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1 Introduction

One of the major success stories in applied probability has been the devel-
opment of the theory of product-form queueing networks. Classical papers
include [4], [9], [1], [11], and [5]; see [12] for a textbook treatment. Recent
interesting papers are [3] and [7].

Important components of such product-form networks are M/G/1 queues
operating under a symmetric queueing discipline. This class of disciplines,
treated in Section 3.3 of [12], contains both the preemptive resume last-in-
first-out (LIFO) and the processor sharing (PS) disciplines as special cases.
A special feature of these symmetric queues is the fact that the steady-state
distribution of the queue length (the number of customers in the system,
including those in service) is geometric with probability of success 1−ρ, where
ρ < 1 is the traffic intensity. In particular, the steady-state distribution of the
queue length depends only on the mean of the service time and is otherwise
insensitive to the service time distribution.

In this paper a different approach to symmetric queues is taken. We focus
on time-dependent, rather than steady-state, behavior and also we explore
insensitivities with respect to the service discipline rather than the service
time distribution.

We first investigate the queue length process {L(t), t ≥ 0} of the M/G/1
LIFO queue with L(0) = 0. Letting τ(q) be an independent exponential
random variable with rate q > 0, we show that L(τ(q)) has a geometric
distribution. We find this very pleasing, since exactly the same distribution
was found earlier by [13] for the PS discipline. This implies that for any
t > 0, L(t) has the same distribution for both disciplines.

It would be very nice if the distribution of L(t) would be the same for all
symmetric disciplines. At present, this is beyond our reach and left as an open
question. Nevertheless, we do give a complete description of the distribution
of the time D1 until a first departure occurs. This distribution is shown to
be insensitive to the particular symmetric discipline chosen. We prove this
result by applying an insensitivity property of random permutations. As will
become clear, the class of symmetric service disciplines is exactly the right
class to consider in this setting.

The paper is organized as follows. Section 2 includes some preliminary
notations and definitions. In sections 3 and 4 the LIFO and PS queue length
distributions are treated. In Section 5, we present a simple, but useful,
insensitivity result for random permutations that is the basis for the analysis
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of Section 6. In Section 6 the Laplace-Stieltjes transform (LST) of D1 is
derived for an arbitrary symmetric queueing discipline. Section 7 is devoted
to the distribution of D1, which can be given in an explicit and intuitively
appealing form. The tail behavior of the distribution of D1 is derived in
Section 8.

2 Preliminaries

We consider an M/G/1 queue. The Poisson process {N(t), t ≥ 0} with
rate λ, represents the customer arrival process. The i.i.d. random variables
Bi, i ≥ 1, denote the service times of successively arriving customers, with
distribution B(·). As usual, denote ρ ≡ λEB1. Let β(α) ≡ Ee−αB1 be the

LST of B1 for α ≥ 0. Define the net input process X(t) =
∑N(t)

i=1 Bi− t. X(t)
is a Lévy process with exponent φ(α) = α− λ(1− β(α)), i.e. for Re α ≥ 0,

E[e−αX(t)] = etφ(α). (1)

Note that φ(α) is strictly convex and continuous on [0,∞) and tends to
infinity as α → ∞. In particular, φ(α) is strictly increasing on the interval
[α∗,∞), where α∗ = inf{α : φ(α) > 0}. When ρ ≤ 1 then α∗ = 0 and when
ρ > 1 then α∗ > 0, since for the former φ′(0) = 1− ρ ≥ 0 and for the latter
φ′(0) < 0. Since φ is continuous and strictly increasing on [α∗,∞), then
when viewed as a function from [α∗,∞) to [0,∞), it has an inverse which we
denote by κ(q), q ≥ 0.

The service discipline is assumed to be symmetric. Recall (cf. Section 3.3
of [12]) that a symmetric queueing discipline is defined as follows. For each
n let pn

1 , . . . , p
n
n be nonnegative and sum to one. If there are n− 1 customers

in the system in positions 1, . . . , n − 1 upon the arrival of a kth customer,
k ≥ n, then this arriving customer is put in position i with probability pn

i .
The customers who were in positions 1, . . . , i−1 remain in their positions and
the customers who were in positions i, . . . , n−1 move to positions i+1, . . . , n
respectively. After this repositioning, the customer in position j is allocated a
service rate of pn

j . Special cases of this discipline are the preemptive resume
LIFO discipline (take pn

1 = 1) and the PS discipline (take pn
i = 1/n for

i = 1, . . . , n). The M/G/1 queue length process for the latter two disciplines
is studied in the next two sections.

