∈ S there exist constants CΛ, DΛ > 0 such that
CΛ ρk(ω) ≤ ρΛ(ω) ≤ DΛ ρk(ω) for all k ∈ Λ and all ω ∈ Ω.

(iv) If the functions ρi are continuous and
∫

supω(ρi ρ
−1
j )(σiω{i}c) λi(dσi) <

∞ for all i, j ∈ Zd, then the functions ρΛ, and thus the specifica-
tion γ, are continuous.

The construction of the specification is done recursively through identity
(7.4). The procedure recovers the corresponding generalizations of hypothe-
ses (a)–(c) at each inductive step. This theorem is very similar to Theorem
1.33 in Georgii (1988). However, the latter is in fact a reconstruction result
because singletons are supposed to come from a pre-existing specification.
Our theorem shows that the strategy can be turned into a true construction
algorithm, under the additional order-consistency condition (7.3). An alter-
native construction has been proposed by Dachian and Nahapetian (2001)
for countable alphabets. Their algorithm relies on a purely pointwise order-
consistency condition (ours is partially integrated on single sites).

8 Final remarks

The work reported here has touched only the very basic aspects of the link
between chains and specifications. In particular, most of the results of Sec-
tions 4–6 either apply to the uniqueness regime, where not many surprises
are expected, or involve Gibbsianness hypotheses. Therefore they are far
from being useful in any non-Gibbsianness quest. We nevertheless believe
that the issues raised are interesting per se, and justify the continuation of
the program independently of any non-Gibbsian application. To conclude, we
would like to list some (mostly obvious) questions suggested by the preceding
results, which point directions for further work.

In Section 4 we used specification techniques to analyze LIS defining a
unique chain. It would be natural to use similarly inspired tools to analyze
coexistence regimes. In particular one should investigate a possible adapta-
tion of arguments of the type used, for instance, by Fröhlich and Spencer
(1982), and whether they are related to those employed to prove existence of
multiple processes (Bramson and Kalikow, 1993; Berger, Hoffman and Sido-
ravicius, 2003). In particular this could help to determine the optimality of
various uniqueness criteria, complementing the result of the last reference.
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The work of Section 6 leaves us with a number of tantalizing open ques-
tions. The main difficulty in establishing the domain and range of the natural
maps proposed there is the worsening of the continuity bounds when passing
from left- to right-conditioning, or from two-sided to left-only. Are these
difficulties real, or only technical? Are there measures whose right continu-
ity rates are very different from the left ones? An ultimate example would
be a measure that is simultaneously a continuous process (i.e. with continu-
ous past dependence) and non-Gibbsian (because of a discontinuous future
dependence).

A possibly related issue is whether reasonably defined maps between LIS
and specifications could end up connecting systems with different numbers of
consistent measures. The possibility that γf have more consistent measures
than f is left open in Theorem 6.6 above. Can this happen? If so, could one
of the extra measures coincide on the left tail field with one of the common
ones? Of course, for general cases with coexisting measures the very definition
of maps like b or c of Section 6 is a delicate issue.

Finally, we mention two major aspects not treated at all in this work. On
the one hand, there must be useful relations between large-deviation prop-
erties and variational approaches for processes and Gibbs measures. To our
knowledge, the only example were relations of this sort have been exploited
is the seminal work of Lebowitz, Maes and Speer (1990). A Gibbsian setting
for probabilistic cellular automata is used in this reference to obtain a num-
ber of properties of these Markov processes with an uncountable alphabet.
On the other hand, we have not explored ways in which process results and
techniques could help understand measures defined via specifications. The
pioneer work of Berbee (1989) remains a challenging benchmark.
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