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1 Introduction

In various statistical models, such as density estimation, and estimation of regression curves
or hazard rates, monotonicity constraints can arise naturally. For these situations certain
isotonic estimators have been in use for considerable time. Often these estimators can be
seen as maximum likelihood estimators in a semi-parametric setting. Although conceptually
these estimators have great appeal and are easy to formulate, their distributional properties
are usually of a very complicated nature.

In the context of density estimation, the non-parametric maximum likelihood estimator
f̂n for a non-increasing density f on [0,∞) has been discovered by Grenander (1956). It is
defined as the left derivative of the least concave majorant (LCM) of the empirical distribution
function Fn constructed from a sample X1, . . . , Xn from f . Prakasa Rao (1969) obtained
the asymptotic pointwise behavior of f̂n. Groeneboom (1985) provided an elegant proof of
the same result, which can be formulated as follows. For each x0 > 0,

|4f(x0)f ′(x0)|−1/3n1/3
{

f̂n(x0)− f(x0)
}
→ argmax

t∈IR

{
W (t)− t2

}
(1.1)

in distribution, where W denotes standard two-sided Brownian motion originating from zero.
The first distributional result for a global measure of deviation for f̂n was found by Groene-

boom (1985), concerning asymptotic normality of the L1-distance ‖f̂n−f‖1 (see Groeneboom,

Hooghiemstra and Lopuhaä (1999) for a rigorous proof).
Apart from estimating a monotone density f on (0,∞), the estimation of the value of

f or its derivatives at zero, is required in various statistical applications. There is a direct
connection with renewal processes, where the backward recurrence time in equilibrium has
density f(x) = (1 − G(x))/µ, where G and µ are the distribution function and mean of the
interarrival times (see Feller (1971)). Clearly, f is decreasing and a natural parameter of
interest is µ = 1/f(0). An interesting application is in the context of natural fecundity of
human populations, where one is interested in the time T it takes for a couple from initiating
attempts to become pregnant until conception occurs. Keiding et. al. (2002) investigate a
current-duration design where data are collected from a cross-sectional sample of couples that
are currently attempting to become pregnant. If U is the time to discontinuation without
success and V is the time to discontinuation of follow-up, then X = T ∧ U is the waiting
time until termination for whatever reason, and Y = T ∧ U ∧ V is the observed experience
waiting time. When the initiations happen according to a homogeneous Poisson process, Y
is distributed as the backward recurrence time in a renewal process in equilibrium, and the
survival function of X is f(x)/f(0), where f is decreasing. Woodroofe and Sun (1993)

provide a different application in the context of astronomy. If Y denotes the normalized
angular diameter of a galaxy, conditional on that it is being observed, then 1/Y 3 has a non-
increasing density f and the proportion of galaxies that are observed is 1/f(0). Another
example is from Hampel (1987), who studies the sojourn time of migrating birds. Under
certain model assumptions, the expected sojourn time is −f(0)/f ′(0), where f is the (convex)
decreasing density of the time span between capture and recapture of a bird.

In contrast to (1.1), Woodroofe and Sun (1993) showed that f̂n is not consistent at zero.
They proposed a penalized maximum likelihood estimator f̂P

n (0) and in Sun and Woodroofe

(1996) it was shown that

n1/3
{

f̂P
n (0)− f(0)

}
→ sup

t>0

W (t)− (c− f(0)f ′(0)t2/2)
t

,
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where c depends on the penalization. Surprisingly, the inconsistency of f̂n at zero does not
influence the behavior of ‖f̂n − f‖1. Nevertheless, the inconsistency at the boundaries will
have an effect if one studies other global measures of deviation, such as the Lk-distance, for
k larger than one, or the supremum distance.

In this paper we study the behavior of the Grenander estimator at the boundaries of
the support of f . We first consider a non-increasing density f on [0,∞) and investigate the
behavior of

nβ
{

f̂n(cn−α)− f(cn−α)
}

, (1.2)

for c > 0, where 0 < α < 1 and β > 0 are chosen suitably in order to make (1.2) converge
in distribution. Our results will imply that when f ′(0) < 0, then f̂n(cn−1/3) is a consistent
estimator for f(0) at rate n1/3 with a limiting distribution that is a functional of W . This
immediately yields f̂S

n(0) = f̂n(n−1/3) as a simple estimator for f(0). A more adaptive
alternative would be to find the value of c that minimizes the asymptotic mean squared
error. This turns out to depend on f and then has to be estimated. The resulting estimator
f̂A

n (0) = f̂n(ĉn−1/3) will be compared with the penalized maximum likelihood estimator from
Sun and Woodroofe (1996). We will also consider the case where f ′(0) = 0 and f ′′(0) < 0,
which requires different values for c and α. For non-increasing f with compact support, say
[0, 1], we also investigate the behavior near one. Similarly, this leads to a consistent estimator
for f(1). Moreover, the results on the behavior of f̂n at the boundaries of [0, 1] allows an
adequate treatment of the Lk-distance between f̂n and f . It turns out that for k > 2.5, the
inconsistency of f̂n starts to affect the behavior of ‖f̂n − f‖k (see Kulikov and Lopuhaä

(2004a)).
In Section 2 we give a brief outline of our approach for studying differences such as (1.2),

and state some preliminary results for the argmax functional. Section 3 is devoted to the
behavior of f̂n near zero. Section 4 deals with the behavior of f̂n near the boundary at the
other end of the support for a density f on [0, 1]. In Section 5 we propose two estimators f̂S

n(0)
and f̂A

n (0) based on the presented theory, and compare these with the penalized maximum
likelihood estimator from Sun and Woodroofe (1996).

2 Preliminaries

Instead of studying the process {f̂n(t) : t ∈ [0, 1]} itself, we will use the more tractable inverse
process {Un(a) : a ≥ 0}, where Un(a) is defined as the last time that the process Fn(t) − at
attains its maximum:

Un(a) = argmax
t∈[0,∞)

{Fn(t)− at} .

Its relation with f̂n is as follows: with probability one

f̂n(x) ≤ a ⇔ Un(a) ≤ x. (2.1)

Let us first describe the line of reasoning used to prove convergence in distribution of (1.2).
We illustrate things for the case c = 1, 0 < α < 1/3, and f ′(0) < 0. It turns out that in this
case the proper choice for β is 1/3. Hence, we will consider events of the following type

n1/3
{

f̂n(n−α)− f(n−α)
}
≤ x.
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According to relation (2.1), this event is equivalent with

Un

(
f(n−α) + xn−1/3

)
− n−α ≤ 0.

The left hand side is the argmax of the process

Zn(t) = Fn(t + n−α)− f(n−α)t− xtn−1/3.

With suitable scaling, the process Zn converges in distribution to some Gaussian process Z.
The next step is to use an argmax version of the continuous mapping theorem from Kim

and Pollard (1990). The version that suffices for our purposes, is stated below for further
reference.

Theorem 2.1 Let {Z(t) : t ∈ IR} be a continuous random process satisfying

(i) Z has a unique maximum with probability one,

(ii) Z(t) → −∞, as |t| → ∞, with probability one.

Let {Zn(t) : t ∈ IR} be a sequence of random processes satisfying

(iii) argmaxt∈IR Zn(t) = Op(1), as n →∞.

If Zn converges in distribution to Z, in the topology of uniform convergence on compacta,
then argmaxt∈IR Zn(t) converges in distribution to argmaxt∈IR Z(t).

Application of this theorem yields that Un

(
f(n−α) + xn−1/3

)
, properly scaled, convergences

in distribution to the argmax of a Gaussian process. Convergence of (1.2) then follows from
another application of (2.1).

The main difficulty in verifying the conditions of Theorem 2.1, is showing that (iii) holds.
It requires careful handling of all small order terms in the expansion of the process. In the
process of proving condition (iii) we will frequently use the following lemma, which enables
us to suitably bound the argmax from above.

Lemma 2.1 Let f and g be continuous functions on K ⊂ IR.

(i) Suppose that g is non-increasing. Then argmaxx∈K {f(x) + g(x)} ≤ argmaxx∈K f(x).

(ii) Let C > 0 and suppose that for all s, t ∈ K, such that t ≥ C+s, we have that g(t) ≤ g(s).
Then argmaxx∈K {f(x) + g(x)} ≤ C + argmaxx∈K f(x).

In studying processes like Zn we will use a Brownian approximation similar to the one used in
in Groeneboom, Hooghiemstra and Lopuhaä (1999). Let En denote the empirical process√

n(Fn − F ). For n ≥ 1, let Bn be versions of the Brownian bridge constructed on the same
probability space as the uniform empirical process En◦F−1 via the Hungarian embedding,
where

sup
t∈[0,1]

|En(t)−Bn(F (t))| = Op(n−1/2 log n) (2.2)

(see Komlos, Major and Tusnady (1975)). Define versions Wn of Brownian motion by

Wn(t) = Bn(t) + ξnt, t ∈ [0, 1],
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where ξn is standard normal random variable independent of Bn. This means that we can
represent Bn by the pathwise equality Bn(t) = Wn(t)− tWn(1).

We will often use a Brownian scaling argument in connection with argmax functionals.
Note that argmaxt{Z(t)} does not change by multiplying Z with a constant, and that the
process W (bt) has the same distribution as the process b1/2W (t). This implies that

a argmax
t∈I

{
W (bt)− ctk

}
= argmax

t∈aI

{
W (ba−1t)− ca−ktk

}

d= argmax
t∈aI

{
b1/2a−1/2W (t)− ca−ktk

}

= argmax
t∈aI

{
W (t)− cb−1/2a−k+1/2tk

}
,

(2.3)

for I ⊂ IR and constants a, b > 0 and c ∈ IR.

3 Behavior near zero

We first consider the case that f is a non-increasing density on [0,∞) satisfying

(C1) 0 < f(0) = limx↓0 f(x) < ∞.

(C2) For some k ≥ 1,
0 < |f (k)(0)| ≤ sup

s≥0
|f (k)(s)| < ∞,

with f (k)(0) = limx↓0 f (k)(x), and f (i)(0) = 0 for 1 ≤ i ≤ k − 1.

Under these conditions we determine the behavior of the Grenander estimator near zero.
With the proper normalizing constants the limit distribution of n−β

(
f̂n(n−α) − f(n−α)

)
is

independent of f . Define D[Z(t)](a) as the right derivative of the LCM on IR of the process
Z(t) at the point t = a, and define DR similarly, where the LCM is restricted to the set t ≥ 0.