Throughout this paper {L(t), t ≥ 0} denotes the queue length process
(number of customers in the system). When we want to distinguish between
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the queue length process of the LIFO and PS disciplines we will use the
notations LLIFO(t) and LPS(t), respectively, but not otherwise.

3 The LIFO queue length

In this section we investigate the queue length process of the M/G/1 queue
operating under the (preemptive resume) LIFO discipline.

The first main step of our analysis is to observe that the queue length
process {L(t), t ≥ 0} can be expressed in terms of the net input process
{X(t), t ≥ 0} as follows, where X(s−) = limt↑s X(t). In the sequel, #{s :
S(s)} denotes the number of s-values for which statement S(s) holds.

Lemma 1 For any t ≥ 0 we have

L(t) = #{s ∈ [0, t] : X(s−) = inf
r∈[s,t]

X(r)}. (2)

This relation is explicitly stated in [14], where it is applied to derive a
diffusion approximation for {L(t), t ≥ 0}. It is also hidden in [17] and [18].
Furthermore, there is a close connection between LIFO queues and Galton-
Watson processes: the process {L(t), t ≥ 0} can be seen as an encoding
of a Galton-Watson tree. Such a connection also holds when the paths of
X(t) are a.s. of infinite variation. Then a local time analogue of L(t) called
the height process can be used to encode the genealogy of a continuous-state
branching process. We refer to [8] for a recent study and the state of the art
in this area.

We now give the main result of this section.

Theorem 1 Let τ = τ(q) be an independent exponentially distributed ran-
dom variable with rate q > 0. Then

P [L(τ(q)) = n] =

(
1− q

κ(q)

)n
q

κ(q)
. (3)

Proof: We apply Lemma 2 as follows. Set Xt(s) = X(t) − X((t − s)−).
Then straightforward manipulations show that

L(t) = #{s ∈ [0, t] : Xt(s) = sup
r∈[0,s]

Xt(r)}. (4)
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Since X(t) is reversible, we obtain for every t > 0,

L(t)
d
= #{s ∈ [0, t] : X(s) = sup

r∈[0,s]

X(r)}. (5)

From this it follows that

L(τ(q))
d
= #{s ∈ [0, τ(q)] : X(s) = sup

r∈[0,s]

X(r)}. (6)

Let τi, i ≥ 1, denote the successive ladder epochs of the Lévy process {X(t), t ≥
0}. It is well-known that {τi, i ≥ 1} is a (possibly terminating) renewal pro-
cess. It is easy to see that the number of renewals up to τ(q) (and hence also
L(τ(q)) must have a geometric distribution. Indeed, if ri denote the renewal
intervals, with Rn =

∑n
i=1 ri, and if K(t) denotes the number of renewals in

[0, t], then

P [K(τ(q)) ≥ n] = P [Rn ≤ τ(q)] = E[e−qRn ] = (E[e−qr1 ])n. (7)

To compute the probability of success for this geometric distribution, note
that

P [L(τ(q)) = 0] = P [τ1 > τ(q)]. (8)

Set S(t) = sup
0<s<t

X(s). Note that

P [τ1 > τ(q)] = P [S(τ(q)) = 0]. (9)

The LST of S(τ(q)) is well known, see e.g. Equation (3) on p. 192 of [2]. It
is given by

E[e−αS(τ(q))] =
q(κ(q)− α)

κ(q)(q − φ(α))
. (10)

Since φ(α)/α → 1 for α →∞, we obtain

P [S(τ(q)) = 0] = lim
α→∞

E[e−αS(τ(q))] =
q

κ(q)
. (11)

(7) and (11) imply (3).

Remark 1 We note that P [L(τ(q)) = 0|L(0) = 0] is the same as the condi-
tional probability that the workload is zero at time τ(q) starting from an empty
system. Thus, this probability is q/κ(q) for any work conserving discipline
and in particular for any symmetric discipline. An alternative derivation of
this probability may be found on page 260 of [6].