Theorem 3.1 Suppose f satisfies conditions (C1)-(C2) and let c > 0. Then

(i) for 1/(2k + 1) < α < 1 and A1 = (c/f(0))1/2, the sequence

A1n
(1−α)/2

(
f̂n(cn−α)− f(cn−α)

)

converges in distribution to DR [W (t)] (1), as n →∞.

(ii) for A2k =
√

B2k/f(0) and B2k =
(
f(0)1/2|f (k)(0)|−1(k + 1)!

)2/(2k+1), the sequence

A2k

{
nk/(2k+1)

(
f̂n

(
cB2kn

−1/(2k+1)
)− f

(
cB2kn

−1/(2k+1)
))− |f (k)(0)|(cB2k)k

k!

}

converges in distribution to DR

[
W (t)− tk+1

]
(c), as n →∞.

(iii) for 0 < α < 1/(2k + 1) and A3k = (2(k − 1)!)1/3 |f(0)f (k)(0)ck−1|−1/3, the sequence

A3kn
1/3+α(k−1)/3

(
f̂n(cn−α)− f(cn−α)

)

converges in distribution to D
[
W (t)− t2

]
(0), as n →∞.
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Remark 3.1 In order to formulate the limiting distributions in Theorem 3.1 in a similar
way, they have been expressed in terms of slopes of least concave majorants. However, note
that similar to switching relation (2.1), one finds that

DR [W (t)] (1) d=
√

argmax
t∈[0,∞)

{W (t)− t}

D
[
W (t)− t2

]
(0) d= 2 argmax

t∈IR

{
W (t)− t2

}
.

In studying the behavior of (1.2), we follow the line of reasoning described in Section 2. We
start by establishing convergence in distribution of the relevant processes. It turns out that
we have to distinguish between three cases concerning the rate at which n−α tends to zero.

Lemma 3.1 Suppose f satisfies (C1)-(C2) and let W denote standard two-sided Brownian
motion on IR. For 1/(2k + 1) ≤ α < 1, t ≥ 0 and x ∈ IR, define

Zn1(x, t) = n(1+α)/2
(
Fn(tn−α)− f(0)tn−α

)− xt.

(i) For 1/(2k + 1) < α < 1, the process {Zn1(x, t) : t ∈ [0,∞)} converges in distribution,
in the uniform topology on compacta, to the process {W (f(0)t)− xt : t ∈ [0,∞)}.

(ii) For α = 1/(2k + 1), the process {Zn1(x, t) : t ∈ [0,∞)} converges in distribution, in the
uniform topology on compacta, to {W (f(0)t)− xt− |f (k)(0)|tk+1/(k + 1)! : t ∈ [0,∞)}.

(iii) For 0 < α < 1/(2k + 1), b = (1− 2α(k − 1)) /3, t ≥ −cnb−α and x ∈ IR, define

Zn2(x, t) = n(b+1)/2
(
Fn(cn−α + tn−b)− Fn(cn−α)− f(cn−α)tn−b

)
− xt.

Then the process {Zn2(x, t) : t ∈ [−cnb−α,∞)} converges in distribution, in the uniform
topology on compacta, to the process {W (f(0)t)−xt−ck−1|f (k)(0)|t2/(2(k−1)!) : t ∈ IR}.

The next step is to use Theorem 2.1. The major difficulty is to verify condition (iii) of this
theorem. The following lemma ensures that this condition is satisfied.

Lemma 3.2 Let f satisfy (C1)-(C2) and let Zn1, Zn2, and b be defined as in Lemma 3.1.

(i) For 1/(2k + 1) < α < 1 and x > 0, argmaxt∈[0,∞) Zn1(x, t) = Op(1).

(ii) For α = 1/(2k + 1) and x ∈ IR, argmaxt∈[0,∞) Zn1(x, t) = Op(1).

(iii) For 0 < α < 1/(2k + 1) and x ∈ IR, argmaxt∈[−cnb−α,∞) Zn2(x, t) = Op(1).

With Lemmas 3.1 and 3.2 at hand, the proof of Theorem 3.1 consists of using switching
relation (2.1) and an application of Theorem 2.1.

Proof of Theorem 3.1: (i) First note that by condition (C2),

n(1−α)/2
(
f̂n(cn−α)− f(cn−α)

)
= n(1−α)/2

(
f̂n(cn−α)− f(0)

)
+O(n(1−(2k+1)α)/2),

where (1− (2k + 1)α)/2 < 0. For x > 0, according to (2.1),

P
{

n(1−α)/2
(
f̂n(cn−α)− f(0)

)
≤ x

}
= P

{
nαUn(f(0) + xn−(1−α)/2) ≤ c

}
. (3.1)
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If Zn1 is the process defined in Lemma 3.2(i), then

0 ≤ nαUn(f(0) + xn−(1−α)/2) = argmax
t∈[0,∞)

Zn1(x, t) = Op(1), (3.2)

where, according to Lemma 3.1, the process {Zn1(x, t) : t ∈ [0,∞)} converges in distribution
to the process {W (f(0)t) − xt : t ∈ [0,∞)}. To apply Theorem 2.1, we have to extend the
above processes to the whole real line. Therefore define

Z̃n1(t) =
{

Zn1(x, t) , t ≥ 0,
t , t ≤ 0.

Then, for x fixed, Z̃n1 converges in distribution to the process Z1, where

Z1(t) =
{

W (f(0)t)− xt , t ≥ 0,
t , t ≤ 0.

Moreover, since Zn1(x, 0) = 0, together with (3.2), it follows that

argmax
t∈IR

Z̃n1(t) = argmax
t∈[0,∞)

Z̃n1(t) = nαUn(f(0) + xtn−(1−α)/2) = Op(1).

The process Z1 is continuous and since Var(Z1(s) − Z1(t)) 6= 0, for s, t > 0 with s 6= t, it
follows from Lemma 2.6 in Kim and Pollard (1990) that Z1 has a unique maximum with
probability one. By an application of the law of iterated logarithm for Brownian motion:

P

{
lim sup
|u|→∞

W (u)√
2|u| log log |u| = 1

}
= 1, (3.3)

it can be seen that Z1(t) → −∞, as |t| → ∞. Theorem 2.1 now yields that argmaxt∈IR Z̃n1(t)
converges in distribution to argmaxt∈IR Z1(t) = argmaxt≥0 {W (f(0)t)− xt}. Using (3.1),
together with (2.3) this implies that

P
{

n(1−α)/2
(
f̂n(cn−α)− f(0)

)
≤ x

}
= P

{
argmax

t∈IR
Z̃n1(t) ≤ c

}

→ P

{
argmax

t≥0
{W (f(0)t)− xt} ≤ c

}

= P

{
argmax

t≥0

{
W (t)− xc1/2t

f(0)1/2

}
≤ 1

}
.

Similar to switching relation (2.1), the right hand side equals P{(f(0)/c)1/2DR[W (t)](1) ≤ x},
so that it remains to show that P{n(1−α)/2(f̂n(cn−α)− f(0)) ≤ 0} → 0. But this is evident,
as for any ε > 0, using (2.3) once more,

P
{

n(1−α)/2
(
f̂n(cn−α)− f(0)

)
≤ 0

}
≤ P

{
n(1−α)/2

(
f̂n(cn−α)− f(0)

)
≤ ε

}

→ P

{
argmax

t≥0

{
W (t)− εt√

f(0)

}
≤ c

}

= P

{
argmax

t≥0
{W (t)− t} ≤ cε2

f(0)

}
.
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When ε ↓ 0, the right hand side tends to zero, which can be seen from

P

{
lim sup

t↓0
W (t)√

2t log log(1/t)
= 1

}
= 1.

This proves (i).
(ii) First note that by (C2) and the fact that f (k)(0) < 0 (see the proof of Lemma 3.1),

nk/(2k+1)
(
f̂n(cB2kn

−1/(2k+1))− f(cB2kn
−1/(2k+1))

)
− |f (k)(0)|(cB2k)k

k!
= nk/(2k+1)

(
f̂n(cB2kn

−1/(2k+1))− f(0)
)

+ o(1),

and that according to (2.1), P
{

nk/(2k+1)
(
f̂n(cB2kn

−1/(2k+1))− f(0)
)
≤ x

}
is equal to

P
{

B−1
2k n1/(2k+1)Un

(
f(0) + xn−k/(2k+1)

)
≤ c

}
.

With Zn1 being the process defined in Lemma 3.1 with α = 1/(2k + 1), we get

B−1
2k n1/(2k+1)Un

(
f(0) + xn−k/(2k+1)

)
= argmax

t∈[0,∞)
{Zn1(x,B2kt)} = Op(1).

Again, we first extend the above process to the whole real line:

Z̃n1(t) =
{

Zn1(x,B2kt) , t ≥ 0,
t , t ≤ 0.

Then, according to Lemma 3.1, Z̃n1 converges in distribution to the process

Z2(t) =
{

W (f(0)B2kt)−B2kxt− |f (k)(0)|Bk+1
2k tk+1/(k + 1)! , t ≥ 0,

t , t ≤ 0.

Similar to the proof of (i), it follows from Theorem 2.1 that argmaxt Z̃n1(t) converges in
distribution to argmaxt Z2(t). This implies that

P
{

A2kn
k/(2k+1)

(
f̂n(cB2kn

−1/(2k+1))− f(0)
)
≤ x

}

→ P

{
argmax

t≥0

{
W (f(0)B2kt)−A−1

2k B2kxt− |f (k)(0)|Bk+1
2k tk+1/(k + 1)!

}
≤ c

}

= P

{
argmax

t≥0

{
W (t)− xt− tk+1

}
≤ c

}

= P
{

DR

[
W (t)− tk+1

]
(c) ≤ x

}
,

by means of Brownian scaling similar to (2.3), and a switching relation similar to (2.1).
(iii) According to (2.1), we have

P
{

n(1−b)/2
(
f̂n(cn−α)− f(cn−α)

)
≤ x

}

= P
{

nb
(
Un(f(cn−α) + xn−(1−b)/2)− cn−α

)
≤ 0

}
,

(3.4)
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and with Zn2 as defined in Lemma 3.2(iii), we get

nb
(
Un(f(cn−α) + xn−(1−b)/2)− cn−α

)
= argmax

t∈[−cnb−α,∞)

Zn2(x, t) = Op(1).

As in the proof of (i) and (ii), we extend the above process to the whole real line:

Z̃n2(t) =
{

Zn2(x, t) , t ≥ −cnb−α,
Zn2(x,−cnb−α) + (t + cnb−α) , t < −cnb−α.

Then, by Lemma 3.1, Zn2 converges in distribution to the process Z3, where

Z3(t) = W (f(0)t)− xt− |f (k)(0)|ck−1

2(k − 1)!
t2, t ∈ IR.

Similar to the proof of (i) and (ii), it follows from Theorem 2.1 that argmaxt Zn2(t) converges
in distribution to argmaxt Z3(t). Together with (3.4), this implies that

P
{

n(1−b)/2A3k

(
f̂n(cn−α)− f(cn−α)

)
≤ x

}

→ P

{
argmax

t∈IR

{
W (f(0)t)−A−1

3k xt− |f (k)(0)|ck−1

2(k − 1)!
t2

}
≤ 0

}

= P

{
argmax

t∈IR

{
W (t)− xt− t2

} ≤ 0
}

= P
{
D

[
W (t)− t2

]
(0) ≤ x

}
,

again using Brownian scaling similar to (2.3), and a switching relation similar to (2.1).

4 Behavior near the end of the support

Suppose that f has compact support and, without loss of generality, assume this to be the
interval [0, 1]. In this section we investigate the behavior of f̂n near one. Although there
seems to be no simple symmetry argument to derive the behavior near one from the results
in Section 3, the arguments to obtain the behavior of

nβ
{

f(1− n−α))− f̂n(1− n−α)
}

,

are similar to the ones used in studying (1.2). If f(1) > 0, then f̂n(1) will always under
estimate f(1), since by definition f̂n(1) = 0. Nevertheless, the behavior near the end of the
support is similar to the behavior near zero.

For this reason, we only provide the statement of a theorem for the end of the support,
which is analogous to Theorem 3.1. Motivations for studying the behavior near the end of
the support are not so strong as for the behavior near zero. However, the behavior near one
is required for establishing the asymptotic normality of the Lk-distance between f̂n and f .
Similar to (C1) and (C2) we will assume that

(C3) 0 < f(1) = limx↑1 f(x) < ∞.
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(C4) For some k ≥ 1
0 < |f (k)(1)| ≤ sup

0≤s≤1
|f (k)(s)| < ∞,

with f (k)(1) = limx↑1 f (k)(x), and f (i)(1) = 0 for 1 ≤ i ≤ k − 1 .

We then have the following theorem.

Theorem 4.1 Suppose f satisfies conditions (C3)-(C4) and c > 0. Then

(i) for 1/(2k + 1) < α < 1 and Ã1 = (c/f(1))1/2, the sequence

Ã1n
(1−α)/2

(
f(1− cn−α)− f̂n(1− cn−α)

)

converges in distribution to DR [W (t)] (1), as n →∞.

(ii) for Ã2k =
√

B̃2k/f(1) and B̃2k = (f(1)1/2|f (k)(1)|−1((k + 1)!))2/(2k+1), the sequence

Ã2k

{
nk/(2k+1)

(
f(1− cB̃2kn

−1/(2k+1))− f̂n(1− cB̃2kn
−1/(2k+1))

)
− |f (k)(1)|(cB̃2k)k

k!

}

converges in distribution to DR

[
W (t)− tk+1

]
(c), as n →∞.

(iii) for 0 < α < 1/(2k + 1) and Ã3k = ((k − 1)!)1/3|4f(1)f (k)(1)ck−1|−1/3, the sequence

Ã3kn
1/3+α(k−1)/3

(
f(1− cn−α)− f̂n(1− cn−α)

)

converges in distribution to D
[
W (t)− t2

]
(0), as n →∞.

The proof of this theorem follows from convergence in distribution of the relevant processes,
as described in the next lemma.

Lemma 4.1 Suppose f satisfies (C3)-(C4) and let W denote standard two-sided Brownian
motion on IR. For 1/(2k + 1) ≤ α < 1 and t, x ∈ IR, define Yn1(x, t) by

Yn1(x, t) = n(1+α)/2
(
Fn(1− tn−α)− Fn(1) + f(1)tn−α

)− xt.

(i) For 1/(2k + 1) < α < 1, the process {Yn1(x, t) : t ∈ [0, nα]} converges in distribution, in
the uniform topology on compacta, to the process {W (f(1)t)− xt : t ∈ [0,∞)}.

(ii) For α = 1/(2k + 1), the process {Yn1(x, t) : t ∈ [0, nα]} converges in distribution, in the
uniform topology on compacta, to {W (f(1)t)− xt− |f (k)(1)|tk+1/(k + 1)! : t ∈ [0,∞)}.

(iii) For 0 < α < 1/(2k + 1) and b = (1− 2α(k − 1))/3, define Yn2(x, t) by

Yn2(x, t) = n(1+b)/2
(
Fn(1− cn−α − tn−b)− Fn(1− cn−α) + f(1− cn−α)tn−b

)
− xt.

Then the process {Yn2(x, t) : t ∈ [−cnb−α, nb(1−cn−α)]} converges in distribution, in the
uniform topology on compacta, to {W (f(1)t)−xt− ck−1|f (k)(1)|t2/(2(k− 1)!) : t ∈ IR}.

Next, we apply Theorem 2.1. Again the major difficulty is establishing condition (iii) of this
theorem. This is ensured by the following lemma.

Lemma 4.2 Let f satisfies (C3)-(C4) and let Yn1, Yn2, and b be defined as in Lemma 4.1.

(i) For 1/(2k + 1) < α < 1 and x > 0, argmaxt∈[0,nα] Yn1(x, t) = Op(1).

(ii) For α = 1/(2k + 1) and x ∈ IR, argmaxt∈[0,nα] Yn1(x, t) = Op(1).

(iii) For 0 < α < 1/(2k + 1), argmaxt∈[−cnb−α,nb(1−cn−α)] Yn2(x, t) = Op(1).
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5 A comparison with the penalized NPMLE

Consider a decreasing density f on [0,∞). We first consider the case where f ′(0) < 0. As
pointed out in Woodroofe and Sun (1993), the NPMLE f̂n for f is not consistent at zero.
They proposed a penalized NPMLE f̂P

n (α, 0), and in Sun and Woodroofe (1996) it was
shown that

n1/3
{

f̂P
n (αn, 0)− f(0)

}
→ sup

t>0

W (t)− (c− 1
2f(0)f ′(0)t2)
t

,

where c is related to the smoothing parameter αn = cn−2/3. Sun and Woodroofe (1996)

also provide (to some extent) an adaptive choice for c that leads to an estimate α̂n of the
smoothing parameter, and report some results of a simulation experiment for f̂P

n (α̂n, 0).
We propose two consistent estimators of f(0) both converging at rate n1/3. A simple

estimator is f̂S
n(0) = f̂n(n−1/3). This estimator is straightforward and does not have any ad-

ditional smoothing parameters. According to Theorem 3.1(ii), f̂S
n(0) is a consistent estimator

for f(0), converging at rate n1/3. It has a limiting distribution that is a functional of W :

A21n
1/3

{
f̂S

n(0)− f(0)
}
→ DR

[
W (t)− t2

]
(1/B21),

where A21 and B21 are defined in Theorem 3.1(ii). In order to reduce the mean squared
error, we also propose an adaptive estimator f̂A

n (0) = f̂n(c∗1B̂21n
−1/3) for f(0). Here c∗k is

the value that minimizes E(DR[W (t) − tk+1](c))2, and B̂21 is an estimate for the constant
B21 = 41/3f(0)1/3|f ′(0)|−2/3 in Theorem 3.1(ii). Computer simulations show that c∗k ≈ 0.345
for both k = 1 and k = 2. For B̂21 we take B̂21 = 41/3f̂S

n(0)1/3|f̃ ′n(0)|−2/3, where f̃ ′n(0) =
min(n1/6(f̂n(n−1/6) − f̂n(n−1/3)),−n−1/3) is an estimate for f ′(0). As we have seen above,
f̂S

n(0) is consistent for f(0), and according to Theorem 3.1, f̃ ′n(0) is consistent for f ′(0). When
f is twice continuously differentiable, it converges at rate n1/6. Therefore B̂21 is consistent
for B21 and f̂A

n (0) is a consistent estimator of f(0), converging with rate n1/3. It has the
following limit behavior:

A21n
1/3

{
f̂A

n (0)− f(0)
}
→ DR

[
W (t)− t2

]
(c∗1),

where A21 is defined in Theorem 3.1(ii).
We simulated 10000 samples of sizes n = 50, 100, 200, and 10000 from a standard ex-

ponential distribution with mean one. For each sample, the values of n1/3
{
f̂S

n(0) − f(0)
}
,

n1/3
{
f̂A

n (0) − f(0)
}

and n1/3
{
f̂P

n (α̂n, 0) − f(0)
}

were computed. The value of α̂n was com-
puted as proposed in Sun and Woodroofe (1996), α̂n = 0.649 · β̂−1/3

n n−2/3, where

β̂n = max

{
f̂P

n (α0, 0)
f̂P

n (α0, 0)− f̂P
n (α0, xm)

2xm
, n−q

}
,

is an estimate for β = −f(0)f ′(0)/2. Here, xm denotes the second point of jump of the
penalized NPMLE f̂P

n (α0, ·) computed with smoothing parameter α0. The parameter α0 =
c0n

−2/3, and q should be taken between 0 and 0.5. However, Sun and Woodroofe (1996)

do not specify how to choose q and c0 in general. We took q = 1/3, and for α0 the values as
listed in their Table 2: α0 = 0.0516, 0.0325 and 0.0205 for sample sizes n = 50, 100 and 200.
For sample size n = 10000 we took the theoretical optimal value α0 = 0.649β−1/3n−2/3, with
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n1/3{f̂S
n(0)− f(0)} n1/3{f̂A

n (0)− f(0)} n1/3{f̂P
n (α̂n, 0)− f(0)}

n Mean Variance MSE Mean Variance MSE Mean Variance MSE

50 −0.847 0.439 1.157 −0.738 0.934 1.478 −0.072 1.296 1.301
100 −0.853 0.484 1.211 −0.777 0.742 1.345 −0.079 1.530 1.537
200 −0.868 0.536 1.289 −0.793 0.807 1.436 −0.075 1.732 1.738

10000 −0.917 0.700 1.541 −0.643 1.045 1.458 −0.195 1.913 1.951

Table 1: Simulated mean, variances and mean squared error for the three estimators at the
standard exponential distribution.