4



4 The PS queue length

Our starting point is the following formula, which is (2.6) in [13].
∫ ∞

0

e−qtE[zL(t)]dt =
1

q + (1− z)λ(1− π(q))
, (12)

where π(q) is the LST of the length of an M/G/1 busy period, i.e. π(q)
is the smallest root of the equation π(q) = β(q + λ − λπ(q)). However,
we prefer to use the expression π(q) = β(κ(q)), which is easy to verify and
can be found, for example, in [16]. From (12) we obtain, observing that
κ(q) = q + λ(1− π(q)), that

E[zL(τ(q))] =
q

q + (1− z)λ(1− π(q))

=
q

κ(q)− zλ(1− π(q))

=
q/κ(q)

1− z(1− q/κ(q))
.

This is the generating function of the right side of (3), that is, of a geometric
random variable with probability of success q/κ(q). We thus arrive at the
following interesting result.

Theorem 2 Let LLIFO(0) = LPS(0) = 0. Then

LLIFO(τ(q))
d
= LPS(τ(q)) for all q > 0 (13)

and
LLIFO(t)

d
= LPS(t) for all t > 0 . (14)

Proof: (13) follows from Theorem 1 and the computations made above. (14)
is implied by (13) from the uniqueness property of Laplace transforms, as
sampling at an exponential time is equivalent to taking a Laplace transform
with respect to time.

Remark 2 Although, starting from an empty system, the queue length dis-
tribution at an exponential time is geometric for the LIFO and PS disciplines,
the probability of success depends on the entire service time distribution. This
is in contrast to the steady state case, where the distribution is also geometric
but the probability of success is 1 − ρ whenever ρ < 1, thus depending only
on the mean.
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5 An insensitivity property of random per-

mutations

In the remainder of the paper we focus on D1, which is the time until a
first departure occurs from an M/G/1 queue with an arbitrary symmetric
service discipline. Our main results are given in the next two sections. In the
present section, we derive a preliminary result, which could be of independent
interest.

Lemma 2 Let U = (U1, . . . , Un), V = (V1, . . . , Vn) be random variables and
let Π = (Π1, . . . , Πn) be a random permutation such that (Π,V) and U are
independent and U1, . . . , Un are exchangeable. Then

P [U1 > VΠ1 , . . . , Un > VΠn ] = P [U1 > V1, . . . , Un > Vn]. (15)

When in addition U1, . . . , Un are independent and V1, . . . , Vn are i.i.d. r.v.’s
then, in particular

P [U1 > VΠ1 , . . . , Un > VΠn ] = P [U1 > V1]
n. (16)

Proof: For any fixed permutation π = (π1, . . . , πn),

P [U1 > VΠ1 , . . . , Un > VΠn|Π = π]

= P [U1 > Vπ1 , . . . , Un > Vπn|Π = π]

= P [Uπ1 > Vπ1 , . . . , Uπn > Vπn|Π = π]

= P [U1 > V1, . . . , Un > Vn|Π = π].

(17)

The second equality follows from the fact that U is independent of (Π,V) and
its components are exchangeable. Multiplying the leftmost and rightmost
expressions by P [Π = π] and summing over all possible permutations gives
the result.

6 Insensitivity of the first departure time

Consider an M/G/1 queue with a symmetric queueing discipline as described
in Section 2. Let {Yn, n ≥ 1} denote the inter-arrival times and recall that

6



{Bn, n ≥ 0} are the service times. For the moment we assume that customers
arrive according to some Poisson process with rate 1 and never leave. The
rate 1 is chosen without loss of generality and will be replaced later on with
another parameter. Thus, for now, Yn ∼ exp(1) for n ≥ 1.