β = 0.5. It is worth noticing that Sun and Woodroofe (1996) do not optimize the MSE, but
n1/3E|f̂P

n (α̂n, 0)−f(0)|. Nevertheless, computer simulations show that the αn minimizing the
MSE is approximately the same and that n2/3E|f̂P

n (α, 0)− f(0)|2 is a very flat function in a
neighborhood of αn. A similar property holds for the value c∗k minimizing the AMSE of our
estimator.

In Table 1 we listed simulated values for the mean, variance and mean squared error of the
three estimators. The penalized NPMLE is less biased, but has a larger variance. Estimator
f̂A

n (0) performs better in the sense of mean squared error, approaching the best theoretically
expected performance. It is also remarkable how good it mimics its limiting distribution for
already small samples. Estimator f̂S

n(0) performs a little worse than f̂A
n (0), having the largest

bias, but the smallest variance.
If k = 2 in condition (C2), it is possible to estimate f(0) at a rate faster than n1/3. If it

is known in advance that k = 2, we can produce two consistent estimators of f(0) converging
at rate n2/5. Similar to the previous case, a simple estimator is f̂S,2

n (0) = f̂n(n−1/5). It is a
consistent estimator of f(0), converging at rate n2/5, and has the following limit behavior:

A22n
2/5

{
f̂S,2

n (0)− f(0)
}
→ DR

[
W (t)− t3

]
(1/B22),

where A22 and B22 are defined in Theorem 3.1(ii). Again, we also propose an adaptive
estimator f̂A,2

n (0) = f̂n(c∗2B̂22n
−1/5) for f(0), where B̂22 is an estimate for the constant

B22 = 361/5f(0)1/5|f ′′(0)|−2/5 in Theorem 3.1(ii), and c∗2 ≈ 0.345 is the value that minimizes
E(DR[W (t) − t3](c))2. For B̂22 we take B̂22 = 361/5f̂S,2

n (0)1/5|f̃ ′′n(0)|−2/5, where we estimate
f ′′(0) by f̃ ′′n(0) = min(2n1/4(f̂n(n−1/8)− f̂n(n−1/5)),−n−1/5). As we have seen above, f̂S,2

n (0)
is consistent for f(0), and according to Theorem 3.1, f̃ ′′n(0) is consistent for f ′′(0) with rate
n1/8 if f is three times continuously differentiable. Therefore B̂22 is a consistent estimator
for B22 and f̂A,2

n (0) is a consistent estimator of f(0), converging with rate n2/5:

A22n
2/5

{
f̂A,2

n (0)− f(0)
}
→ DR

[
W (t)− t3

]
(c∗2),

where A22 is defined in Theorem 3.1(ii).
We simulated 10000 samples of sizes n = 50, 100, 200, and 10000 from a half-normal

distribution. For each sample, the values of n2/5
{
f̂S,2

n (0) − f(0)
}

and n2/5
{
f̂A,2

n (0) − f(0)
}

were computed. Sun and Woodroofe (1996) do not consider the possibility of constructing
a special estimator for the case k = 2, though we believe that this is also possible with a
penalization technique. In Table 2 we listed simulated values for the mean, variance and
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n2/5{f̂S,2
n (0)− f(0)} n2/5{f̂A,2

n (0)− f(0)}
n Mean Variance MSE Mean Variance MSE

50 −0.429 0.371 0.555 −0.252 0.459 0.523
100 −0.437 0.402 0.592 −0.278 0.502 0.579
200 −0.440 0.440 0.634 −0.373 0.549 0.688

10000 −0.419 0.559 0.735 −0.326 0.747 0.853

Table 2: Simulated mean, variances and mean squared error for both estimators at the half-
normal distribution.

mean squared error of both estimators. The simple estimator is more biased but its variance
is smaller than variance of the adaptive one.

If it is not known in advance that k = 2, then application of estimators f̂S,2
n (0) and f̂A,2

n (0)
is undesirable. If in fact k = 1, they are still consistent, but their convergence rate will be
n1/5. On the other hand, when k = 2, then f̂S

n(0), f̂A
n (0), and fP

n (α̂n, 0) are still applicable.
In that case, according to Theorem 3.1(i), f̂S

n(0) is a consistent estimator of f(0) converging
at rate n1/3, such that

n1/3
{

f̂S
n(0)− f(0)

}
→

√
f(0)DR [W (t)] (1).

Also f̂A
n (0) is still consistent for f(0) in case k = 2, but now at rate n7/18. This can be seen

as follows. Since f ′(0) = 0, it follows that

n1/6f̃ ′n(0) → −
√

f(0)DR [W (t)] (1) +
f ′′(0)

2
.

As f̂S
n(0) = f(0) +Op(n−1/3), this implies that B̂21n

−1/3 = Op(n−2/9). Application of Theo-
rem 3.1(i) yields that f̂A

n (0) = f(0) +Op(n−7/18). Sun and Woodroofe (1996) also propose
to use f̂P

n (α̂n, 0) as an estimate of f(0) in the case k ≥ 2. They prove that in that case
n1/3{f̂P

n (α̂n, 0)− f(0)} → 0.
We simulated 10000 samples of sizes n = 50, 100, 200, and 10000 from a standard half-

normal distribution. For each sample the values of n1/3{f̂S
n(0) − f(0)}, n1/3{f̂A

n (0) − f(0)}
and n1/3{f̂P

n (α̂n, 0) − f(0)} were computed. In Table 3 we listed simulated values for the
mean, variance and mean squared error of the three estimators. The simple estimator has
the smallest variance, but as the sample size increases it becomes more biased. Nevertheless,

n1/3{f̂S
n(0)− f(0)} n1/3(f̂A

n (0)− f(0)} n1/3{f̂P
n (α̂n, 0)− f(0)}

n Mean Variance MSE Mean Variance MSE Mean Variance MSE

50 0.012 0.320 0.320 0.046 0.475 0.477 0.331 0.659 0.768
100 0.058 0.317 0.320 0.073 0.406 0.412 0.336 0.742 0.855
200 0.104 0.316 0.327 0.091 0.383 0.391 0.338 0.812 0.926

10000 0.269 0.296 0.368 0.204 0.319 0.361 0.279 0.714 0.792

Table 3: Simulated mean, variances and mean squared error for the three estimators at the
half-normal distribution.
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Exponential Half-normal

Estimator Mean Variance MSE Mean Variance MSE

n1/3{f̂S
n(0)− f(0)} −0.885 0.805 1.591 0.336 0.316 0.429

n1/3{f̂n(c∗1B21n
−1/3)− f(0)} −0.298 1.043 1.131 0 0 0

n1/3{f̂P
n (α̂n, 0)− f(0)} −0.349 1.096 1.218 0 0 0

n2/5{f̂S,2
n (0)− f(0)} −∞ ∞ ∞ −0.415 0.670 0.842

n2/5{f̂n(c∗2B22n
−1/5)− f(0)} −∞ ∞ ∞ −0.140 0.718 0.737

Table 4: Theoretical limiting mean, variances and mean squared error for the three estimators.

it is stable for already small sample sizes. The adaptive estimator becomes more biased with
growing sample size, but with smaller MSE. The penalized MLE is most biased, also having
a much larger variance than its simple and adaptive competitors.

Finally, in Table 4 we listed the true limiting values for the mean, variance, and MSE,
for all estimators at the exponential and half-normal distribution. The finite sample behavior
of the simple estimators f̂S

n(0) (see Tables 1 and 3) and f̂S,2
n (0) (see Table 2) reasonably

matches the theoretical behavior. The adaptive estimators exhibit larger deviations from
their theoretical values. This is probably explained by the fact that even for larger sample
sizes, the estimation of the derivatives of f in B2k still has a large influence.

One might prefer a scale-equivariant version of the above estimators. One possibility is
f̂n(Xm:n), where Xm:n denotes the mth order statistic. The sequence m = m(n) should
be chosen in such a way that m(n) → ∞ and m(n)/n → 0, e.g., m(n) = ban2/3c. In
that case, one can show that f̂n(Xm:n) is asymptotically equivalent to f̂n(af(0)−1n−1/3). Its
limiting distribution can be obtained from Theorem 3.1 and the AMSE optimal choice a∗

will depend on f(0) and f ′(0). For this choice, f̂n(a∗f(0)−1n−1/3) has the same behavior as
f̂n(c∗1B21n

−1/3). Another possibility is to estimate f(0) by means of a numerical derivative
of Fn:

f̂D
n (0) =

Fn(Xm:n)
Xm:n

=
m/n

Xm:n
,

where m = m(n) as above. For this estimator it can be shown that n1/3{f̂D
n (0) − f(0)} is

asymptotically normal with mean −|f ′(0)|a/(2f(0)) and variance f(0)2/a. This implies that
the minimal AMSE is a multiple of (f(0)|f ′(0)|)2/3, which also holds for f̂S

n(0) and f̂A
n (0) (see

Theorem 3.1(ii) for the case k = 1). Computer simulations show that the AMSE of f̂A
n (0) is

always the smallest of the three.
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6 Appendix

Proof of Lemma 2.1:
Let x0 = argmaxx∈K f(x). If x0 = ∞, there is nothing left to prove, therefore assume that
x0 < ∞.

(i) By definition of x0 and the fact that g is non-increasing, for x ≥ x0, we must have
f(x) + g(x) ≤ f(x0) + g(x0). Hence, we must have

argmax
x∈K

{f(x) + g(x)} ≤ x0 = argmax
x∈K

f(x).

This proves (i).
(ii) If (C + x0,∞) ∩ K = ∅, the statement is trivially true, so only consider the case

(C + x0,∞) ∩ K 6= ∅. Then by definition f(x) ≤ f(x0), for all x ∈ (C + x0,∞) ∩ K, and
by the property of g, we also have g(x) ≤ g(x0), for x ∈ (C + x0,∞) ∩ K. This implies
f(x) + g(x) ≤ f(x0) + g(x0), for all x ∈ (C + x0,∞) ∩K. Hence, we must have

argmax
x∈K

{f(x) + g(x)} ≤ C + x0 = C + argmax
x∈K

f(x).