We would like to show that the joint distribution of the times allocated
to the first n customers up to the n + 1 arrival epoch is identical to that of
YΠ1 , . . . , YΠn for some random permutation Π which is a functional of Y. If
this can be achieved, then once we introduce the service times, (Π,Y) and
B are independent and thus it follows from Lemma 2 that the probability
that none of the first n arriving customers has departed by the n + 1 arrival
epoch is given by

P [B1 > YΠ1 , . . . , Bn > YΠn ] = P [B1 > Y1]
n. (18)

This will allow us to study the distribution of the first departure time in
a symmetric queue (cf. Theorems 3 and 4 below). For what follows we define
for y > 0

y

0
= ∞, 0 · ∞ = 0. (19)

This helps in avoiding the nuisance of separately considering indices for which
pn

i is positive and those for which it is zero.
From Y1, . . . , Yn, we will construct X1, . . . , Xn, Π1, . . . , Πn, where X1, . . . , Xn

are independent as well as independent from Π1, . . . , Πn, are exp(1) dis-
tributed and

P [Π1 = π1, . . . , Πn = πn] =
n∏

k=1

pk
ik

(20)

for a unique choice of i1, . . . , in which is compatible with the symmetric
queueing discipline. Moreover, if I1, . . . , In are the (unique) random indices
that result in Π1, . . . , Πn then

YΠk
= pk

Ik
Xk + . . . + pn

In
Xn , (21)

where the right side is distributed like the amount of work received by the
kth arriving customer, provided that no one leaves.

We perform this construction recursively, starting with Xn, Πn. Denote

Xn = min
1≤i≤n

Yi

pn
i

, (22)
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and

Πn = arg min
1≤i≤n

Yi

pn
i

. (23)

In particular, due to our definition of y/0 only the indices with positive pn
i

are participating in this minimum. Since Yi

pn
i
∼ exp(pn

i ) it immediately follows

that Xn ∼ exp(pn
1 + . . .+pn

n) = exp(1), that P [Πn = i] = pn
i and that Xn and

Πn are independent. The random variables Πn and Xn have the following
interpretation: Πn is the position where the n-th arriving customer is inserted
and pn

Πn
Xn is the amount of service received by that customer up to the next

arrival epoch.
To construct Xn−1, Πn−1, consider now

Yj − pn
j Xn = pn

j

(
Yj

pn
j

− min
1≤i≤n

Yi

pn
i

)
(24)

and denote by Jn−1
1 , . . . , Jn−1

n−1 the indices in increasing order for which
Jn−1

k 6= Πn. Namely, if Πn = i for some 1 < i < n then

(Jn−1
1 , . . . , Jn−1

n−1 ) = (1, . . . , i− 1, i + 1, . . . , n) , (25)

if Πn = n then (Jn−1
1 , . . . , Jn−1

n−1 ) = (1, . . . , n − 1) and if Πn = 1 then
(Jn−1

1 , . . . , Jn−1
n−1 ) = (2, . . . , n).

It is easy to check that

YJn−1
1

− pn
Jn−1
1

Xn, . . . , YJn−1
n−1

− pn
Jn−1

n−1
Xn, Xn, Πn (26)

are independent with YJn−1
k

− pn
Jn−1

k

Xn ∼ exp(1).

Next we denote Y n−1
Jk

= YJn−1
k

− pn
Jn−1

k

Xn, let

Xn−1 = min
1≤i≤n−1

Y n−1

Jn−1
i

pn−1
i

(27)

and for

In−1 = arg min
1≤i≤n−1

Y n−1

Jn−1
i

pn−1
i

. (28)

We set Πn−1 = Jn−1
In−1

and observe that Xn−1, Xn, (Πn−1, Πn) are independent
with Xn−1 ∼ exp(1).
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It is important to note that we associate pn−1
i with the index Jn−1

i . If
we would not be careful to do this we would get an ordering which is not
compatible with the symmetric queueing discipline. For example, it is not
possible that between the nth and n + 1th arrival epochs a customer is in
position i and between the n−1th and nth arrival epochs it is in any position
other than i − 1 or i, depending on whether the newly arriving customer is
placed in position i, . . . , n or 1, . . . , i−1, respectively. The construction above
preserves this.

Similarly as before, we now let Jn−2
1 , . . . , Jn−2

n−2 be the indices in increasing
order that exclude Πn and Πn−1. As before, it is evident that

Y n−1

Jn−2
1

− pn−1

Jn−2
1

Xn−1, . . . , Y
n−1

Jn−2
n−2

− pn−1

Jn−2
n−2

Xn−1, Xn−1, Xn, (Πn−1, Πn) (29)

are independent, where

P [Πn−1 = i, Πn = j] =





pn−1
i pn

j if i < j,

pn−1
i−1 pn

j if i > j,
(30)

and the other variables are exp(1) distributed.
Letting Y n−2

Ji
= Y n−1

Jn−2
i

− pn−1

Jn−2
i

Xn−1 and associating pn−2
i with Y n−2

Ji
this

process can be repeated and eventually one obtains, as desired,

X1, . . . , Xn, Π1, . . . , Πn (31)

where X1, . . . , Xn are independent as well as independent from
Π1, . . . , Πn, are exp(1) distributed and