This proves the lemma.

Proof of Lemma 3.1:
Decompose the process Zn1 as follows,

Zn1(x, t) = nα/2Wn

(
F (tn−α)

)
+ n(1+α)/2

{
F (tn−α)− f(0)tn−α

}− xt

− nα/2F (tn−α)Wn(1) + nα/2Hn(tn−α),
(6.1)

where Hn(t) = En(t) − Bn(F (t)). By Brownian scaling, the process nα/2Wn (F (tn−α)) has
the same distribution as the process W (nαF (tn−α)), and by uniform continuity of Brownian
motion on compacta,

W
(
nαF (tn−α)

)−W (f(0)t) → 0,

uniformly for t in compact sets. Since α > 1/(2k + 1) we have that

n(1+α)/2
{
F (tn−α)− f(0)tn−α

}
= n(1+α)/2 f (k)(θt)

(k + 1)!
(tn−α)k+1 → 0,

uniformly for t in compact sets. Because nα/2F (tn−α)Wn(1) = Op(n−α/2), together with
(2.2) this proves (i).

In case (ii), first note that if f (k)(0) 6= 0, then we must have f (k)(0) < 0. Since otherwise
f (k−1) is increasing in a neighborhood of zero, which implies that f (k−2) is increasing in a
neighborhood of zero, and so on, which eventually would imply that f is increasing in a
neighborhood of zero. Since α = 1/(2k + 1), the only difference with the proof of (i) is the
behavior of the deterministic term

n(k+1)/(2k+1)
{

F (tn−1/(2k+1))− f(0)tn−1/(2k+1)
}
→ −|f

(k)(0)|
(k + 1)!

tk+1,

uniformly for t in compact sets. Similar to the proof of (i), using Brownian scaling and
uniform continuity of Brownian motion on compacta this proves (ii).
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For case (iii) the process Zn2 can be written as

nb/2
{

Wn

(
F (cn−α + tn−b)

)−Wn

(
F (cn−α)

)}

+n(b+1)/2
{

F (cn−α + tn−b)− F (cn−α)− f(cn−α)tn−b
}
− xt

−nb/2
{

F (cn−α + tn−b)− F (cn−α)
}

Wn(1) + nb/2Hn(cn−α + tn−b)− nb/2Hn(cn−α).

The process nb/2
{
Wn

(
F (cn−α + tn−b)

)−Wn

(
cF (n−α)

)}
has the same distribution as the

process W
(
nb(F (cn−α + tn−b) − F (cn−α))

)
, and by uniform continuity of Brownian motion

on compacta,
W

(
nb(F (cn−α + tn−b)− F (cn−α))

)−W
(
f(0)t

) → 0,

uniformly for t in compact sets. Finally, for some θ1 ∈ [cn−α, cn−α + tn−b] and for some
θ2 ∈ [0, cn−α + tn−b], it holds that

n(b+1)/2
{

F (cn−α + tn−b)− F (cn−α)− f(cn−α)tn−b
}

= n(1−3b)/2 f ′(θ1)
2

t2 = n(1−3b)/2 f (k)(θ2)
2(k − 1)!

θk−1
1 t2 → − |f

(k)(0)|
2(k − 1)!

ck−1t2,

uniformly for t in compact sets. Since nb/2
{
F (n−α + tn−b)− F (n−α)

}
Wn(1) = Op(n−b/2),

together with (2.2) this proves (iii).

To verify condition (iii) of Theorem 2.1 we need that F (c + t) − F (c) − f(c)t is suitably
bounded. The next lemma guarantees that this is the case.

Lemma 6.1 Suppose that f satisfies (C2). Then there exists a value t0 > 0, such that
inf |f (k)| = inf0≤s≤t0 |f (k)(s)| > 0. For any 0 ≤ c ≤ t0/2 we can bound F (c+ t)−F (c)− f(c)t
by

(i) − inf |f (k)|
(k + 1)!

tk+1, for 0 ≤ t ≤ t0/2,

(ii) − inf |f (k)|
(k + 1)!

(t0/2)k t, for t > t0/2,

(iii) − inf |f (k)|
2(k − 1)!

(c/2)k−1 t2, for −c/2 < t < t0/2.

Furthermore, for small enough c and for −c < t < −c/2

(iv) F (c + t)− F (c)− f(c)t ≤ −C1c
k+1, where C1 > 0 does not depend on c and t.

Proof: The existence of t0 > 0 follows directly from condition (C2). According to the proof
of Lemma 3.1, under condition (C2) we must have f (k)(0) < 0. This in turn implies that
f (i)(s) < 0 for 0 ≤ s ≤ t0 and i = 1, 2, . . . , k. Hence, for 0 ≤ t ≤ t0/2, the inequality for
F (c+ t)−F (c)−f(c)t is a direct consequence of a Taylor expansion, where all negative terms
except for the last one are omitted.
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For t > t0/2, write

F (c + t)− F (c)− f(c)t = F (c + t0/2)− F (c)− f(c)t0/2
+ (f(c + t0/2)− f(c)) (t− t0/2)

+F (c + t)− F (c + t0/2)− f(c + t0/2)(t− t0/2),

where F (c + t) − F (c + t0/2) − f(c + t0/2)(t − t0/2) ≤ 0, because f is non-increasing. By
the same argument as above, F (c + t0/2)−F (c)− f(c)t0/2 ≤ f (k)(θ1) (t0/2)k+1 /(k + 1)! and
(f(c + t0/2)− f(c)) ≤ f (k)(θ2) (t0/2)k /k!, for some c < θ1, θ2 < c + t0/2. This implies that
for t > t0/2, we can bound F (c + t)− F (c)− f(c)t from above by

−(t0/2)k+1

(k + 1)!
inf |f (k)| − (t0/2)k

k!
inf |f (k)| (t− t0/2)

≤ − (t0/2)k

(k + 1)!
inf |f (k)| (t0/2 + t− t0/2) = − (t0/2)k

(k + 1)!
inf |f (k)|t.

For −c/2 < t < t0/2, first write F (c + t)−F (c)− f(c)t = f ′(θ4)t2/2, for c/2 < θ4 < c + t0/2.
By condition (C2), f ′(θ4) = f (k)(θ5)θk−1

4 /(k − 1)!, for some 0 < θ5 < θ4. This means that

F (c + t)− F (c)− f(c)t =
θk−1
4

2(k − 1)!
f (k)(θ5)t2 ≤ − (c/2)k−1

2(k − 1)!
inf |f (k)|t2.

Finally, for −c < t < −c/2, first note that f(c + t)− f(c) ≥ 0, so that F (c + t)−F (c)− f(c)t
is non-decreasing in t. Write

F (c + t)− F (c)− f(c)t =
f (k)(θ6)
(k + 1)!

(c + t)k+1 − f (k)(θ7)
(k + 1)!

ck+1 − f (k)(θ8)
k!

ckt,

for 0 < θ6 < c + t and 0 < θ7, θ8 < c. Because this expression is non-decreasing for −c <
t < −c/2, and since f (k)(θi)− f (k)(0) = o(1), for i = 6, 7, 8, uniformly in −c < t < −c/2, we
conclude that

F (c + t)− F (c)− f(c)t ≤ f (k)(0)
(k + 1)!

ck+1

(
1

2k+1
− 1 +

k + 1
2

)
(1 + o(1)),

as c ↓ 0. Since f (k)(0) < 0, this proves the lemma.

Proof of Lemma 3.2:
(i) Decompose Zn1 as in (6.1). Let 0 < ε < x and define Xn1(t) = nα/2Hn(tn−α) − εt/2,
where Hn(t) = En(t)−Bn(F (t)). Next, consider the event

An1 = {Xn1(s) ≥ Xn1(t), for all s, t ∈ [0,∞), such that t− s ≥ δn} . (6.2)

Then with δn = n−(1−α)/2(log n)2, by using (2.2) we have that

P (An1) ≥ P

{
sup

t∈[0,∞)
|Hn(t)| ≤ ε

4
n−1/2(log n)2

}
→ 1.

Also define the process Xn2(t) = −nα/2F (tn−α)Wn(1)− εt/2, and consider the event

An2 = {Xn2(s) ≥ Xn2(t), for all 0 ≤ s ≤ t < ∞} . (6.3)
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Then, since every sample path of the process Xn2 is differentiable, we have

P (An2) ≥ P
{
−f(tn−α)Wn(1)− ε

2
nα/2 ≤ 0, for all t ∈ [0,∞)

}
→ 1.

Hence, if An = An1 ∩An2, then P (An) → 1. Since for any η > 0,

P

{
argmax
t∈[0,∞)

Zn1(t)1Ac
n

> η

}
≤ P (Ac

n) → 0,

we conclude that (argmaxt Zn1(t)) 1Ac
n

= Op(1). This means that we only have to consider
(argmaxt Zn1(t)) 1An . From Lemma 2.1, we have

(
argmax
t∈[0,∞)

Zn1(t)

)
1An ≤ argmax

t∈[0,∞)
Sn1(t) + δn, (6.4)

where

Sn1(t) = nα/2Wn

(
F (tn−α)

)− (x− ε)t + n(1+α)/2
(
F (tn−α)− f(0)tn−α

)
.

Since F (tn−α)− f(0)tn−α is non-increasing for t ≥ 0, according to Lemma 2.1,

argmax
t∈[0,∞)

Sn1(t) ≤ argmax
t∈[0,∞)

{
nα/2Wn

(
F (tn−α)

)− (x− ε)t
}

≤ sup
{

t ≥ 0 : nα/2Wn

(
F (tn−α)

)− (x− ε)t ≥ 0
}

.

(6.5)

By change of variables u = G(t) = nαF (tn−α), and using that for u ∈ [0, nα],

u

f(0)
≤ G−1(u) ≤ u

f
(
F−1(un−α)

) , (6.6)

we find that the right hand side of (6.5) is bounded by

G−1

(
sup

{
u ≥ 0 : nα/2Wn(un−α)− x− ε

f(0)
u ≥ 0

})
.