P [Π1 = π1, . . . , Πn = πn] =
n∏

k=1

pk
ik

(32)

for an appropriate choice of i1, . . . , in which is compatible with the symmetric
queueing discipline, as required. Here it should be noted that for every per-
mutation π1, . . . , πn there is a unique choice of
i1, . . . , in so that the right side is equal to the left. Observe that ik is the
position at which the kth arriving customer is inserted.

With this construction it can be checked that (21) holds, where I1, . . . , In

are the unique insertion locations that achieve

9



Π1, . . . , Πn. Since I = (I1, . . . , In) is a functional of Π1, . . . , Πn we have
that X1, . . . , Xn, I are independent and thus

{
pk

Ik
Xk + . . . + pn

In
Xn| k = 1, . . . , n

}
(33)

are jointly distributed like the amount of services allocated to the arriving
customers until the (n + 1)-st arrival epoch. Thus (YΠ1 , . . . , YΠn) also has
this distribution and we are done.

Remark 3 We note that for the special case of the PS discipline, pn
i = 1/n

and our construction implies that YΠ1 , . . . , YΠn are the order statistics, that
is, it is a reordering of Y1, . . . , Yn in decreasing order. For the special case of
the LIFO discipline, Πi = i so that with probability one Π = (1, . . . , n).

Now return to the original M/G/1 queue, that is, with Poisson arrival
process N = {N(t)| t ≥ 0} with rate λ and i.i.d. service times B1, B2, . . .
which are independent of the arrival process. Let D(t) = N(t)−L(t) be the
number of departures by time t and D1 = inf{t | D(t) = 1} be the time until
the first departure.

Theorem 3 Let τ(q) ∼ exp(q) be independent of (N, B1, B2, . . .) and as-
sume that at time 0 the system is empty. Then for any symmetric queueing
discipline,

P [D(τ(q)) = 0| N(τ(q)) = n] =
(
1− Ee−(λ+q)B1

)n
. (34)

Consequently,

P [D(τ(q)) = 0] =
q

q + λEe−(λ+q)B1
, (35)

and hence

Ee−qD1 =
λEe−(λ+q)B1

q + λEe−(λ+q)B1
. (36)

Proof: It is well known that the number of arrivals until time τ(q) has a
geometric distribution. That is

P [N(τ(q)) = n] =

(
λ

q + λ

)n
q

q + λ
. (37)

Moreover, it is also well known and easy to check that if S1, . . . , Sn are the first
n arrival epochs of the Poisson process N , then the conditional distribution
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of S1, S2 − S1, . . . , Sn − Sn−1, τ(q) − Sn given that N(τ(q)) = n is that of
n + 1 independent random variables which are distributed exp(q + λ). From
(16) and the derivation that follows it we have that

P [D(τ(q)) = 0| N(τ(q)) = n] = P [B1 > Y1(q + λ)]n (38)

where Y1(q + λ) ∼ exp(q + λ) and is independent of B1. Since

P [B1 ≤ Y1(q + λ)] = Ee−(q+λ)B1 , (39)

(34) follows.
Multiplying (34) by (37), summing and simplifying, the right side of (35)

is easily obtained. Finally, we note that

P [D(τ(q)) = 0] = P [D1 > τ(q)] = 1− P [D1 ≤ τ(q)] = 1− Ee−qD1 , (40)

which gives (36).