By Brownian scaling (2.3),

sup
{

u ≥ 0 : nα/2Wn(un−α)− x− ε

f(0)
u ≥ 0

}
d=

f(0)2

(x− ε)2
sup {u ≥ 0 : W (u)− u ≥ 0} ,

which is of order Op(1). The latter can be seen for instance from (3.3). Because δn =
n−(1−α)/2(log n)2 = o(1), together with (6.4), (6.5) and (6.6), it follows that

0 ≤ argmax
t∈[0,∞)

Zn1(t) ≤
(

argmax
t∈[0,∞)

Zn1(t)

)
1An +Op(1) ≤ Op(1)

f
(
F−1(Op(n−α))

) +Op(1),

which proves (i).
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(ii) In this case α = 1/(2k + 1), so that the argument up to (6.4) is the same. Let ε > 0
and An = An1 ∩ An2, where An1 as defined in (6.2) with δn = n−k/(k+1)(log n)2 and An2 as
defined in (6.3). We now find that

(
argmax
t∈[0,∞)

Zn1(t)

)
1An ≤ argmax

t∈[0,∞)
Sn1(t) + δn ≤ sup {t ≥ 0 : Sn1(t) ≥ 0}+ δn. (6.7)

Let t0 be the value from Lemma 6.1 and consider the event

Dn1 =
{
n−α sup {t ≥ 0 : Sn1(t) ≥ 0} ≤ t0/2

}
.

If Sn1(t) ≥ 0, then according to Lemma 6.1(ii), for tn−α > t0/2 and n sufficiently large, we
find that

0 ≤ nα/2Wn

(
F (tn−α)

)− (x− ε)t + n(1+α)/2
(
F (tn−α)− f(0)tn−α

)

≤ nα/2 sup
0≤u≤1

|Wn(u)| − (x− ε)t− n(1−α)/2 (t0/2)k

(k + 1)!
inf |f (k)|t

≤ nα/2 sup
0≤u≤1

|Wn(u)| − n(1−α)/2C1t

(
1 +

x− ε

n(1−α)/2C1

)

≤ nα/2

{
sup

0≤u≤1
|Wn(u)| − C1n

1/2t0/4
}

,

where C1 = inf |f (k)|(t0/2)k/(k + 1)!. Therefore

P (Dc
n1) ≤ P

(
sup

0≤u≤1
|W (u)| ≥ C1n

1/2t0/4
)
→ 0.

This means we can restrict ourselves to the event An ∩Dn1, so that by analogous reasoning
as before, from (6.7) we get

(
argmax
t∈[0,∞)

Zn1(t)

)
1An∩Dn1 ≤ sup

{
t ≥ 0 : Sn1(t) ≥ 0

}
1Dn1 + δn

≤ sup
{

0 ≤ t ≤ nαt0/2 : Sn1(t) ≥ 0
}

+ δn.

According to Lemma 6.1(i), for 0 ≤ tn−α ≤ t0/2 and using that α = 1/(2k + 1), we get

n(1+α)/2
(
F (tn−α)− f(0)tn−α

) ≤ − inf |f (k)|
(k + 1)!

tk+1,

so that

0 ≤
(

argmax
t∈[0,∞)

Zn1(t)

)
1An∩Dn1

≤ sup
{

0 ≤ t ≤ nαt0/2 : nα/2Wn

(
F (tn−α)

)− (x− ε)t− inf |f (k)|
(k + 1)!

tk+1 ≥ 0
}

+ δn.

(6.8)

Next, distinguish between
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(A) −(x− ε)t− inf |f (k)|tk+1/(2(k + 1)!) ≥ 0,

(B) −(x− ε)t− inf |f (k)|tk+1/(2(k + 1)!) < 0.

Since t ≥ 0, case (A) can only occur when x − ε < 0, in which case we have 0 ≤ t ≤(
2(k + 1)!(ε− x)/ inf |f (k)|)1/k

, which is of order O(1). In case (B), it follows that

nα/2Wn

(
F (n−αt)

)− inf |f (k)|
2(k + 1)!

tk+1 ≥ 0.

We conclude from (6.8) that

0 ≤
(

argmax
t∈[0,∞)

Zn1(t)

)
1An∩Dn1

≤ sup

{
0 ≤ t ≤ nαt0/2 : nα/2Wn

(
F (tn−α)

)− inf |f (k)|
2(k + 1)!

tk+1 ≥ 0

}
+Op(1) + δn

≤ sup

{
t ∈ [0,∞) : nα/2Wn

(
F (tn−α)

)− inf |f (k)|
2(k + 1)!

tk+1 ≥ 0

}
+Op(1). (6.9)

Similar to the proof of (i), by change of variables u = G(t) = nαF (tn−α) and using (6.6)
with α = 1/(2k +1), we find that the argmax on the right hand side of (6.9) is bounded from
above by

G−1

(
sup

{
u ∈ [0,∞) : nα/2Wn(un−α)− inf |f (k)|

2(k + 1)!f(0)k+1
uk+1 ≥ 0

})
+Op(1).

By Brownian scaling (2.3), we obtain that the supremum in the first term has the same
distribution as

(
2(k + 1)!f(0)k+1

inf |f (k)|

)2/(2k+1)

sup
{

u ≥ 0 : W (u)− uk+1 ≥ 0
}

.

Again by using (3.3), this is of order Op(1). Similar to the proof of (i), from (6.6) and (6.9)
we find that

0 ≤ argmax
t∈[0,∞)

Zn1(t) ≤
(

argmax
t∈[0,∞)

Zn1(t)

)
1An∩Dn1 +Op(1) ≤ Op(1)

f (F−1(Op(n−α)))
+Op(1),

which proves (ii).
(iii) Decompose Zn2 as in the proof of Lemma 3.1. Let ε > 0 and An = An1 ∩ An2, with

An1 defined similar to (6.2) with δn = n−(1−b)/2(log n)2, where b is the same as in Lemma 3.1,
and An2 is defined similar to (6.3). By the same argument as in the proof of (i) and (ii), it
suffices to consider (argmaxt Zn2(t)) 1An . We find

(
argmax

t∈[−cnb−α,∞)

Zn2(t)

)
1An ≤ argmax

t∈[−cnb−α,∞)

Mn2(t) + δn ≤ sup{t ≥ 0 : Mn2(t) ≥ 0}+ δn,
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where Mn2(t) has the same distribution as

Sn2(t) = nb/2W
(
F (cn−α + tn−b)− F (cn−α)

)

+n(b+1)/2
(
F (cn−α + tn−b)− F (cn−α)− f(cn−α)tn−b

)
− (x− ε)t.

As in the proof of (ii), consider Dn2 =
{
n−b sup{t ≥ 0 : Sn2(t) ≥ 0} ≤ t0/2

}
, where t0 is the

value from Lemma 6.1. By the same reasoning as used in the proof of (ii), it again follows from
Lemma 6.1(ii) that P (Dc

n2) → 0, so we only have to consider sup {t ≥ 0 : Sn2(t) ≥ 0} 1Dn2 .
Hence, similar to the proof of (ii) we get

sup {t ≥ 0 : Sn2(t) ≥ 0} 1Dn2 ≤ sup
{

0 ≤ t ≤ nbt0/2 : Sn2(t) ≥ 0
}

.

Since, b > 1/(2k+1), for k ≥ 2, we cannot proceed as in the proof of (ii) by using Lemma 6.1(i)
to bound the drift term. However, according to Lemma 6.1(iii), for 0 ≤ t ≤ nbt0/2,

n(b+1)/2
(
F (cn−α + tn−b)− F (cn−α)− f(cn−α)tn−b

)
≤ − inf |f (k)|

2k(k − 1)!
t2,

so that sup{0 ≤ t ≤ nbt0/2 : Sn2(t) ≥ 0} is bounded from above by

sup
{

0 ≤ t ≤ nbt0/2 : nb/2W
(
F (cn−α + tn−b)− F (cn−α)

)− (x− ε)t− inf |f (k)|
2k(k − 1)!

t2 ≥ 0
}

.

Similar to (6.9), we conclude that sup {t ≥ 0 : Sn2(t) ≥ 0} 1Dn2 is bounded from above by

sup
{

t ≥ 0 : nb/2Wn

(
F (cn−α + tn−b)− F (cn−α)

)
− inf |f (k)|

2k+1(k − 1)!
t2 ≥ 0

}
+Op(1). (6.10)

Next, change variables u = G(t) = nb
(
F (cn−α + tn−b) − F (cn−α)

)
. Then for any u ∈

[0, nb(1− F (cn−α))], it follows that

u

f(0)
≤ G−1(u) ≤ u

f (F−1(un−b + F (cn−α)))
, (6.11)

so that (6.10) is bounded from above by

G−1

(
sup

{
u ≥ 0 : nb/2W (un−b)− inf |f (k)|

2k+1(k − 1)!f(0)2
u2 ≥ 0

})
+Op(1).

As in the proof of (ii), by Brownian scaling (2.3) together with (6.11), we find that

argmax
t∈[−cnb−α,∞)

Zn2(t) ≤
(

argmax
t∈[−cnb−α,∞)

Zn2(t)

)
1An∩Dn2 +Op(1)

≤ Op(1)
f (F−1(Op(n−b) + F (cn−α)))

+Op(1) = Op(1).

(6.12)

To obtain a lower bound for the left hand side of (6.12), first note that

argmax
t∈[−cnb−α,∞)

Zn2(t) ≥ argmax
t∈[−cnb−α,0]

Zn2(t) = − argmax
t∈[0,cnb−α]

Zn2(−t). (6.13)
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¿From here, the argument runs along the same lines as for the upper bound. Let ε > 0 and,
similar to (6.2) and (6.3), define the events An1 and An2 with

Xn1(t) = nb/2Hn(cn−α − tn−b)− εt/2,

Xn2(t) = −nb/2F (cn−α − tn−b)− εt/2.

With An = An1 ∩An2, as before we get (argmaxt Zn2(−t)) 1c
An

= Op(1) and
(

argmax
t

Zn2(−t)
)

1An ≤ argmax
t∈[0,cnb−α)

Mn3(t) + δn,

where Mn3(t) has the same distribution as

Sn3(t) = nb/2W
(
F (cn−α − tn−b)− F (cn−α)

)

+n(b+1)/2
(
F (cn−α − tn−b)− F (cn−α) + f(cn−α)tn−b

)
+ (x + ε)t

≤ nb/2 sup{|W (u)| : 0 ≤ u ≤ f(0)cn−α}
+n(b+1)/2

(
F (cn−α − tn−b)− F (cn−α) + f(cn−α)tn−b

)
+ (x + ε)t.

Consider Dn3 = {n−b sup{0 ≤ t ≤ cnb−α : Sn3(t) ≥ 0} ≤ cn−α/2}, and note that by Brown-
ian scaling sup{|W (u)| : 0 ≤ u ≤ f(0)cn−α} has the same distribution as n−α/2 sup{|W (u)| :
0 ≤ u ≤ cf(0)}. Reasoning as in the proof of (ii), using Lemma 6.1(iv), we obtain that for
cn−α/2 ≤ n−bt ≤ cn−α and n sufficiently large

0 ≤ n(b−α)/2 sup
0≤u≤cf(0)

|W (u)|+ n(b+1)/2
(
F (cn−α − tn−b)− F (cn−α) + f(cn−α)tn−b

)

+ (x + ε)t

≤ n(b−α)/2

(
sup

0≤u≤cf(0)
|W (u)| − C1n

(1−(2k+1)α)/2

(
1 +

x + ε

C1n(b+1)/2−(k+1)α

))

≤ n(b−α)/2

(
sup

0≤u≤cf(0)
|W (u)| − C1n

(1−(2k+1)α)/2/2

)
.

Therefore, P (Dc
n3) → 0, so we only have to consider (argmaxt Sn3(t))1Dn3 . Hence, similar to

the proof of (ii), we get

argmax
t∈[0,cnb−α)

Sn3(t)1Dn3 + δn ≤ sup
{

0 ≤ t ≤ cnb−α/2 : Sn3(t) ≥ 0
}

+ δn.

According to Lemma 6.1(iii), for 0 ≤ tn−b ≤ cn−α/2 we have

n(b+1)/2
(
F (cn−α − tn−b)− F (cn−α) + f(cn−α)tn−b

)
≤ − inf |f (k)|

2k(k − 1)!
t2. (6.14)

Similar to (ii), separate cases and obtain that argmaxt∈[0,cnb−α) Sn3(t)1Dn3 + δn is bounded
from above by

sup
{

0 ≤ t ≤ cnb−α/2 : nb/2W
(
F (cn−α − tn−b)− F (cn−α)

)
− inf |f (k)|

2k+1(k − 1)!
t2 ≥ 0

}
+Op(1).
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After change of variables u = G(t) = nb
(
F (cn−α − tn−b) − F (cn−α)

)
, and using that for

u ∈ [−nbF (cn−α), 0], one has

− u

f(0)
≤ G−1(u) ≤ − u

f(cn−α)
,

we now find that

argmax
t∈[0,cnb−α)

Sn3(t) + δn ≤ 1
f(cn−α)

sup

{
u ≤ 0 : Wn(u)− inf |f (k)|

2k+1(k − 1)!f(0)2
u2 ≥ 0

}
+Op(1).

As above, by Brownian scaling (2.3) together with (6.13), it follows that

argmax
t∈[−cnb−α,∞)

Zn2(t) ≥ Op(1)
f(cn−α)

+Op(1) = Op(1).

Together with (6.12) this proves the lemma.

Proof of Theorem 4.1: To prove case (i), similar to the proof of Theorem 3.1(i), it suffices
to consider n(1−α)/2(f(1)− f̂n(1− n−α)). For x > 0, according to (2.1),

P
{

n(1−α)/2
(
f(1)− f̂n(1− cn−α)

)
≤ x

}
= P

{
nα(1− Un(f(1)− xn−(1−α)/2)) ≤ c

}
,

where according to Lemma 4.2(i),

nα
(
1− Un(f(1)− xn−(1−α)/2)

)
= argmax

t∈[0,nα]
Yn1(x, t) = Op(1).

From here on, the proof proceeds in completely the same manner as that of Theorem 3.1(i).
We conclude that for x > 0,

P
{

n(1−α)/2
(
f(1)− f̂n(1− cn−α)

)
≤ x

}
= P

{
argmax
0≤t≤nα

Yn1(t) ≤ c

}

→ P

{
argmax

t≥0
{W (f(1)t)− xt} ≤ c

}

= P

{
argmax

t≥0

{
W (t)− xc1/2t

f(1)1/2

}
≤ 1

}
.

Similar to switching relation (2.1), the right hand side equals P{(f(1)/c)1/2DR[W (t)](1) ≤ x}.
Furthermore, similar to the proof of Theorem 3.1(i) it follows that

P
{

n(1−α)/2
(
f(1)− f̂n(1− n−α)

)
≤ 0

}
→ 0.

This proves (i).
For (ii), first note that if f (k)(1) 6= 0, then we must have (−1)k+1f (k)(1) < 0. Since

otherwise (−1)kf (k−1)(1 − t) is increasing in a neighborhood of zero, which implies that
(−1)k−1f (k−2)(1 − t) is increasing in a neighborhood of zero, and so on, which eventually
would imply that f is increasing in a neighborhood of one. Hence, from (C4) it follows that

nk/(2k+1)
(
f(1− cB̃2kn

−1/(2k+1))− f̂n(1− cB̃2kn
−1/(2k+1))

)
− |f (k)(1)|(cB̃2k)k/k!

= nk/(2k+1)
(
f(1)− f̂n(1− cB̃2kn

−1/(2k+1))
)

+ o(1),
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and that according to (2.1), P
{

nk/(2k+1)
(
f(1)− f̂n(1− cB̃2kn

−1/(2k+1))
)
≤ x

}
is equal to

P
{

B̃−1
2k n1/(2k+1)

(
1− Un

(
f(1)− xn−k/(2k+1)

))
≤ c

}
.

With Yn1 being the process defined in Lemma 4.1 with α = 1/(2k + 1), we get

B̃−1
2k n1/(2k+1)

(
1− Un

(
f(1)− xn−k/(2k+1)

))
= argmax

t∈[0,nα)

{
Yn1(x, B̃2kt)

}
= Op(1).

The rest of the proof is completely similar to that of Theorem 3.1(ii). For (iii), note that
according to (2.1), we have

P
{

n(1−b)/2
(
f(1− cn−α)− f̂n(1− cn−α)

)
≤ x

}

= P
{

nb
(
1− Un(f(1− cn−α)− xn−(1−b)/2)− cn−α

)
≤ 0

}
,

(6.15)

and with Yn2 as defined in Lemma 4.2(iii), we get

nb
(
Un(f(1− cn−α)− xn−(1−b)/2)− cn−α

)
= argmax

t∈[−cnb−α,nb−cnb−α)

Yn2(x, t) = Op(1).

From here the proof is completely similar to that of Theorem 3.1(iii).

Proof of Lemma 4.1:
Similar to the proof of Lemma 3.1, the process Yn1(x, t) can be written as

nα/2
{
Wn(F (1− tn−α))−Wn(1)

}

+n(1+α)/2
{
F (1− tn−α)− 1 + f(1)tn−α

}− xt

−nα/2
{
F (1− tn−α)− 1

}
Wn(1) + nα/2Hn(1− tn−α).

First note that the process nα/2 {Wn(F (1− tn−α))−Wn(1)} has the same distribution as the
process W (nα(1−F (1− tn−α))), which can be approximated by the process W (f(1)t), using
uniform continuity of Brownian motion on compacta. Since α > 1/(2k + 1) we have that

n(1+α)/2
{
F (1− tn−α)− F (1) + f(1)tn−α

}
= n(1+α)/2(−1)k+1 f (k)(θt)

(k + 1)!
(tn−α)k+1 → 0,

uniformly for t in compact sets. Because nα/2(F (1 − tn−α) − F (1))Wn(1) = Op(n−α/2),
together with (2.2) this proves (i). In case (ii), where α = 1/(2k + 1), the only difference is
the behavior of the deterministic term

n(k+1)/(2k+1)
{

F (1− tn−1/(2k+1))− F (1) + f(1)tn−1/(2k+1)
}
→ −|f

(k)(1)|
(k + 1)!

tk+1,

uniformly for t in compact sets, where we use that (−1)k+1f (k)(1) < 0 (see the proof of
Theorem 4.1). Similar to the proof of (i), using Brownian scaling and uniform continuity of
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Brownian motion on compacta this proves (ii). For case (iii) the process Yn2 can be written
as

nb/2
{

Wn

(
F (1− cn−α − tn−b)

)−Wn

(
F (1− cn−α)

)}

+n(b+1)/2
{

F (1− cn−α − tn−b)− F (1− cn−α) + f(1− cn−α)tn−b
}
− xt

−nb/2
{

F (1− cn−α − tn−b)− F (1− cn−α)
}

Wn(1)

+nb/2Hn(1− cn−α − tn−b)− nb/2Hn(1− cn−α).

The process nb/2
{
Wn

(
F (1− cn−α − tn−b)

)−Wn

(
1− cF (n−α)

)}
has the same distribution

as the process W
(
nb(F (1 − cn−α) − F (1 − cn−α − tn−b))

)
, which can be approximated by

the process W (f(1)t), again by using uniform continuity of Brownian motion on compacta.
Finally, for some θ1 ∈ [1 − cn−α − tn−b, 1 − cn−α] and for some θ2 ∈ [1 − cn−α − tn−b, 1] it
holds that

n(b+1)/2
{

F (1− cn−α − tn−b)− F (1− cn−α) + f(1− cn−α)tn−b
}

= n(1−3b)/2 f ′(θ1)
2

t2 = n(1−3b)/2 f (k)(θ2)
2(k − 1)!

(θ1 − 1)k−1t2 → − |f
(k)(1)|

2(k − 1)!
ck−1t2,

uniformly for t in compact sets. Since nb/2
{
F (1− n−α − tn−b)− F (1− n−α)

}
Wn(1) =

Op(n−b/2), together with (2.2) this proves (iii).

To verify condition (iii) of Theorem 2.1 we need that F (1− c− t)− F (1− c) + f(1− c)t
is suitably bounded. The next lemma guarantees that this is the case.

Lemma 6.2 Suppose that f satisfies (C4). Then there exists a value t1 > 0, such that
inf |f (k)| = inf1−t1≤s≤1 |f (k)(s)| > 0. For any 0 ≤ c ≤ t1/2 we can bound F (1 − c − t) −
F (1− c ) + f(1− c)t by

(i) − inf |f (k)|
(k + 1)!

tk+1, for 0 ≤ t ≤ t1/2

(ii) − inf |f (k)|
(k + 1)!