7 The distribution of the first departure time

Theorem 3 will allow us to determine the distribution of the time until the
first departure from the M/G/1 queue with symmetric service discipline.
First some notation. Recall from Section 2 that B(·) denotes the service
time distribution, with LST β(·). Let

Bλ(dt) =
e−λt

β(λ)
B(dt) (41)

and

Be,λ(dt) =
e−λt(1−B(t))dt∫∞

0
e−λu(1−B(u))du

=
λe−λt(1−B(t))dt

1− β(λ)
. (42)

In particular note that

∫ t

0

e−λu(1−B(u))du = E

∫ t

0

e−λu1{B1>u}du = E

∫ B1∧t

0

e−λudu , (43)

where a ∧ b = min(a, b), and thus

Be,λ(t) =
1− Ee−λ(B1∧t)

1− Ee−λB1
. (44)
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From these notations it is clear that

β(q + λ)

β(λ)
=

∫ ∞

0

e−qtBλ(dt) ≡ βλ(q) (45)

and that
1− β(λ + q)

λ + q
1− β(λ)

λ

=

∫ ∞

0

e−qtBe,λ(dt) ≡ βe,λ(q) (46)

Also, it can be easily verified that

Bλ(t) = P [B1 ≤ t| B1 ≤ Y1(λ)] (47)

and that
Be,λ(t) = P [Y1(λ) ≤ t| B1 > Y1(λ)] , (48)

where Y1(λ) ∼ exp(λ) and is independent of B1.
With these definitions we are now able to characterize the distribution of

D1 starting from an empty system. By R ∼ G(p) we mean that P [R = n] =
p(1− p)n for n ≥ 0.

Theorem 4 Let Y ∼ exp(λ), X ∼ Bλ, I ∼ G (β(λ)) and Zi ∼ Be,λ where
Y, X, I, Z1, Z2, . . . are independent. Set W0 = 0 and Wn =

∑n
i=1 Zi for n ≥ 1.

Then, under the conditions of Theorem 3,

D1 ∼ Y + X + WI . (49)

Proof: From (36), (45) and (46), it is simple to verify that

Ee−qD1 =
λEe−(λ+q)B1

q + λEe−(λ+q)B1
=

λβ(λ + q)

λ + q − λ(1− β(λ + q))

=
λ

λ + q
· β(λ)βλ(q)

1− (1− β(λ))βe,λ(q)

=
λ

λ + q
· βλ(q) ·

∞∑
n=0

(1− β(λ))nβ(λ)βn
e,λ(q)

(50)

and the result follows.
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Remark 4 In the LIFO case, Formula (49) can be easily interpreted. In-
deed, D1 then consists of the following three terms: (i) the first arrival in-
terval Y ; (ii) X, viz., a service time conditioned on being smaller than the
next interarrival interval; (iii) a number of service times (of newly arriving
customers, who are immediately being taken into service), all conditioned on
being larger than the next interarrival time - this is a G(β(λ)) distributed
random variable.

We now recall that α∗ = inf{α | φ(α) > 0} where, for α > 0, φ(α) =
α− λ(1− β(α)).

Corollary 1 Let

u∗ = sup{u | u < λ, λβ(λ− u) > u} = λ− α∗ . (51)

For each u < u∗,

EeuD1 =
λβ(λ− u)

λβ(λ− u)− u
(52)

and is finite. Moreover,
lim
u↑u∗

EeuD1 = ∞. (53)

Proof: Y , X and Zi have finite moment generating functions for u < λ.
Thus if we show that

(1− β(λ))EeuZ1 =
λ

λ− u
(1− β(λ− u)) (54)

is strictly less than one, then the form of EeuD1 follows from Theorem 4. The
right side of (54) is less than one if and only if λβ(λ−u)−u is strictly positive,
which is true since u < u∗. If u∗ = λ then since EeuY = λ/(λ− u) → ∞ as
u ↑ λ, this must also hold for D1. If u∗ < λ then the denominator of (52)
converges to zero from above and hence EeuD1 converges to infinity.

Remark 5 We recall that α∗ = 0 whenever ρ ≡ λEB1 ≤ 1 and that α∗ > 0
whenever ρ > 1. In either case α∗ < λ since φ(λ) = λβ(λ) > 0. Moreover,
φ(α) > 0 for α > α∗ and in particular for α∗ < α ≤ λ. This implies that if
ρ ≤ 1 then u∗ = λ, if ρ > 1 then 0 < u∗ < λ and that λβ(λ− u)− u > 0 for
0 ≤ u < u∗.
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Remark 6 All moments of D1 are finite, without the need for any moment
conditions on the service times. In particular, it is not necessary to assume
that the traffic intensity is less than one nor even that the service time has
a finite mean. This may seem surprising at first sight, as this is definitely
false for, e.g., the first come first served discipline. However, considering the
preemptive resume LIFO discipline it becomes more plausible since the first
one to depart is the first customer who has a service time which is less than
the exponential inter-arrival time that follows it.