(t1/2)k t, for t1/2 < t < 1− c

(iii) − inf |f (k)|
2(k − 1)!

(c/2)k−1 t2, for −c/2 < t < t1/2.

Furthermore, for small enough c and for −c < t < −c/2

(iv) F (1−c− t)−F (1−c)−f(1−c)t ≤ −C1c
k+1, where C1 > 0 does not depend on c and t.

Proof: The existence of t1 > 0 follows directly from condition (C4). According to the proof
of Theorem 4.1, under condition (C4) we must have (−1)k+1f (k)(1) < 0, which in turn implies
that (−1)i+1f (i)(1 − s) < 0 for 0 ≤ s ≤ t1 and i = 1, 2, . . . , k. Hence, for 0 ≤ t ≤ t1/2, the
inequality for F (1− c− t)−F (1− c)+f(1− c)t is a direct consequence of a Taylor expansion,
where all negative terms except for the last one are omitted.
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For t > t1/2, write

F (1− c− t)− F (1− c) + f(1− c)t = F (1− c− t1/2)− F (1− c) + f(1− c)t1/2
+ (f(1− c)− f(1− c− t1/2)) (t− t1/2)
+ F (1− c− t)− F (1− c− t1/2) + f(1− c− t1/2)(t− t1/2),

where F (1−c− t)−F (1−c− t1/2)+f(1−c− t1/2)(t− t1/2) ≤ 0, because f is non-increasing.
By the same argument as above,

F (1− c− t1/2)− F (1− c) + f(1− c)t1/2 ≤ (−1)k+1f (k)(θ1) (t1/2)k+1 /(k + 1)!

and
(f(1− c)− f(1− c− t1/2)) ≤ (−1)k+1f (k)(θ2) (t1/2)k /k!,

for some c < θ1, θ2 < c + t1/2. This implies that for t > t1/2, we can bound

F (1− c− t)− F (1− c) + f(1− c)t

≤ −(t1/2)k+1

(k + 1)!
inf |f (k)| − (t1/2)k

k!
inf |f (k)| (t− t1/2)

≤ − (t1/2)k

(k + 1)!
inf |f (k)| (t1/2 + t− t1/2) = − (t1/2)k

(k + 1)!
inf |f (k)|t.

For −c/2 < t < t1/2, first write F (1 − c − t) − F (1 − c) + f(1 − c)t = f ′(θ4)t2/2, for
1− c/2− t1/2 < θ4 < 1− c. By condition (C4), f ′(θ4) = (−1)k−1f (k)(θ5)(1− θ4)k−1/(k− 1)!,
for some θ4 < θ5 < 1. This means that

F (1− c− t)− F (1− c) + f(1− c)t = (−1)k−1 (1− θ4)k−1

2(k − 1)!
f (k)(θ5)t2 ≤ − (c/2)k−1

2(k − 1)!
inf |f (k)|t2.

Finally, for −c < t < −c/2, first note that f(1− c)− f(1− c− t) ≥ 0, so that F (1− c− t)−
F (1− c) + f(1− c)t is non-decreasing in t. Write

F (1− c− t)− F (1− c) + f(1− c)t

= (−1)k+1 f (k)(θ6)
(k + 1)!

(c + t)k+1 − (−1)k+1 f (k)(θ7)
(k + 1)!

ck+1 − (−1)k f (k)(θ8)
k!

ckt,

for 1 − c − t < θ6 < 1 and 1 − c < θ7, θ8 < 1. Because this expression is non-decreasing for
−c < t < −c/2, and since f (k)(θi)−f (k)(1) = o(1), for i = 6, 7, 8, uniformly in −c < t < −c/2,
we conclude that

F (1− c− t)− F (1− c) + f(1− c)t ≤ (−1)k+1 f (k)(1)
(k + 1)!

ck+1

(
1

2k+1
− 1 +

k + 1
2

)
(1 + o(1))

as c ↓ 0. Since (−1)k+1f (k)(1) < 0, this proves the lemma.

Proof of Lemma 4.2: The proof mimics the proof of Lemma 3.2. Let 0 < ε < x. Define
processes

Xn1(t) = nα/2Hn(1− tn−α)− 1
2
εt,

Xn2(t) = −nα/2
{
F (1− tn−α)− 1

}
Wn(1)− 1

2
εt,
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and define the event An as in the proof of Lemma 3.2(i). It follows that (argmaxt Yn1(t))1Ac
n

=
Op(1), so that we only have to deal with (argmaxt Yn1(t))1An . From Lemma 2.1, we have

(
argmax
t∈[0,nα)

Yn1(t)

)
1An ≤ argmax

t∈[0,nα)
Mn1(t) + δn, (6.16)

where Mn1(t) is the process

nα/2
{
Wn(F (1− tn−α))−Wn(1)

}− (x− ε)t + n(1+α)/2
(
F (1− tn−α)− F (1) + f(1)tn−α

)
.

By Brownian scaling Mn1 has the same distribution as

Sn1(t) = nα/2W
(
F (1− tn−α)− 1

)− (x− ε)t + n(1+α)/2
(
F (1− tn−α)− 1 + f(1)tn−α

)
.

Proceeding as in the proof of Lemma 3.2(i), using that the function F (1−tn−α)−1+f(1)tn−α

is non-increasing, we find that

0 ≤
(

argmax
t∈[0,nα]

Sn1(t)

)
1An ≤ argmax

t∈[0,nα]

{
W

(
nα(F (1− tn−α)− 1)

)− (x− ε)t
}

+ δn,

where δn = n−(1−α)/2(log n)2. Finally, by change of variables u = H(t) = nα(1−F (1−tn−α)),
and the fact that for any u ∈ [0, nα],

u

f(0)
≤ H−1(u) ≤ u

f(1)
, (6.17)

we find that

argmax
t∈[0,nα]

{
W

(
nα(F (1− tn−α)− 1)

)− (x− ε)t
}

≤ sup
{

t ∈ [0, nα] : W
(
nα(F (1− tn−α)− 1)

)− (x− ε)t ≥ 0
}

≤ 1
f(1)

sup
{

u ∈ [0,∞) : W (−u)− x− ε

f(0)
u ≥ 0

}
= Op(1),

which proves (i).
(ii) As in the proof of Lemma 3.2(ii), similar to (6.7) we obtain
(

argmax
t∈[0,nα)

Yn1(t)

)
1An ≤ argmax

t∈[0,nα)
Mn1(t) + δn ≤ sup {0 ≤ t ≤ nα : Mn1(t) ≥ 0}+ δn,

where Mn1 has the same distribution as Sn1 with α = 1/(2k + 1). As in the proof of
Lemma 3.2(ii), restrict to Dn1 = {n−α sup {t ≥ 0 : Sn1(t) ≥ 0} ≤ t1/2}, with t1 being the
value from Lemma 6.2. Then P (Dc

n1) → 0. Then by application of Lemma 6.2(ii), similar to
(6.8) we find that (argmaxt Sn1(t)) 1An∩Dn1 is bounded from above by

sup
{

0 ≤ t ≤ nαt1/2 : nα/2W
(
F (1− tn−α)− 1

)− (x− ε)t− inf |f (k)|
(k + 1)!

tk+1 ≥ 0
}

+ δn.
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Proceeding as in the proof of Lemma 3.2(ii), similar to (6.9) this supremum is bounded by

sup
{

t ∈ [0, nα) : nα/2W
(
F (1− tn−α)− 1

)− inf |f (k)|
2(k + 1)!

tk+1 ≥ 0
}

+Op(1).

By change of variables u = H(t) = nα(1− F (1− tn−α)), and using (6.17), we find that this
argmax is bounded by

1
f(1)

sup

{
u ∈ [0,∞) : nα/2W (−un−α)− inf |f (k)|

2(k + 1)!f(0)k+1
uk+1 ≥ 0

}
+Op(1).

By Brownian scaling (2.3), we obtain that the supremum in the first term has the same
distribution as

(
2(k + 1)!f(0)k+1

inf |f (k)|

)2/(2k+1)

sup
{

u ≥ 0 : W (u)− uk+1 ≥ 0
}

.

Again by using (3.3), this is of order Op(1), which proves (ii).
For case (iii), decompose Yn2 as in the proof of Lemma 4.1. Let ε > 0 and let An be same

event as in the proof of (i) and (ii) with δn = n−1/3(log n)2. Write In = [−n1/3−α, n1/3(1 −
n−α)], then by the same argument as in the proof of (i) and (ii), we find that
(

argmax
t∈In

Yn2(t)
)

1An ≤ argmax
t∈In

Mn2(t) + δn ≤ sup{0 ≤ t ≤ n−b − cnb−α : Mn2(t) ≥ 0}+ δn,

where Mn2(t) has the same distribution as

Sn2(t) = nb/2W
(
F (1− cn−α − tn−b)− F (1− cn−α)

)

+n(b+1)/2
(
F (1− cn−α − tn−b)− F (1− cn−α) + f(1− cn−α)tn−b

)
− (x− ε)t.

According to Lemma 6.2,

n(b+1)/2
(
F (1− cn−α − tn−b)− F (1− cn−α) + f(1− cn−α)tn−b

)
≤ − inf |f (k)|

2k(k − 1)!
t2,

for 0 ≤ t ≤ nbt1/2, so that sup{0 ≤ t ≤ nbt1/2 : Sn2(t) ≥ 0} is bounded from above by

sup
{

0 ≤ t ≤ nbt1/2 : nb/2W
(
F (1−cn−α)−F (1−cn−α−tn−b)

)−(x−ε)t− inf |f (k)|
2k(k − 1)!

t2 ≥ 0
}

.

Then by change of variables u = H(t) = nb
(
F (1 − cn−α) − F (1 − cn−α − tn−b)

)
, and using

that for any u ∈ [0, nbF (1− cn−α)],

u

f(0)
≤ H−1(u) ≤ u

f(1)
,

it follows that this argmax is bounded by

1
f(1)

sup
{

u ≥ 0 : nb/2W (un−b)− inf |f (k)|
2k+1(k − 1)!f(0)2

u2 ≥ 0
}

+Op(1).

The lower bound for argmaxt Yn2(t) is obtained by the same type of argument as for the lower
bound in the proof of Lemma 3.2(iii). This proves the lemma.
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