We note that, with Y,X, I, Zi as in Theorem 4,

EY =
1

λ
,

EX = −β′λ(0) = −β′(λ)

β(λ)
,

EI =
1− β(λ)

β(λ)
,

EZi = −β′e,λ(0) =
1

λ
+

β′(λ)

1− β(λ)
.

(55)

Since ED1 = EY + EX + EIEZ1, we can verify the following.

Corollary 2 Under the conditions of Theorem 3

ED1 =
1

λβ(λ)
. (56)

However, we note that this result is an immediate consequence of (36), which
is obtained upon dividing the middle and right expressions of (36) by q and
letting q ↓ 0.

As for the variance we observe that

V (WI) = EIV (Z1) + V (I)(EZ1)
2 , (57)

so that
V (D1) = V (Y ) + V (X) + EIV (Z1) + V (I)(EZ1)

2. (58)

Carrying out the computation or directly from (36) via differentiation one
obtains:
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Corollary 3 Under the conditions of Theorem 3,

V (D1) =
1 + 2λβ′(λ)

(λβ2(λ))2
. (59)

Since the function f(x) = xe−x attains its maximum at x = 1 then

−2λβ′(λ) = 2EλBe−λB ≤ 2e−1 < 1 (60)

so that the right hand side of the formula for the variance is indeed positive.

8 The tail behavior of the first departure time

We investigate the tail behavior of D1, using Theorem 4. The logarithmic
asymptotics follow from Corollary 1. If ρ 6= 1 it is also possible to derive
exact asymptotics. We use the notation f(x) ∼ g(x) to denote that f(x) =
g(x)(1 + o(1)) as x →∞. We consider first the case ρ < 1.

Proposition 1 If ρ < 1, then

P [D1 > x] ∼ 1

1− ρ
e−λx. (61)

Proof: Proposition 5.1 of [15] implies the following: Let Y be exponen-
tial with rate λ and let A be such that E[eλA] < ∞. Then P [Y + A > x] ∼
E[eλA]P [Y > x]. Apply this result by choosing A = X+WI as defined in The-
orem 4. From (50) it can be easily be shown that E[eλ(X+WI)] = 1/(1− ρ) <
∞. This proves the
assertion.

We now turn to the opposite case ρ > 1. In that case WI will dominate the
asymptotics. Recall the definition of u∗ given in Corollary 1.

Proposition 2 If ρ > 1, then

P [D1 > x] ∼ (1− β(λ))β(λ− u∗)

u∗
(
1− β′(λ− u∗) + 1−β(λ−u∗)

λ−u∗

)e−u∗x

=
(1− β(λ))β(α∗)

(λ− α∗)
(
1− β′(α∗) + 1−β(α∗)

α∗

)e−(λ−α∗)x .

(62)
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Proof: We first derive the tail behavior of P [WI > x] using a general result
on the tail behavior of geometric random sums. In particular, we use the
version given as Theorem 2(ii) in [10] to obtain

P [WI > x] ∼ β(λ)

u∗E[Z1eu∗Z1 ]
e−u∗x. (63)

The condition of that theorem is satisfied since EeuZ1 is finite for u < λ and
u∗ < λ. Next, observe that E[eu∗Y ] = λ/(λ− u∗) and Eeu∗X = βλ(−u∗) are
finite. Applying again [15] we get

P [D1 > x] = P [WI + Y + X > x]

∼ λ

λ− u∗
βλ(−u∗)

β(λ)

u∗E[Z1eu∗Z1 ]
e−u∗x .

(64)

From (45),

βλ(−u∗) =
β(λ− u∗)

β(λ)
(65)

and from (46),

E[Z1e
u∗Z1 ] = −B′

e,λ(−u∗) =
λ

λ− u∗
1− β′(λ− u∗) + 1−β(λ−u∗)

λ−u∗

1− β(λ)
. (66)

Hence, the right side of (62) is equal to the right side of (64).

If ρ = 1 and the service times have an exponentially bounded tail, then one
can show that P [D1 > x] ∼ Cxe−λx for some constant C > 0. We omit the
details.
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